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Background



Introduction

Suppose we fit a Gaussian process model to some dataset of interest:

Y = Xβ + w + ϵ

w ∼ GP(0,Cθ)

ϵ ∼ N(0, τ2I)
(1)

To carry out posterior inference with niter MCMC iterates, we will
need to invert Cθ repeatedly (niter times). This becomes costly as the
sample size increases, since the order of inversion is O(n3) and the
storage cost is O(n2).
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Potential Solutions

How can we address the computational cost associated with inverting
the covariance matrix at each iteration?

1. Divide and conquer: Split Y and X into K distinct subsets, and
fit the model on each subset independently.

2. Random compression: Multiply Y and X by a random m × n
matrix Φ to create a condensed “sketch” of the original data with
only m rows.

Both of these are forms of distributed learning. Study of distributed
statistical methods has gained substantial attention in the recent
years (Guhaniyogi and Banerjee, 2019; McMahan et al., 2017).
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Additional Benefits

What if the data is confidential or privacy-protected?

1. Divide and conquer: Since the data is split into different shards,
the entirety of the dataset is not accessible from one place or file,
reducing the risk of leaked information.

2. Random compression: Transforms the data in such a way that it
is not possible to recover the original Y and X.
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Motivating Case Study: Flood
Data



New Jersey Flood Data

Figure 1: Flood level analysis on southern NJ peninsula coastline, first
attempted by Hutchings et al., 2023.
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Issues to Address

• The number of coordinate locations is very high (nearly 50
thousand).

• The locations of the coordinates, some of which contain power
stations, are confidential.

• We wish to incorporate both fixed effects (location-specific
predictors) and random effects (storm-specific predictors) into
the model.

*** Random compression can help us solve the first two issues here,
but we still need a way to incorporate both fixed and random effects
(AKA local and global attributes).
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Incorporate Storm-Specific Predictors

Normally, for local predictors only, our likelihood function for the full
Gaussian process model would be something like:

N(y |Xβ, σ2K(θ) + τ2In), (2)

But now, we formulate it as the product of likelihoods as follows:

S∏
s=1

N(ys | (1n ⊗ zT
s )γ + Xβ, σ2K(θ) + τ2In), (3)

Where ys is the water level for all locations resulting from storm s,
and zs are the storm-specific predictors.
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Methodology



Model Specification

Priors:

σ2 ∼ IG(1, 1)

τ2 ∼ IG(1, 1)

β ∼ N(0, Ip)

θ follows a discrete prior.

(4)

Likelihood:
S∏

s=1

N
(
Φys | (1m ⊗ zT

s )γ +ΦXβ,Φ
[
σ2K(θ) + τ2In

]
Φ⊺

)
, (5)

Where Φ is an m × n random compression matrix, generated from
Φij ∼ N(0, 1

n ), and m << n.
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Sampling Procedure

• Sample σ2 and τ2 through Metropolis-Hastings. Since θh is kept
fixed throughout the analysis of Πh, we need to compute
Φ⊺K(θh)Φ only once, which leads to substantial computational
benefit.

• Sample (βT,γT)T|− ∼ N(µβ,γ , Σβ,γ), where

Σβ,γ =
{
(m/n)

∑S
s=1 AT

s Σ
−1As + Ip

}−1

,

µβ,γ = Σβ,γ

{
(m/n)

∑S
s=1 AT

s Σ
−1ys,Φh

}
. Here

As = [XΦh : Zs,Φh ] is an m × n matrix and
Σ = (ΦhK(θh)Φ

T
h + τ2Im) is an m×m matrix. This step incurs a

computation complexity of O(m3), since Σ is an m × m
covariance matrix that needs to be inverted.
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Distributed Learning

Figure 2: The Wasserstein mean averages the H different posterior
distributions obtained (Guhaniyogi et al., 2023).
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Model Aggregration: Wasserstein Mean

We leverage the notion of the Wasserstein barycenter (Srivastava
et al., 2018) to aggregate parameter estimates and predictions from
the H different model fits.

α̂ξ =
1

H

H∑
h=1

α̂ξ,h, (6)
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Distributed Storage

Figure 3: Distributed storage of data for J separate storage centers.
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Results (Simulations)



Simulation Study - Parameters

Model Method σ2 τ2 β1 β2

Truth 2.00 0.20 2.00 -1.00

Full GP DISK-Sub 2.13 (2.09, 2.16) 0.21 (0.21, 0.22) 1.77 (1.39, 2.14) -1.00 (-1.01, -0.98)
DISK-Str 1.94 (1.91, 1.96) 0.20 (0.19, 0.21) 1.99 (1.89, 2.08) -1.02 (-1.02, -0.98)
Sketching 2.07 (2.03, 2.10) 0.21 (0.19, 0.22) 2.00 (1.98, 2.01) -0.99 (-1.00, -0.97)

MPP DISK-Sub 1.62 (1.59, 1.65) 0.18 (0.17, 0.20) 1.79 (1.55, 2.03) -1.00 (-1.02, -0.98)
DISK-Str 1.80 (1.79, 1.82) 0.05 (0.04, 0.05) 1.94 (1.86, 2.01) -0.99 (-1.02, -0.97)
Sketching 2.07 (1.99, 2.16) 0.11 (0.10, 0.13) 2.01 (2.00, 2.03) -0.95 (-0.96, -0.95)

NNGP DISK-Sub 2.14 (2.10, 2.18) 0.21 (0.21, 0.22) 1.76 (1.37, 2.14) -1.00 (-1.01, -0.98)
DISK-Str 1.99 (1.97, 2.01) 0.21 (0.20, 0.21) 1.99 (1.90, 2.08) -1.00 (-1.01, -0.98)
Sketching 2.04 (2.00, 2.07) 0.19 (0.18, 0.20) 1.97 (1.95, 1.99) -0.98 (-0.99, -0.97)

Table 1: We calculate the posterior median with 95% confidence intervals
for all model parameters for all the distributed Bayesian competitors. We
set both the sketching dimension for our approach and the size of each
subset for the DISK approach to be m = 500 to ensure comparability.
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Simulation Study - Predictions

Model Competitors MSPE Coverage Interval Score Energy Score

Full GP DISK-Subdomain 2.44 0.95 7.02 0.89
DISK-Stratified 2.30 0.94 6.89 0.86

Sketching 2.27 0.95 6.87 0.86

MPP DISK-Subdomain 2.50 0.91 7.24 0.90
DISK-Stratified 2.32 0.92 7.05 0.89

Sketching 2.30 0.95 6.87 0.86

NNGP DISK-Subdomains 2.43 0.95 7.00 0.89
DISK-Stratified 2.29 0.94 6.88 0.86

Sketching 2.28 0.95 6.88 0.86

Table 2: MSPE, coverage, interval score, and energy score for all
competing methods.

Interval Score: Favors model with the smallest possible prediction
intervals that still contain the true data (Francom and Sansó, 2020).
Energy Score: Takes into account both predictive accuracy as well
as predictive uncertainy (Heaton et al., 2019).
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Additional - How to choose m?
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Figure 4: MSPE and computation time (in hours) for model fit and
prediction in our simulation data, as a function of the compressed
dimension size m.
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Results (Flood Analysis)



Predicted Water Levels
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Figure 5: Actual water level (in meters) for a randomly selected storm at each
coordinate in the testing dataset, along with the predicted water level under each
model. 15



Predicted Water Levels - Diagnostics

MSPE Error % Coverage Interval Score Energy score

Sketching 1.07 0.06 0.88 5.60 0.63
NNGP-ind 0.83 0.09 0.18 20.45 1.52

BASS 1.45 0.10 0.59 11.23 1.02

Table 3: Predictive diagnostics for the storm surge analysis. For interval
score and Energy score, lower values indicate better scores.
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Posterior Densities of Parameters
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Figure 6: Posterior densities, means, and credible intervals for each
parameter in the flood model.
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Conclusion



Key Takeaways

Distributed inference for Gaussian processes using random
compression proves to be:

• Capable of inference for both local and global effect parameters.
• Free of the sensitivity associated with partitioning a dataset.
• Resilient even in settings where relatively few simulations can be

obtained.
• A viable solution to substantially reducing both the computation

cost and storage cost in fitting GP models to massive datasets.
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