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Practical issues with Bayes factors

Defining null and alternative models is difficult in high-dimensional settings.

Site Results for the
following blood groups
O A B or AB

Pylorus and antrum 104 140 52
Body and fundus 116 117 52
Cardia 28 39 11
Extensive 28 12 8

White and Eisenberg’s classification of cancer patients.
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Practical issues

Bayes factors based on test statistics (BFBOTS)[Proposed by V.E. Johnson(2005)]

Suppose X is a standard test statistic (i.e., z, t, χ2, F ).

Under H0, distribution, distribution of test statistic is known. No prior
densities are needed.
Under H1, distribution of X depends on scalar non-centrality parameter. Only
prior on scalar needed.
Avoids high-dimensional integration.
Avoids high-dimensional prior specification.
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Practical issues: BFBOTS

BFBOTS do not reflect effect sizes

Bayes Factors expressed as functions of effect sizes already proposed(V.E.
Johnson, S. Pramanik, R.Shudde, PNAS 2023).

Aim of this project: To account for the variability of the effect sizes
through another hyper-parameter
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Non-local priors

Define alternative priors so that they assign negligible mass to parameters
consistent with the null hypothesis

For normal mean, the prior on µ has a prior density defined as follows

πNM (µ | r, τ2) = (µ2)r

(2τ2)r+
1
2Γ

(
r + 1

2

) exp
(
− µ2

2τ2

)
, µ ∈ R, τ, r > 0

.
is a normal moment (NM) prior density,

πNM (0 | τ2) = 0

Modes are at ±
√
2rτ
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Example: JZS and NM priors for normal mean
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Z test

Theorem. Assume the distributions of a random variable z under the null and
alternative hypotheses are described by

H0 : z ∼ N(0, 1),

H1 : z |λ ∼ N(λ, 1), λ | τ2 ∼ NM(r, τ2).

Then the Bayes factor in favor of the alternative hypothesis is

BF10(z|τ2) =
1

(1 + τ2)r+
1
2
1F1

(
r +

1

2
,
1

2
;

τ2z2

2(1 + τ2)

)
(1)
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T test

Theorem Assume the distributions of a random variable tν under the null and
alternative hypotheses are described by

H0 : t ∼ Tν(0),

H1 : t |λ ∼ Tν(λ), λ | τ2 ∼ NM(r, τ2).

BF10(t | τ2, r)

= 1

(1+τ2)r+
1
2
2F1

(
ν+1
2 , r + 1

2 ,
1
2 ,

τ2t2

(t2+ν)(τ2+1)

)
+ tτ√

t2+ν(τ2+1)r+1

Γ( ν
2+1)

Γ
(

ν+1
2

) Γ(r+1)

Γ(r+ 1
2 )

2F1

(
ν
2 + 1, r + 1, 32 ,

t2τ2

(t2+ν)(1+τ2)

)
(2)
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χ2 test

Theorem Assume the distributions of a random variable h under the null and
alternative hypotheses are described by

H0 : h ∼ χ2
k(0),

H1 : h |λ ∼ χ2
k(λ), λ | τ2 ∼ G

(
k

2
+ r,

1

2τ2

)
.

Then the Bayes factor in favor of the alternative hypothesis is

BF10(h | τ2) = 1

(1 + τ2)k/2+r 1F1

(k
2
+ r,

k

2
;

τ2h

2(1 + τ2)

)
(3)
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F test

Theorem Assume the distributions of a random variable f under the null and
alternative hypotheses are described by

H0 : f ∼ Fk,m(0),

H1 : f |λ ∼ Fk,m(λ), λ | τ2 ∼ G

(
k

2
+ r,

1

2τ2

)
.

Then the Bayes factor in favor of the alternative hypothesis is

BF10(f | τ2) = 1

(1 + τ2)
k
2+r

2F1(k/2 + r,
k +m

2
, k/2;

kfτ2

(1 + τ2)(m+ kf)
) (4)

where v = m(τ2 + 1).
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Rates of Convergence

Z-test:Suppose that the following hold:

(i) z ∼ N(γ
√
n, 1) when H1 is true,

(ii) τ2 = βn for β > 0.

Then BF01(z | τ2, r) = Op(exp(−cn)) for some c > 0 when H1 applies, and

BF10(z | τ2, r) = Op(n
r+ 1

2 ) when H0 is true.

χ2 test:Suppose the following hold:

(i) h ∼ χ2
k(γn) for some γ > 0 when the alternative hypothesis is

true, and
(ii) τ2 = βn for some β > 0.

Then BF01(h | τ2, r) = Op[exp(−cn)] for some c > 0 when the alternative

hypothesis is true and BF10(h | τ2, r) = Op(n
−r− k

2 ) when the null
hypothesis is true.
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Choice of τ 2: Reflects effect size

Assume r is known for a single study.

Express the mode of the non-centrality parameter as a function of the
standardized effect-size, say ψ(ω, r).

ψ(ω, r) = argmax
λ

π(λ | τ2ω,r), (5)

Choose the value of τ2 that makes the prior modes equal to ψ(ω, r).
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Choice of r: Variability around effect sizes,
Replicated studies

Assume the prior on r is proportional to a Cauchy density truncated in the
interval (1,∞) (denoted by C1+(r)).

r can be estimated in several ways. Here, we propose the marginal maximum
a posteriori (MMAP) estimate r∗ω defined by

r∗ω = argmax
r≥1

[
S∏

s=1

m1(xs | r, τ2ω,r)

]
πN (r), (6)

where m1(xs | r, τ2ω,r) represents the marginal density of the test statistic xs,
s = 1, . . . , S given ω and r.

r∗ω = 1 for a single replication.
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Example: OSC data

Problem: Two variables:

X: Conscientousness, Y: Persistence

(X,Y ) ∼ N2(µx, µy, σ
2
x, σ

2
y, ρ)[ Assumption not required for computing

BFFs]

Hypothesis: H0 : ω(or ρ) = 0 against H1 : ω(or ρ) ≥ 0, ω: Standardized
effect size

Notations:

Total number of replications = 20

Denote ri = Sample correlation coefficient and ni = Sample size for the i-th
replication, i = 1,2,...20.

ti =
1
2 log

(
1+ri
1−ri

)
= Fisher’s transformation of ri.
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Example: Continued

If ρi denotes the population correlation coefficient for the i− th study,

ti ∼ N
(

1
2 log

(
1+ρi

1−ρi

)
, 1
ni−3

)
.

Define zi =
√
ni − 3ti. Therefore, zi ∼ N(λi, 1), where

λi =
√
ni−3
2 log

(
1+ρi

1−ρi

)
is the non-centrality parameter.

ρ = Population correlation coefficient across all studies.

ω = 1
2 log

(
1+ρ
1−ρ

)
= Standardized effect size
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Example(Continued): Prior and Choices of
hyper-parameters

Given ω, λi
iid
∼ πNM (µ | r, τ2r,ω,i), τ

2
r,ω,i =

(ni−3)ω2

2r

MAP estimate of r = r∗ω, assuming a half Cauchy prior on r.

The Bayes factors based on the 20 replications of the experiment, given r
and ω, can be expressed as the product of Bayes factors from the individual
experiments. Applying Theorem 2.5,

BF10(z |ω, r) =
20∏
i=1

BF10(zi|τ2ω,r,i, r). (7)
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Combined BFF and Individual BFF of
replication studies

Figure: Combined BFF(red) and Individual BFFs
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Observations

Very strong evidence in favour of the null hypothesis

log(BF10) centered on effect sizes greater than ρ = 0.20 were less than −32.

For these data, r∗ω = 1 for ω ∈ (0, 0.082) ∪ (0.150,∞) and did not exceed
1.172 in the interval (0.082, 0.150).

This is due to the fact that the null is favoured in this study.
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BFF for varying r

Standard choice of r
When there is no prior information about the dispersion of the non-centrality
parameter across several replications, choose r = 1.
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Figure: BFF for various values of r
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Comparison with other standard methods

Competing method(Ly, Verhagen, Wagenmakers,2016)
Assuming a Bivariate normal model,for the i− th replication:

ρi ∼ Stretched-beta(1/κ, 1/κ).

π(µx, µy, σ
2
x, σ

2
y) ∝ 1

σxσy

Mode of Comparison:

Obtain the maximum Bayes Factor(max BF10) for each study by maximizing
with respect to κ

We obtain the maximum BF using Bayes Factor function for each
study(using r = 1).
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Comparison of maximum BFs
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Comparison of maximum BFs
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Some drawbacks of the fully parametric model
Assumes normality whereas the underlying distribution of the data is not normal.

3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7
0

10
0

25
0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

1 2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness

P
er

si
st

en
ce

2 3 4 5 6 7

0
10

0
25

0

Conscientiousness
P

er
si

st
en

ce

Figure: CaptionDatta, Shudde, Johnson Texas A&M University 24 / 32



Example:Stroop test

A test for the difference of means between two populations

A frequentist t test is done

Impose a NM+(τ2, r) prior on the non-centrality parameter of the t-test
statistic under the alternative

Standardized effect size(ω) = (µ1−µ2)
σ

τ2 = n1n2ω
2

2r(n1+n2)
, r = r∗ω

Replications = 36
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Combined and Individual BFFs

ω

lo
g 

B
F

10

0
40

0
80

0
12

00
16

00
20

00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
20

40
60

80
10

0

lo
g 

B
F

10
 ,i

Figure: CaptionDatta, Shudde, Johnson Texas A&M University 26 / 32



Observations

Overwhelming support in favour of the alternative

log(BFF) = 774 at ω = 0.9

r∗ω = 12.

Datta, Shudde, Johnson Texas A&M University 27 / 32



Observations

Overwhelming support in favour of the alternative

log(BFF) = 774 at ω = 0.9

r∗ω = 12.

Datta, Shudde, Johnson Texas A&M University 27 / 32



Observations

Overwhelming support in favour of the alternative

log(BFF) = 774 at ω = 0.9

r∗ω = 12.

Datta, Shudde, Johnson Texas A&M University 27 / 32



BFF for varying r
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Figure: Bayes factor functions for various values of r
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Choice of r
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Conclusion

Overcomes computational complexities of Bayes factors by defining Bayes
factors from classical test statistics and using standardized effect sizes to
define alternative hypotheses

Reflects effect sizes by expressing Bayes factors as functions of effect sizes

Accounts for dispersion of the effect sizes and draws sensible conclusion
under replicated design

Enhances interpretation of Bayes factors by centering the modes of the
alternative prior density on values determined by standardized effect size and
hence overcoming the subjectivity of the priors
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Thank You
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