Graph matching from a statistical perspective

Jesús Arroyo

October 4th, 2023

Texas A&M University Stat Café

Exact graph matching = graph isomorphism problem

In real datasets, graph matching is usually inexact:

- Aligning biological networks
- Image/video/text processing
- De-anonymizing social networks
- Record linkage

The C. elegans chemical and electrical connectomes (Chen et al. 2016, Worm)

Notation:

- ullet Consider two *simple* graphs with n vertices each.
- Graphs are represented by their adjacency matrices $A, B \in \{0,1\}^{n \times n}$.

 $\textbf{Goal:} \ \, \text{align the rows and columns of} \, \, A \, \, \text{and} \, \, B$

Graph matching problem

Two main approaches:

Algorithmic: optimization, search strategies, spectral methods, etc. (Conte et al., 2004; Foggia et al., 2014). E.g.: quadratic assignment problem (QAP):

$$\underset{\mathsf{permutation}P}{\operatorname{argmin}} \sum_{i \neq j} (A_{ij} - (PBP^\top)_{ij})^2 = \underset{\mathsf{permutation}P}{\operatorname{argmax}} \left\langle A, PBP^\top \right\rangle.$$

Graph matching problem

Two main approaches:

• Algorithmic: optimization, search strategies, spectral methods, etc. (Conte et al., 2004; Foggia et al., 2014). E.g.: quadratic assignment problem (QAP):

$$\underset{\text{permutation}P}{\operatorname{argmin}} \sum_{i \neq j} (A_{ij} - (PBP^{\top})_{ij})^2 = \underset{\text{permutation}P}{\operatorname{argmax}} \left\langle A, PBP^{\top} \right\rangle.$$

Random graph models: pair of graphs generated from some distribution.
 E.g. correlated Erdős-Rényi graph model (Lyzinski et al., 2014)

$$A_{ij} \sim \mathsf{Ber}(p), \qquad B_{ij} \sim \mathsf{Ber}(p),$$

$$\mathsf{Corr}(A_{ij}, B_{ij}) = \rho \geq 0.$$

This talk

Overview:

- Random graph models for the graph matching problem
- Matching via maximum likelihood estimation
- Theory: when is MLE consistent for graph matching?
- Computational aspects: non-convex relaxations
- Illustrations on simulated and real networks

This talk

Overview:

- Random graph models for the graph matching problem
- Matching via maximum likelihood estimation
- Theory: when is MLE consistent for graph matching?
- Computational aspects: non-convex relaxations
- Illustrations on simulated and real networks

Problems considered:

- Unipartite to unipartite graph matching
- Bipartite to unipartite graph matching
- Some future directions

Outline

Graph matching in errorfully observed networks

Graph matching between bipartite and unipartite networks

Corrupting channel model

Model: B is an edge and vertex-label corrupted version of A

- 1. Flip edges and non-edges of A with probability p.
- 2. Shuffle vertices with permutation Q.

Maximum likelihood estimation and graph matching

Maximum likelihood estimator:

$$(\widehat{p}_{\mathsf{MLE}}, \widehat{Q}_{\mathsf{MLE}}) := \operatorname*{argmax}_{p,Q} \sum_{u>v} \log \mathbb{P}_p \left(A_{uv} = (QBQ^T)_{uv} \right).$$

Maximum likelihood estimation and graph matching

Maximum likelihood estimator:

$$(\widehat{p}_{\mathsf{MLE}}, \widehat{Q}_{\mathsf{MLE}}) := \operatorname*{argmax}_{p,Q} \sum_{u > v} \log \mathbb{P}_p \left(A_{uv} = (QBQ^T)_{uv} \right).$$

• **Result**: MLE is equivalent to the QAP formulation:

$$\widehat{Q}_{\mathsf{MLE}} = \operatorname*{argmin}_{Q \in \Pi_n} \|A - QBQ^T\|_F^2.$$

Maximum likelihood estimation and graph matching

Maximum likelihood estimator:

$$(\widehat{p}_{\mathsf{MLE}}, \widehat{Q}_{\mathsf{MLE}}) := \operatorname*{argmax}_{p,Q} \sum_{u > v} \log \mathbb{P}_p \left(A_{uv} = (QBQ^T)_{uv} \right).$$

Result: MLE is equivalent to the QAP formulation:

$$\widehat{Q}_{\mathsf{MLE}} = \operatorname*{argmin}_{Q \in \Pi_n} \|A - QBQ^T\|_F^2.$$

 Extensions to non-uniform corrupting probabilities: the equivalence between MLE and QAP also holds.

When is the MLE correct?

• Difficulty lies on how different A and QAQ^T are, for any $Q \neq I$:

$$||A - QAQ^T||_F^2 = \sum_{i \neq j} (A_{ij} - A_{\sigma(i),\sigma(j)})^2.$$

When is the MLE correct?

• Difficulty lies on how different A and QAQ^T are, for any $Q \neq I$:

$$||A - QAQ^T||_F^2 = \sum_{i \neq j} (A_{ij} - A_{\sigma(i),\sigma(j)})^2.$$

Examples:

- k = 2
- $||A QAQ^T||_F^2 = 4$.

When is the MLE correct?

• Difficulty lies on how different A and QAQ^T are, for any $Q \neq I$:

$$||A - QAQ^T||_F^2 = \sum_{i \neq j} (A_{ij} - A_{\sigma(i),\sigma(j)})^2.$$

Examples:

$$\bullet$$
 $k=2$

•
$$||A - QAQ^T||_F^2 = 4.$$

- k = 3
- $||A QAQ^T||_F^2 = 10.$

 $\Pi_{n,k}$ permutations that shuffle exactly k vertices.

Consistency of the MLE

Sequence of networks $\{A_n\}$ and parameters $\{p_n,Q_n\}$

Theorem (A., Sussman, Priebe, Lyzinski, 2021)

ullet $\widehat{Q}_{\mathit{MLE}}$ is consistent (correct matching in the limit) if

$$\min_{Q \in \Pi_{n,k}} \|A_n - QA_nQ^T\|_F^2 \ge \frac{6k \log n}{(1/2 - p_n)^2}, \qquad \forall k \ge 2.$$

Consistency of the MLE

Sequence of networks $\{A_n\}$ and parameters $\{p_n,Q_n\}$

Theorem (A., Sussman, Priebe, Lyzinski, 2021)

ullet $\widehat{Q}_{\mathit{MLE}}$ is consistent (correct matching in the limit) if

$$\min_{Q \in \Pi_{n,k}} \|A_n - QA_nQ^T\|_F^2 \ge \frac{6k\log n}{(1/2 - p_n)^2}, \qquad \forall k \ge 2.$$

• $\widehat{Q}_{\textit{MLE}}$ is not consistent if there exists $m=\Omega(n)$ disjoint permutations Q_1,\dots,Q_m

$$\max_{i \in [m]} \|A_n - Q_i A_n Q_i^T\|_F^2 = o\left(\frac{\log n}{(1/2 - p_n)^2}\right).$$

Erdös-Rényi graph model

$$A_n \sim G(n, \alpha_n)$$

Erdös-Rényi graph model

$$A_n \sim G(n, \alpha_n)$$

ullet $\widehat{Q}_{\mathrm{MLE}}$ is consistent if

$$\alpha_n \ge c\sqrt{\frac{\log n}{n(1/2 - p_n)^2}}.$$

Erdös-Rényi graph model

$$A_n \sim G(n, \alpha_n)$$

ullet $\widehat{Q}_{\mathrm{MLE}}$ is consistent if

$$\alpha_n \ge c\sqrt{\frac{\log n}{n(1/2 - p_n)^2}}.$$

Small-world networks

Newman-Watts model: $A_n \sim \mathrm{NW}(n, d_n, \beta_n)$,

Small-world networks

Newman-Watts model: $A_n \sim NW(n, d_n, \beta_n)$,

• $\widehat{Q}_{\mathrm{MLE}}$ is not consistent if $(1/2-p_n)^2=o(\sqrt{\log n/n})$ and

$$\beta_n = o\left(\frac{\log n}{(1/2 - p_n)^2 n}\right).$$

Small-world networks

Newman-Watts model: $A_n \sim \text{NW}(n, d_n, \beta_n)$,

• \widehat{Q}_{MLE} is not consistent if $(1/2 - p_n)^2 = o(\sqrt{\log n/n})$ and

$$\beta_n = o\left(\frac{\log n}{(1/2 - p_n)^2 n}\right).$$

• $\widehat{Q}_{\mathrm{MLE}}$ is **consistent** if $d_n = o(\beta_n^2 n)$ and

$$\beta_n \ge c \sqrt{\frac{\log n}{n \left(1/2 - p_n\right)^2}}.$$

Matchability on random graphs

Measure matching feasibility: Upper bound for the noise probability tolerated by a graph based on the theory

- Erdös-Rényi G(n, dn)
- Watts-Strogatz small-world $WS(n, d, \beta)$
- Preferential attachment $PA(n, \gamma, d)$

Matchability on real networks

Outline

Graph matching in errorfully observed networks

Graph matching between bipartite and unipartite networks

Data integration

- Data are often collected from different sources or modalities
- In particular, now consider unipartite and bipartite graphs

Data integration

- Data are often collected from different sources or modalities
- In particular, now consider unipartite graphs and bipartite data

Goal: graph matching between bipartite and unipartite networks

- Methodology: joint model based on undirected graphical models
- Graph matching: use MLE to find unshuffling permutation
- Optimization: non-convex relaxation via graphical lasso and fast QAP

Graph matching formulation

 $A \in \{0,1\}^{n \times n}$ adjacency matrix, $B \in \mathbb{R}^{n \times m}$ incidence or data matrix

Graph matching formulation

 $A \in \{0,1\}^{n \times n}$ adjacency matrix, $B \in \mathbb{R}^{n \times m}$ incidence or data matrix

Undirected graphical model for ${\cal B}$ conditioned on ${\cal A}$

ullet Local Markov property: edges of vertex i are conditionally independent to other edges given the values of the neighbors of i. If X is a column of B

$$X_i \perp X_{[n] \setminus \mathcal{N}_i(A) \cup \{i\}} \mid X_{\mathcal{N}_i(A)}, \quad \forall i \in [n].$$

Graph matching formulation

 Generalized linear model distributions (Yang et al., 2012) to make the problem tractable.

$$f_X\left(x_i\mid x_{[n]\setminus\{i\}}\right)\propto \exp\left(\beta_i x_i + \sum_{j\in\mathcal{N}_i(W)}\Theta_{ij}x_i x_j - 2\Theta_{ii}C(x_i)\right),$$

- $\Theta_{ij} = 0$ if $A_{ij} = 0$ (local Markov property)
- Special cases: Ising model, Gaussian graphical model

Bipartite-to-unipartite graph matching formulation

• Graph matching: we observe $A' = P^*A(P^*)^T$ for a permutation P^* .

Bipartite-to-unipartite graph matching formulation

- Graph matching: we observe $A' = P^*A(P^*)^T$ for a permutation P^* .
- Solve restricted *maximum likelihood estimation*:

$$\begin{split} \left(\widehat{P}, \widehat{\Theta}\right) = & \underset{P,\Theta}{\operatorname{argmax}} \quad \ell(\Theta) \\ & \text{subject to} \quad \Theta_{ij} (1 - (P^T A' P)_{ij}) = 0, \quad i \neq j, \\ & P \text{ is a permutation matrix,} \end{split}$$

Exact graph matching recovery

Theorem (A., Priebe, Lyzinski, 2021)

Suppose that $\Theta_{ij}^* \neq 0$ if $((P^*)^\top A P^*)_{ij} = 1, i \neq j$. Under regularity conditions, if

$$\min_{P \neq I} \|A - P^{\top}AP\|_F^2 \geq \frac{C\frac{(\|A\|_F^2 + n)\log n}{m}}{G_{\text{raph matching difficulty}}}$$
(Lyzinski et al., 2016, A. et al., 2021)
$$C\frac{(\|A\|_F^2 + n)\log n}{m}$$
(Rothman et al., 2008)

then $\widehat{P} = P^*$ with high probability.

Graph matching algorithm

• Maximum likelihood estimation is NP-hard!

Graph matching algorithm

- Maximum likelihood estimation is NP-hard!
- Strategy to find an approximate solution:
 - 1. Relax permutation Q to a doubly stochastic matrix D
 - 2. Write the problem in a Lagrangian formulation
 - 3. Alternating optimization for D and Θ .

Graph matching algorithm

- Maximum likelihood estimation is NP-hard!
- Strategy to find an approximate solution:
 - 1. Relax permutation Q to a doubly stochastic matrix D
 - 2. Write the problem in a Lagrangian formulation
 - 3. Alternating optimization for D and Θ .
- All steps have efficient solutions!
- For Gaussian graphical models, the new optimization problem is

$$\underset{D,\Theta}{\operatorname{argmax}} \bigg\{ \log \det \Theta - \operatorname{trace}(\hat{\Sigma}\Theta) - \lambda \sum_{i \neq j} \left| (1 - (D^T A D)_{ij}) \Theta_{ij} \right| \bigg\}$$

- 1. Optimization for Θ : weighted graphical lasso (Friedman et al. 2008)
- Optimization for D: quadratic assignment problem (Vogelstein et al., 2014, Lyzinski et al., 2016)

Matching via inverse covariance estimation

Algorithm 1 Unipartite to bipartite matching via penalized inverse covariance estimation

```
Input: Adjacency matrix A, incidence matrix B.

for each \lambda \in \{\lambda_s\}_{s=1}^{S^*} do

Initialize \hat{D}^{(1,\lambda)} = \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top}

for t = 1, ..., T^*, or until convergence do

Update \hat{\Theta}^{(t,\lambda)} by solving (3.6).

Update \hat{D}^{(t+1,\lambda)} by solving (3.7).

Set \hat{P}^{(t+1,\lambda)} as the projection of \hat{D}^{(t,\lambda)} into \Pi_n.

end for

end for

Choose the permutation with the largest value of \hat{\ell}(\hat{\Theta}_P) among the permutations P \in \{P^{(t,\lambda_s)}, s \in [S^*], t \in [T^*]\}.

Output: Permutation \hat{P}, inverse covariance estimate \hat{\Theta}_{\hat{D}}.
```

Matching via penalized pseudolikelihood

Use pseudolikelihood when likelihood is intractable (e.g., Ising model).

Algorithm 2 Unipartite to bipartite matching via penalized pseudolikelihood

```
Input: Adjacency matrix A, incidence matrix B.

for each \lambda \in \{\lambda_s\}_{s=1}^{S^*} do

Initialize \hat{D}^{(1,\lambda)} = \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.

for t = 1, \dots, T^*, or until convergence do

for j = 1, \dots, n do

Update (\hat{\Theta}_j^{(t,\lambda)}, \hat{\beta}_j^{(t,\lambda)}) by solving (3.9).

end for

Update \hat{D}^{(t+1,\lambda)} by solving (3.7).

Set \hat{P}^{(t+1,\lambda)} as the projection of \hat{D}^{(t,\lambda)} into \Pi_n.

end for

Choose the permutation with the largest value of \tilde{\ell}(\hat{\Theta}_P) among P \in \{P^{(t,\lambda_s)}, s \in [S^*], t \in [T^*]\}.
```

Output: Permutation \hat{P} , estimated parameters $\hat{\Theta}_{\hat{P}}$ and $\hat{\beta}_{\hat{P}}$.

Simulation experiment 1

- A (unipartite) is a chain graph, B follows Ising model
- Graphical model estimation: easy
- Graph matching: hard

Simulation experiment 2

- A (unipartite) is an Erdős-Rényi graph
- Graphical model estimation: hard
- Graph matching: easy

Magnetic resonance imaging (MRI) data

Structural and functional MRI data (Zuo et al, 2014).

MRI data

Concluding remarks

- Integrating multiple data sources often requires to match the units
- Statistical approaches based on random graph models for matching
- Combining information may improve performance
- Graph matching with other data structures? Networks with attributes, multilayer or time-varying graphs.
- Statistical inference for multiple networks? (after matching)

Future directions

- Work in progress: academic and collaboration networks (data collected by Xingyu Liu and Yufan Li)
- Integration of different network data sources:
 - Efficient graph matching methods
 - Joint statistical models for heterogeneous modalities
 - Statistical inference problems

Advertisement

New course for Spring 2024!

- Special Topics in Network Data Analysis (STAT 689)
- Tue Thu 11:10 12:25 (3 credits)
- Supported by TAMIDS Course Development Program

Thank you!

Questions?

 \boxtimes jarroyo@tamu.edu

https://jesus-arroyo.github.io/

Main references:

- Arroyo, J., Sussman, D.L., Priebe, C.E. and Lyzinski, V. (2021) "Maximum Likelihood Estimation and Graph Matching in Errorfully Observed Networks", Journal of Computational and Graphical Statistics 30:4.
- Arroyo, J., Priebe, C.E. and Lyzinski, V. (2021) "Graph matching between bipartite and unipartite networks: to collapse, or not to collapse, that is the question", IEEE Trans. on Network Science and Engineering