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Disparate Impact Doctrine and Clustering

The rise of machine learning driven decision-making sparked a
growing emphasis on algorithmic fairness.

Chierichetti et al. (2017) introduced the notion of fairness in
clustering .

Disparate impact doctrine (Feldman et al., 2015) dictates that the
decisions made should not be disproportionately different for
individuals belonging to different labels of Protected attribute.

A Silly Example. Height can be closely tied to a protected feature
like gender. Decisions based on height may unfairly discriminate.



Balance
Observe data {(xi, ai)}N

i=1, with xi denoting d-variate features,
and ai ∈ {1, . . . , r} denoting the label of the protected attribute.

Goal. Assign the data points into clusters C = (C1, . . . , CK),
respecting balance.

Definition (Balance, (Chierichetti et al., 2017))
The balance in Ck is defined as

Balance(Ck) = min
1≤j1<j2≤r

min
{ |Ckj1 |

|Ckj2 |
,
|Ckj2 |
|Ckj1 |

}
where |Ckj | denote the number of observations in Ck with a = j. The
overall balance of the clustering is

Balance(C) = min
k=1,...,K

Balance(Ck)

The higher this measure is, the fairer is the clustering.



Fair Clustering via Fairlets

Given the notion of balance, Chierichetti et al. (2017) introduced
the concept of fairlets, i.e minimal fair sets that approximately
maintain the selected clustering objective.

Fairlet Decomposition. Any fair clustering problem involves
initially obtaining a fairlet decomposition of the data through the
solution of a minimum cost flow (NP-Hard) problem.

Clustering Fairlets. Classical clustering algorithms, such as
k-means or k-center, can be employed for further processing.



Minimum Cost Flow via Bipartite Graph Matching

Figure: Adopted from Chierichetti et al. (2017).



Related Works

Multi-color case (BÃ¶hm et al., 2020); Imperfect knowledge of
group membership (Esmaeili et al., 2020), etc.

Fairness in other avatars of clustering, e.g spectral clustering
(Kleindessner et al., 2019), correlation clustering (Ahmadian et al.,
2020b), hierarchical clustering (Ahmadian et al., 2020a).

Alternative notions of fairness in clustering, e.g individual fairness
(Kleindessner et al., 2020; Mahabadi and Vakilian, 2020;
Chakrabarty and Negahbani, 2021), proportional fairness (Chen
et al., 2019).

Fairness in clustering + Other pressing aspects of modern
machine learning, e.g Privacy (Rösner and Schmidt, 2018),
Robustness (Bandyapadhyay et al., 2019), etc.



Motivation for a probabilistic approach

We take a novel generative model-based approach to tackle the
problem of clustering under balance constraints.

Measure of uncertainty? Probabilities of cluster assignments.

Non-Gaussian data accommodated easily.

Notion of the true fair clustering configuration at the population
level?



Broader connections

Interplay between probability modeling perspective and
optimization perspective have a rich history in statistics.

Quantile regression/asymmetric Laplace errors.

PCA/probabilistic PCA

k-means clustering/Gaussian mixture model.

Current contribution aims to add a similar perspective in the
context of fair clustering.



Notion of Balance at Population Level

We assume that {(xi, ai)}N
i=1 are independent copies of a random

vector (X, A) ∈ X × A ⊂ Rd × [r].

A weight vector ξ ∈ ∆r−1 records the population proportions of the
different labels of the protected attribute.

Generative Model.

A ∼ P⋆
A ≡ Multinomial(1, ξ), (X, Z) | A ∼ P⋆

X,Z|A ≡ P⋆
X|Z,A × P⋆

Z|A,

where P⋆
X,Z,A is unknown and Z is the latent/unobserved

clustering index.

We only observe independent copies of (X, A); learn the marginal
generative mechanism P⋆

Z of the clustering index Z modulo
fairness.



Notion of Balance at Population Level

To define Balance at population level, consider

P(R) =
{
PX,Z,A : PA|Z = PA

}
to be all joint distributions such that every label of the protected
attribute are equally likely to appear within each cluster.

To allow some small departure, define

P(R)
ε =

{
PX,Z,A : KL(PA × PZ || PA,Z) ≤ ε

}
,

where ε ≥ 0 controls the extent of departure from balance.

KL(PA × PZ || PA,Z) is the mutual information between (A, Z).

Say that (A, Z) satisfies ε-balance under PX,Z,A if
KL(PA × PZ || PA,Z) ≤ ε.



Notion of Balance at Population Level

The true generative model P⋆ may not belong to P(R)
ε .

Since we wish to ensure that our clustering procedure is
ε-balanced, the inferential goal constitutes finding the “best"
approximation of the true generative model P⋆ within the restricted
class P(R)

ε .

Reminiscent of maximum likelihood estimation under model
misspecification (White, 1982). Define as KL projection.

Methodologically, enforce the constraint in a soft manner through
the prior.



Fair Clustering via Hierarchical Fair Dirichlet Process

Hierarchical Bayesian model to carry out clustering with fairness
constraints (arxiv.org/pdf/2305.17557).

Lowest level hyperparameters of our model are (K, g, b), where K
is an upper bound on the number of clusters, and g, b are positive
parameters.

Let ∆K−1 be the (K − 1)-dimensional probability simplex; i.e. all
(p1, . . . , pK) with pi ≥ 0 for all i and

∑K
i=1 pi = 1.

arxiv.org/pdf/2305.17557


Some more notation

Let ZN,K = {z = (z1, . . . , zN ) : zi ∈ [K] for all i ∈ [N ]} denote the
space of all clustering configurations of N observations into K
clusters.

Any m = (m1, . . . , mK) ∈ ZK
≥0 such that

∑K
k=1 mk = N called a

cluster occupancy vector.

Given such m, let
ZN,K,m = {z ∈ ZN,K :

∑N
i=1 1(zi = k) = mk, i ∈ [N ]} denote all

clustering configurations with cluster occupancy vector m.

ZN,K,m can be uniquely characterized by the space of N × K
binary cluster membership matrices with fixed column-sum m and
row-sum 1N .



HFDP

Given (K, g, b), sample a global weight vector β ∈ ∆K−1 and a
concentration parameter α0 ∈ (0, ∞)

β | g ∼ Dir(g/K, . . . , g/K); α0 | g, b ∼ Gamma(g, b).

Next, given α0 and β, independently sample a weight vector w(a)

corresponding to each level of the attribute a ∈ [r]

w(a) | α0, β
ind.∼ Dir(α0 β), a ∈ [r].

The concentration parameter α0 dictates how tightly the {w(a)}r
a=1

concentrate around β.

Critical in enabling a notion of balance in our model-prior
specification.



HFDP
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Figure: Prior calibration: Given (g, b) and K = 2, we obtain prior draws of
(w(1), w(2)) as above, and present the induced prior distribution of
KL(w(1) || w(2)) and balance between (w(1), w(2)). The first two plots present
the distribution of KL(w(1) || w(2)), and balance between (w(1), w(2))
respectively, for varying b with fixed g. The final two plots present the same
quantities, now with varying g with fixed b.



HFDP

Define a function rd : N × ∆t−1 → Zt
≥0, so that for a positive

integer n ∈ N and a probability vector u ∈ ∆t−1, v = rd(n, u) is
given by vi = round(nui) for i ∈ [t − 1], where “round" denotes the
rounding function to the nearest integer, and vt = n −

∑t−1
i=1 vi ≥ 0.

Clearly, ⟨1t, rd(n, u)⟩ = n for any u. We use this rd(·) function to
create a novel prior on cluster occupancy vectors.

Having drawn w(a) for each label of the attribute, set

m(a) = rd
(
N (a), w(a)), a ∈ [r].

Call the induced prior on m(a) a lifted Dirichlet prior with
parameters N (a), α0, β.



HFDP

Dirichlet-Multinomial prior more commonly used in the literature,
where m(a) is additionally sampled from a Multinomial distribution
with total count N (a) and probability vector w(a).

Instead, the randomness in a lifted Dirichlet prior is entirely
controlled by w(a), enabling tighter control on the cluster sizes
across a.

This is crucial towards enforcing balance a priori in our framework.



HFDP (contd.)

Recap: hierarchical specification so far

m(a) = rd
(
N (a), w(a)), w(a) | α0, β

ind.∼ Dir(α0 β), a ∈ [r],
β | g ∼ Dir(g/K, . . . , g/K); α0 | g, b ∼ Gamma(g, b).

Having drawn m(a), draw the cluster configuration z(a)

z(a) | m(a) ind.∼ Unif(ZNa,K,m(a)), a ∈ [r].

A probabilistic clustering mechanism subject to fairness
constraints.

Can be embedded into any probability model for data within
clusters.



HFDP (contd.)

Specifying component-wise distributions:

x
(a)
i | z

(a)
i = k, ϕ

(a)
k

ind.∼ fobs(· | ϕ
(a)
k ), i ∈ [Na], a ∈ [r]

ϕ
(a)
k | ϕ(a) ind.∼ fpop(· | ϕ(a)), k ∈ [K], a ∈ [r],

ϕ(a) i.i.d∼ fatom, a ∈ [r],

For example, for a Gaussian model for continuous data,
fobs(· | ϕ

(a)
k ) = Nd

(
µ

(a)
k , Σ(a)

k

)
where ϕ

(a)
k = (µ(a)

k , Σ(a)
k ).

Non-Gaussian models easily incorporated.



Posterior Computation

Sampling from [β | ·] and [α0 | ·]
The prior α0 | g, b ∼ Gamma(g, b) reduces the problem to
sampling from log-concave densities. A simple rejection sampler
with a well-designed covering density works.

Sampling from[w(a) | ·], a ∈ [r]
Admits closed from updates.

Sampling from [z(a) | ·], a ∈ [r]
Major computational bottleneck! Crucial utilization of Optimal
Transport and a novel weighted sampling scheme in the space of
binary matrices with fixed margins.

To summarize the MCMC output and obtain a point estimate for
the fair clustering configuration, we adopt the least-squares
model-based clustering method of Dahl (2006).



Posterior Computation

The marginal conditional of clustering indices [z(a) | −], a ∈ [r],
integrating out population parameters, is

[z(a) | −] ∝
K∏

k=1

Γd(ν(a)
k /2) (λ(a)

0 )d/2 |Λ(a)
0 |ν

(a)
0 /2

Γd(ν(a)
0 /2) (λ(a)

k )d/2 |Λ(a)
k |ν

(a)
k

/2
, z(a) ∈ ZNa,K,m(a) a ∈ [r].

Difficult combinatorial problem and presents the most substantial
computational challenge in our algorithm.

Recast the problem as a non-uniform sampling task from the
space of binary matrices with fixed margins (Miller and Harrison,
2013; Wang, 2020).

Specifically, adapt rectangular loop algorithm of Wang (2020) to
the weighted setting.



Experiment (Well-specified)

Generate data with two attributes and two clusters.

First, 20 individuals with a = 1 are generated from N2(µ11, S) and
30 individuals with a = 2 are generated from N2(µ21, S).

Next, 30 individuals with a = 1 are generated from N2(µ12, S) and
20 individuals with a = 2 are generated from N2(µ22, S).

Here, µ11 = (4, 4)′, µ21 = (2, 2)′, µ12 = (10, 10)′, µ22 = (8, 8)′, and
S = 3 × [ρ11T + (1 − ρ)I2] with ρ = 0.3.

This generating mechanism ensures that individuals with a = 1
and a = 2 are equally represented in the observed sample of size
100. The goal is to obtain 2 balanced clusters.



Experiments (Mis-specified, Multi-color)

Mis-specified case. We follow the same scheme as before, except for
simulating from multivariate t-distributions with centers
(µ11, µ21, µ12, µ22), scale S, and degrees of freedom 4. For multivariate
skew normal distributions with centers (µ11, µ21, µ12, µ22), scale S, and
the skewness parameter α = (1, 1)T.

Multi-color case. Number of colors r = 4, sample sizes
N (1) = N (2) = N (3) = N (4) = 200, true number of clusters Ktrue = 2.
Follow a scheme similar to the Well specified case earlier.



Experiment
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Figure: Two/Multi-color case. The MAP of the HFDP fares better compared to
fair-clustering with fairlets (termed as K-Means) in two color case, and the
method in BÃ¶hm et al. (2020) (termed as K-Means) in multi-color case.

.



Benchmark Datasets

Compare methods on popular bench mark data sets from the UCI
repository.

Datasets. (1) Diabetes data (Variables: age, time in hospital;
Protected attribute: gender). (2) Portuguese Banking data
(Variables: age, balance, and duration; Protected attribute: marital
status). (3) Credit card data (Variables: age, credit limit; Protected
attribute: marital status).

Dataset Attributes K̂ HFDP Fairlet

Diabetes 2 5 -114.74 -651.84
Portuguese Banking 2 5 -176.85 -639.12

Credit Card 3 3 -86.19 -271.09



What did we discuss so far?

Existing Literature. Uncertainty quantification was largely illusive
.

HFDP. Proposed a model-based approach. Developed a concrete
notion of optimal recovery and principled performance evaluation.

Limitations of HFDP. Model-based fair clustering frameworks
show brittleness under model-misspecification and can be
computationally prohibitive.

Remedy. To circumnavigate such issues, we next propose a
generalised Bayesian fair clustering framework that inherently
enjoys decision theoretic interpretation, and support efficient
computation.



Generalised Bayesian Posterior

Let u = (u1, . . . , uN )T be the observed data, θ ∈ Θ is the
parameter. Loss function minimization:

θ̂ = arg min
θ∈Θ

L(θ | u).

Assume prior π(θ) on θ. Gibbs posterior:

π(θ | λ, u) ∝ π(θ) exp{−λL(θ | u)},

where λ > 0 is a temperature parameter. Standard Bayesian
inference recovered with λL(θ | u) as negative log-likelihood.

Gibbs posterior offers a rational update of beliefs (Bissiri et al.,
2016). Holmes and Walker (2017) proposed scheme for tuning λ.



Loss Functions

Fairlet Decomposition
Given data {(xi, ai) ∈ X × [2], i ∈ [N ]}, Chierichetti et al. (2017)
involves first decomposing data into a set of m fairlets, and
calculate the m fairlet centers.

Let L1 : U → R+ denote loss function for the fairlet decomposition.

Clustering the Fairlet Centers
Factorized loss:

L2(C | u⋆) =
K∑

k=1

∑
i∈Ck

D(u⋆
i , u⋆

k), C : |C| = K,

where D(u⋆
i , u⋆

k) ≥ 0 is the discrepancy between u⋆
i and u⋆

k.

K-means loss: L2(C | u⋆) =
∑K

k=1
∑

i∈Ck
||u⋆

i − u⋆
k||22.



Gibbs Posterior for Fair Clustering

Priors
U(⊂ X m) denote the class of all “m fairlet centers". Uniform prior
on U .

Uniform clustering priors.

Posterior
π(C, u | (λ1, λ2), {(xi, ai)}N

i=1) ∝

exp {−λ1L1(u)}∑
u∈U exp {−λ1L1(u)} ×

K∏
k=1

exp

−λ2
∑

i∈Ck

D(ui, uk)

 ,

such that C : |C| = K.

Employ the the scheme in Holmes and Walker (2017) for the
selection (λ1, λ2).



Sampling

Sampling the Fairlets/ Sampling from [u | ·]. Efficient scheme
utilizing discrete optimal transport and weighted rectangular loop
updates.

Sampling Clustering Indices/ Sampling from [C | ·].
▶ Denote c−i = (c1, . . . , ci−1, ci+1, . . . , cn) is set of clustering indices

without the i-th unit.

▶ Sample from P(ci = k | c−i, λ1, u) via Metropolis updates.



Experiment (Well-specified Case)
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Figure: Set up is same as earlier (multivariate normal components) with
K = 2.



Experiment (Mis-specified Case)
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Figure: Set up is same as earlier (multivariate t components) with K = 2.



A Benchmark Data (Credit Card Data)
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A Look Back

Existing Literature. Uncertainty quantification was largely illusive
.

HFDP. Proposed a model-based approach. Developed a concrete
notion of optimal recovery and principled performance evaluation.

Limitations of HFDP. Model-based fair clustering frameworks
show brittleness under model-misspecification and can be
computationally prohibitive.

Generalised Bayesian Fair Clustering. Proposed a framework
that is more immune to model-misspecification and support
efficient computation.



Check out the Papers!

Figure: Fair Clustering via
Hierarchical Fair-Dirichlet
Process.

Figure: A Gibbs Posterior
Framework for Fair Clustering.



References I

Ahmadian, S., Epasto, A., Knittel, M., Kumar, R., Mahdian, M., Moseley, B., Pham, P.,
Vassilvitskii, S., and Wang, Y. (2020a). Fair hierarchical clustering. CoRR,
abs/2006.10221.

Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M. (2020b). Fair correlation
clustering. CoRR, abs/2002.02274.

Bandyapadhyay, S., Inamdar, T., Pai, S., and Varadarajan, K. R. (2019). A constant
approximation for colorful k-center. CoRR, abs/1907.08906.

Bissiri, P. G., Holmes, C. C., and Walker, S. G. (2016). A general framework for
updating belief distributions. J R Stat Soc Series B Stat Methodol,
78(5):1103–1130. Epub 2016 Feb 23.

BÃ¶hm, M., Fazzone, A., Leonardi, S., and Schwiegelshohn, C. (2020). Fair clustering
with multiple colors.

Chakrabarty, D. and Negahbani, M. (2021). Better algorithms for individually fair
k-clustering. CoRR, abs/2106.12150.

Chen, X., Fain, B., Lyu, C., and Munagala, K. (2019). Proportionally fair clustering.
CoRR, abs/1905.03674.



References II
Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. (2017). Fair clustering

through fairlets. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Dahl, D. (2006). Model-based clustering for expression data via a dirichlet process
mixture model, in bayesian inference for gene expression and proteomics.
Cambridge University Press.

Esmaeili, S., Brubach, B., Tsepenekas, L., and Dickerson, J. (2020). Probabilistic fair
clustering. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems, volume 33, pages
12743–12755. Curran Associates, Inc.

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian,
S. (2015). Certifying and removing disparate impact. In KDD, pages 259–268.

Holmes, C. C. and Walker, S. G. (2017). Assigning a value to a power likelihood in a
general bayesian model. Biometrika, 104(2):497–503.

Kleindessner, M., Awasthi, P., and Morgenstern, J. (2020). A notion of individual
fairness for clustering.

Kleindessner, M., Samadi, S., Awasthi, P., and Morgenstern, J. (2019). Guarantees for
spectral clustering with fairness constraints.



References III

Mahabadi, S. and Vakilian, A. (2020). Individual fairness for k-clustering.

Miller, J. W. and Harrison, M. T. (2013). Exact sampling and counting for fixed-margin
matrices. The Annals of Statistics, 41(3):1569 – 1592.

Rösner, C. and Schmidt, M. (2018). Privacy preserving clustering with constraints.
CoRR, abs/1802.02497.

Wang, G. (2020). A fast MCMC algorithm for the uniform sampling of binary matrices
with fixed margins. Electronic Journal of Statistics, 14(1):1690 – 1706.

White, H. (1982). Maximum likelihood estimation of misspecified models.
Econometrica, 50(1):1–25.


	Fairness in Clustering
	Hierarchical Fair-Dirichlet Process
	Generalised Bayesian Clustering
	References

