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Exact graph matching = graph isomorphism problem



Graph matching

In real datasets, graph matching is usually inexact:

e Aligning biological networks
e Image/video/text processing
e De-anonymizing social networks

e Record linkage
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The C. elegans chemical and electrical connectomes (Chen et al. 2016, Worm)



Notation:

e Consider two simple graphs with n vertices each.

e Graphs are represented by their adjacency matrices A, B € {0,1}"*"™.

Goal: align the rows and columns of A and B




Graph matching problem

Two main approaches:

e Algorithmic: optimization, search strategies, spectral methods, etc. (Conte et
al., 2004; Foggia et al., 2014). E.g.: quadratic assignment problem (QAP):

argmin Z ij PBP )ij )2 = argmax <A,PBPT>.

permutatlonP permutation P



Graph matching problem

Two main approaches:

e Algorithmic: optimization, search strategies, spectral methods, etc. (Conte et
al., 2004; Foggia et al., 2014). E.g.: quadratic assignment problem (QAP):

argmin Z ii — ( PBPT)U)QZ argmax <A,PBPT>.

permutatlonP permutation P

e Random graph models: pair of graphs generated from some distribution.
E.g. correlated Erdés-Rényi graph model (Lyzinski et al., 2014)

A;j ~ Ber(p), B;j ~ Ber(p),

Corr(Aij, Bij) = p > 0. 8



This talk

Overview:

e Random graph models for the graph matching problem

Matching via maximum likelihood estimation

Theory: when is MLE consistent for graph matching?

Computational aspects: non-convex relaxations

Illustrations on simulated and real networks



This talk

Overview:

e Random graph models for the graph matching problem

Matching via maximum likelihood estimation

Theory: when is MLE consistent for graph matching?

Computational aspects: non-convex relaxations

Illustrations on simulated and real networks
Problems considered:

e Unipartite to unipartite graph matching
e Bipartite to unipartite graph matching

e Some future directions



Graph matching in errorfully observed networks
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Corrupting channel model

Model: B is an edge and vertex-label corrupted version of A
1. Flip edges and non-edges of A with probability p.

2. Shuffle vertices with permutation Q.

Ber(p)

A B~C(A,pQ)

11



Maximum likelihood estimation and graph matching

e Maximum likelihood estimator:

(PMLE, QMLE) = argmax Z logIP’ = (QBQT)M) .

P.Q u>v
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Maximum likelihood estimation and graph matching

e Maximum likelihood estimator:

(PMLE, QMLE) = argmax Z logIP’ = (QBQT)M) .

P, Q uU>v
e Result: MLE is equivalent to the QAP formulation:

@MLE = acr?gmin [A— QBQT”%'

n
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Maximum likelihood estimation and graph matching

e Maximum likelihood estimator:

(PMLE, QMLE) = argmax Z logIP’ = (QBQT)M) .

P, Q uU>v
e Result: MLE is equivalent to the QAP formulation:

@MLE = acr?gmin [A— QBQT”%'

n

e Extensions to non-uniform corrupting probabilities: the equivalence
between MLE and QAP also holds.
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When is the MLE correct?

e Difficulty lies on how different A and QAQT are, for any Q # I:

1A= QAQ™ (1% =D (Aij — Avi).o()”
i+
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When is the MLE correct?

e Difficulty lies on how different A and QAQT are, for any Q # I:

1A= QAQ™ (1% =D (Aij — Avi).o()”
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Examples:
o k=2

o A-QAQTI = 4.

A QAQ"
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When is the MLE correct?

e Difficulty lies on how different A and QAQT are, for any Q # I:

14— QAQT % = (Aij — Aviiyo(n)*.

i#j
Examples:
o k=2 e k=3
o [|[A-QAQT|% =4. o [[A-QAQ™|l% = 10.
QAQ" QAQ*

I1,, . permutations that shuffle exactly k vertices. 13



Consistency of the MLE

Sequence of networks {A,,} and parameters {p,,, @, }

Theorem (A., Sussman, Priebe, Lyzinski, 2021)

° @MLE is consistent (correct matching in the limit) if

. 6klogn
min |4, - QA4,.QT|% >

—_— k> 2.
QE, & (1/2_])71)2’ e 2
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Consistency of the MLE

Sequence of networks {A,,} and parameters {p,,, @, }

Theorem (A., Sussman, Priebe, Lyzinski, 2021)

° @MLE is consistent (correct matching in the limit) if

. 6klogn
min |4, - QA4,.QT|% >

—_— k> 2.
QE, & (1/2_[)71)2’ e 2

° @MLE is not consistent if there exists m = Q(n) disjoint permutations

Q17"'7Qm

logn
max ||A4,, — Q;A, 2T 2 :0<>.
2 lan = QednCille =\ gy
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Erdos-Rényi graph model

A, ~ G(n, ay)
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Erdos-Rényi graph model
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e (QuLg is consistent if
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Erdos-Rényi graph model

A, ~ G(n, ay)

e (QuLg is consistent if
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Small-world networks

Newman-Watts model: A,, ~ NW(n,d,, 5,),

16



Small-world networks

Newman-Watts model: A,, ~ NW(n,d,, 5,),

e QuLe is not consistent if (1/2 = pn)? = o(y/logn/n) and

=0 (g
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Small-world networks

Newman-Watts model: A,, ~ NW(n,d,, 5,),

e QuLe is not consistent if (1/2 — pn)? = o(y/logn/n) and
. logn
= ()

e Qwie is consistent if d,, = o(32n) and

logn

Bn >c m
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Matchability on random graphs

Measure matching feasibility: Upper bound for the noise probability tolerated
by a graph based on the theory

e Erdds-Rényi G(n,dn)

e Watts-Strogatz small-world W.S(n,d, )

e Preferential attachment PA(n,~,d)

d=5 d=50 Model
—e— G(n,dn)
o
% -4- WS(n, d, 0.05)
= -6~ WS(n, d, 0.75)
<
g PA(, 1, d)
2 PA(n, 2, d)
0.01 0.10 100  0.01 0.10 1.00

Fraction of shuffled vertices 17



Matchability on real networks
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Graph matching between bipartite and unipartite networks
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Data integration

e Data are often collected from different sources or modalities

e In particular, now consider unipartite and bipartite graphs

¢

- <

20



Data integration

e Data are often collected from different sources or modalities

e In particular, now consider unipartite graphs and bipartite data
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Graph matching

Goal: graph matching between bipartite and unipartite networks

e Methodology: joint model based on undirected graphical models
e Graph matching: use MLE to find unshuffling permutation

e Optimization: non-convex relaxation via graphical lasso and fast QAP

t
T
|

|

22



Graph matching formulation

A € {0,1}™*"™ adjacency matrix, B € R**™ incidence or data matrix
v e
\ - & ‘@L,\’ ——
X - -
N
N\
\ ?
\ —
& -

23



Graph matching formulation

A €{0,1}"*™ adjacency matrix,

0

B € R™™ incidence or data matrix

e
~

P—

P

)

Undirected graphical model for B conditioned on A

e Local Markov property: edges of vertex 7 are conditionally independent to
other edges given the values of the neighbors of 7. If X is a column of B

Xi L Xpmpwvs oy | X a), Vi € [n].
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Graph matching formulation

e Generalized linear model distributions (Yang et al., 2012) to make the
problem tractable.

fX (l’7 | I[n]\{z}) X exp (5717 + Z ®7JI7IJ — 2@7,C(I7)),
JEN (W)

e O;; =0if A;; =0 (local Markov property)
e Special cases: Ising model, Gaussian graphical model
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Bipartite-to-unipartite graph matching formulation

e Graph matching: we observe A’ = P*A(P*)T for a permutation P*.

25



Bipartite-to-unipartite graph matching formulation

e Graph matching: we observe A’ = P*A(P*)T for a permutation P*.

e Solve restricted maximum likelihood estimation:

(13, (:)) = argmax ((O)
PO
subject to  ©;;(1 — (PTA'P);;) =0, i#j,
P is a permutation matrix,
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Exact graph matching recovery

Theorem (A., Priebe, Lyzinski, 2021)
Suppose that ©;; # 0 if (P*)TAP*);; = 1,3 # j.

Under regularity conditions, if

2
g T 2 Al% +n)logn
min ||[A — P AP|z > CM ,
PH#I m
Graph matching difficulty Graphical model estimation error
(Lyzinski et al., 2016; A. et al., 2021) (Rothman et al., 2008)

then P = P* with high probability. 3



Graph matching algorithm

e Maximum likelihood estimation is NP-hard!
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Graph matching algorithm

e Maximum likelihood estimation is NP-hard!

e Strategy to find an approximate solution:

1. Relax permutation () to a doubly stochastic matrix D
2. Write the problem in a Lagrangian formulation
3. Alternating optimization for D and ©O.
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Graph matching algorithm

e Maximum likelihood estimation is NP-hard!

e Strategy to find an approximate solution:

1. Relax permutation () to a doubly stochastic matrix D
2. Write the problem in a Lagrangian formulation
3. Alternating optimization for D and ©O.

e All steps have efficient solutions!

e For Gaussian graphical models, the new optimization problem is

argmax{ log det © — trace(20) — A Z |(1 - (DTAD);;)05;| }
D, —
’ i#]

1. Optimization for ©: weighted graphical lasso (Friedman et al. 2008)
2. Optimization for D: quadratic assignment problem (Vogelstein et al.,
2014, Lyzinski et al., 2016) 27



Matching via inverse covariance estimation

Algorithm 1 Unipartite to bipartite matching via penalized inverse covariance estimation

Input: Adjacency matrix A, incidence matrix B.
for each X\ € {)\h}f;l do
Initialize DA = %lnll.
for t =1,...,T*, or until convergence do
Update ©-% by solving (3.6).
Update D12 by solving (3.7).
Set PUHLA) g the projection of DEX into 11,,.
end for
end for
Choose the permutation with the largest value of (6 p) among the permutations P €
(P2 s e [S7],t e [T7]}.

Output: Permutation P, inverse covariance estimate O p.
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Matching via penalized pseudolikelihood

e Use pseudolikelihood when likelihood is intractable (e.g., Ising model).

Algorithm 2 Unipartite to bipartite matching via penalized pseudolikelihood

Input: Adjacency matrix A, incidence matrix B.
for each A € {A\}5., do
Initialize DMA = %lnl;!r.
fort =1,...,7™, or until convergence do
for j=1,...,ndo
Update (é?‘”,ﬂy')‘)) by solving (3.9).
end for
Update DU+LN by solving (3.7).
Set PHLA) a5 the projection of DN into I1,,.
end for
end for
Choose the permutation with the largest value of £(6p) amang P € {PLA) s € [§%],1 €
]},

Output: Permutation P, estimated parameters Op and .

29



Simulation experiment 1

e A (unipartite) is a chain graph, B o ® o
follows Ising model ’ *
([ ] [ ]
e Graphical model estimation: easy ) °
_ L B |
e Graph matching: hard
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Simulation experiment 2

o s o %o
e A (unipartite) is an Erdés-Rényi graph ® °
e Graphical model estimation: hard ® ®
[ ] [

e Graph matching: easy ® g0
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Magnetic resonance imaging (MRI) data

Structural brain network
' (dMRI)
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Structural and functional MRI data (Zuo et al, 2014). 2



MRI data
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Concluding remarks

e Integrating multiple data sources often requires to match the units
e Statistical approaches based on random graph models for matching
e Combining information may improve performance

e Graph matching with other data structures? Networks with attributes,
multilayer or time-varying graphs.

e Statistical inference for multiple networks? (after matching)
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Future directions

e Work in progress: academic and collaboration networks (data collected by
Xingyu Liu and Yufan Li)

e Integration of different network data sources:

e Efficient graph matching methods
e Joint statistical models for heterogeneous modalities
e Statistical inference problems
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Advertisement

New course for Spring 2024!

e Special Topics in Network Data Analysis (STAT 689)

e Tue - Thu 11:10 - 12:25 (3 credits)
e Supported by TAMIDS Course Development Program

o0s 008 004 002
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Thank you!

Questions?

Xjarroyo@tamu.edu
https://jesus-arroyo.github.io/

Main references:
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