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Graph matching

Exact graph matching = graph isomorphism problem
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Graph matching

In real datasets, graph matching is usually inexact:

• Aligning biological networks

• Image/video/text processing

• De-anonymizing social networks

• Record linkage

The C. elegans chemical and electrical connectomes (Chen et al. 2016, Worm) 6



Notation:

• Consider two simple graphs with n vertices each.

• Graphs are represented by their adjacency matrices A,B ∈ {0, 1}n×n.

Goal: align the rows and columns of A and B
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Graph matching problem

Two main approaches:

• Algorithmic: optimization, search strategies, spectral methods, etc. (Conte et

al., 2004; Foggia et al., 2014). E.g.: quadratic assignment problem (QAP):

argmin
permutationP

∑
i6=j

(Aij − (PBP>)ij)
2 = argmax

permutationP

〈
A,PBP>

〉
.

• Random graph models: pair of graphs generated from some distribution.

E.g. correlated Erdős-Rényi graph model (Lyzinski et al., 2014)

Aij ∼ Ber(p), Bij ∼ Ber(p),

Corr(Aij , Bij) = ρ ≥ 0.
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This talk

Overview:

• Random graph models for the graph matching problem

• Matching via maximum likelihood estimation

• Theory: when is MLE consistent for graph matching?

• Computational aspects: non-convex relaxations

• Illustrations on simulated and real networks

Problems considered:

• Unipartite to unipartite graph matching

• Bipartite to unipartite graph matching

• Some future directions
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Outline

Graph matching in errorfully observed networks

Graph matching between bipartite and unipartite networks
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Corrupting channel model

Model: B is an edge and vertex-label corrupted version of A

1. Flip edges and non-edges of A with probability p.

2. Shuffle vertices with permutation Q.
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Maximum likelihood estimation and graph matching

• Maximum likelihood estimator:

(p̂MLE, Q̂MLE) := argmax
p,Q

∑
u>v

logPp
(
Auv = (QBQT )uv

)
.

• Result: MLE is equivalent to the QAP formulation:

Q̂MLE = argmin
Q∈Πn

‖A−QBQT ‖2F .

• Extensions to non-uniform corrupting probabilities: the equivalence

between MLE and QAP also holds.
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When is the MLE correct?

• Difficulty lies on how different A and QAQT are, for any Q 6= I:

‖A−QAQT ‖2F =
∑
i 6=j

(Aij −Aσ(i),σ(j))
2.

Examples:

• k = 2

• ‖A−QAQT ‖2F = 4.

• k = 3

• ‖A−QAQT ‖2F = 10.

Πn,k permutations that shuffle exactly k vertices.
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Consistency of the MLE

Sequence of networks {An} and parameters {pn, Qn}

Theorem (A., Sussman, Priebe, Lyzinski, 2021)

• Q̂MLE is consistent (correct matching in the limit) if

min
Q∈Πn,k

‖An −QAnQT ‖2F ≥
6klog n

(1/2− pn)2
, ∀k ≥ 2.

• Q̂MLE is not consistent if there exists m = Ω(n) disjoint permutations

Q1, . . . , Qm

max
i∈[m]

‖An −QiAnQTi ‖2F = o

(
log n

(1/2− pn)2

)
.

14



Consistency of the MLE

Sequence of networks {An} and parameters {pn, Qn}

Theorem (A., Sussman, Priebe, Lyzinski, 2021)

• Q̂MLE is consistent (correct matching in the limit) if

min
Q∈Πn,k

‖An −QAnQT ‖2F ≥
6klog n

(1/2− pn)2
, ∀k ≥ 2.

• Q̂MLE is not consistent if there exists m = Ω(n) disjoint permutations

Q1, . . . , Qm

max
i∈[m]

‖An −QiAnQTi ‖2F = o

(
log n

(1/2− pn)2

)
.

14



Erdös-Rényi graph model

An ∼ G(n, αn)

• Q̂MLE is consistent if

αn ≥ c

√
log n

n(1/2− pn)2
.
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Small-world networks

Newman-Watts model: An ∼ NW(n, dn, βn),

• Q̂MLE is not consistent if (1/2− pn)2 = o(
√

logn/n) and

βn = o

(
logn

(1/2− pn)2n

)
.

• Q̂MLE is consistent if dn = o(β2
nn) and

βn ≥ c
√

logn

n (1/2− pn)2
.
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Matchability on random graphs

Measure matching feasibility: Upper bound for the noise probability tolerated

by a graph based on the theory

• Erdös-Rényi G(n, dn)

• Watts-Strogatz small-world WS(n, d, β)

• Preferential attachment PA(n, γ, d)
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Matchability on real networks
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Outline

Graph matching in errorfully observed networks

Graph matching between bipartite and unipartite networks
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Data integration

• Data are often collected from different sources or modalities

• In particular, now consider unipartite and bipartite graphs
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Data integration

• Data are often collected from different sources or modalities

• In particular, now consider unipartite graphs and bipartite data
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Graph matching

Goal: graph matching between bipartite and unipartite networks

• Methodology: joint model based on undirected graphical models

• Graph matching: use MLE to find unshuffling permutation

• Optimization: non-convex relaxation via graphical lasso and fast QAP

22



Graph matching formulation

A ∈ {0, 1}n×n adjacency matrix, B ∈ Rn×m incidence or data matrix

Undirected graphical model for B conditioned on A

• Local Markov property: edges of vertex i are conditionally independent to

other edges given the values of the neighbors of i. If X is a column of B

Xi ⊥ X[n]\Ni(A)∪{i} | XNi(A), ∀i ∈ [n].
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Graph matching formulation

• Generalized linear model distributions (Yang et al., 2012) to make the

problem tractable.

fX
(
xi | x[n]\{i}

)
∝ exp

(
βixi +

∑
j∈Ni(W )

Θijxixj − 2ΘiiC(xi)
)
,

• Θij = 0 if Aij = 0 (local Markov property)

• Special cases: Ising model, Gaussian graphical model
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Bipartite-to-unipartite graph matching formulation

• Graph matching: we observe A′ = P ∗A(P ∗)T for a permutation P ∗.

• Solve restricted maximum likelihood estimation:(
P̂ , Θ̂

)
= argmax

P,Θ
`(Θ)

subject to Θij(1− (PTA′P )ij) = 0, i 6= j,

P is a permutation matrix,
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Exact graph matching recovery

Theorem (A., Priebe, Lyzinski, 2021)

Suppose that Θ∗ij 6= 0 if ((P ∗)>AP ∗)ij = 1, i 6= j.

Under regularity conditions, if

min
P 6=I
‖A− P>AP‖2F︸ ︷︷ ︸

Graph matching difficulty
(Lyzinski et al., 2016; A. et al., 2021)

≥ C
(‖A‖2F + n) logn

m︸ ︷︷ ︸
Graphical model estimation error

(Rothman et al., 2008)

,

then P̂ = P ∗ with high probability.
26



Graph matching algorithm

• Maximum likelihood estimation is NP-hard!

• Strategy to find an approximate solution:

1. Relax permutation Q to a doubly stochastic matrix D

2. Write the problem in a Lagrangian formulation

3. Alternating optimization for D and Θ.

• All steps have efficient solutions!

• For Gaussian graphical models, the new optimization problem is

argmax
D,Θ

{
log det Θ− trace(Σ̂Θ)− λ

∑
i 6=j

∣∣(1− (DTAD)ij)Θij

∣∣ }

1. Optimization for Θ: weighted graphical lasso (Friedman et al. 2008)

2. Optimization for D: quadratic assignment problem (Vogelstein et al.,

2014, Lyzinski et al., 2016)
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Matching via inverse covariance estimation
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Matching via penalized pseudolikelihood

• Use pseudolikelihood when likelihood is intractable (e.g., Ising model).
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Simulation experiment 1

• A (unipartite) is a chain graph, B

follows Ising model

• Graphical model estimation: easy

• Graph matching: hard
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Simulation experiment 2

• A (unipartite) is an Erdős-Rényi graph

• Graphical model estimation: hard

• Graph matching: easy
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Magnetic resonance imaging (MRI) data

Structural and functional MRI data (Zuo et al, 2014).
32



MRI data
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Concluding remarks

• Integrating multiple data sources often requires to match the units

• Statistical approaches based on random graph models for matching

• Combining information may improve performance

• Graph matching with other data structures? Networks with attributes,

multilayer or time-varying graphs.

• Statistical inference for multiple networks? (after matching)
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Future directions

• Work in progress: academic and collaboration networks (data collected by

Xingyu Liu and Yufan Li)

• Integration of different network data sources:

• Efficient graph matching methods

• Joint statistical models for heterogeneous modalities

• Statistical inference problems
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Advertisement

New course for Spring 2024!

• Special Topics in Network Data Analysis (STAT 689)

• Tue - Thu 11:10 - 12:25 (3 credits)

• Supported by TAMIDS Course Development Program
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Thank you!

Questions?

Bjarroyo@tamu.edu

https://jesus-arroyo.github.io/

Main references:
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• Arroyo, J., Priebe, C.E. and Lyzinski, V. (2021) “Graph matching between bipartite and unipartite networks: to
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