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Introduction



Motivation: Real Data

Motivation: Can we use remote sensing data to predict air quality?

The combination of high-resolution spatial and temporal coverage of
the entire U.S. with novel statistical prediction approaches has the
potential to dramatically increase the monitoring of outdoor air
pollution and its subsequent health effects
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Motivation: Real Data
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Problem Statement

We want to predict scalar air quality qt given multi-band satellite
image data Xt =

{
X(Red)

t ,X(Blue)
t ,X(Green)

t ,X(Infra)
t

}
.

qt = f(Xt) + ϵt

depending on the method you choose to estimate f, the input Xt is
either a set of images or four high-dimensional vectors or one really
high-dimensional vector, etc.

Regardless of representation the information in Xt stays the same.
In this case it is four smoothly varying surfaces.
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Manifold Property of Image Data

For GP regression Xt is a vector of dimension p = 4 × p1 × p2 ∝ 105.

The images themselves have inherent dimension d ≈ 1.5 [Denti, 2021]

When all four images are concatenated into one vector, the inherent
dimension remains small, d < 10.

GP regression is able to make good predictions for data with a low
inherent dimension (d) even when the apparent dimension (p) is
large. [Yang and Dunson, 2016]

6



Main Idea

Goal: Present a method which draws computationally efficient
predictive inference from Gaussian process (GP) regressions with a
large number of features when the response is conditionally
independent of the features given the projection to a noisy low
dimensional manifold.
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Recurring Example: Swiss Roll
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Swiss Roll Construction

1. Sample manifold coordinates
• t ∼ U( 3π

2
9π
2 )

• h ∼ U(0, 3)

2. Construct high dimensional x = (x1, . . . , xp)

• x1 = t cos(t) + δ1

• x2 = h + δ2

• x3 = t sin(t) + δ3

• xi = δi for i ≥ 4, where δi ∼ N(0, τ2)

3. Responses are simulated have to nonlinear and non-monotonic
relationship with the features

• yi = sin(5πt) + h2 + ϵi, ϵi ∼ N(0, 0.022)
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GP Regression on Swiss Roll

We consider the following model

y = f(x) + ϵ, ϵ ∼ N(0, τ2)

Where y is a scalar response and x = (x1, . . . , xp)
′ is a high

dimensional feature which resides on a noisy unknown manifold. f is
an unknown regression function.

Gaussian process (GP) priors with automatic relevance determination
(ARD) kernel are commonly used to estimate f. But this approach
struggles when the dimension is of the order of a couple thousand.

We propose a method for ultra-high dimensional GP regression for
manifold data.
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GP Regression on Swiss Roll: n = 400, p = 10, 000
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Sketched Gaussian Process
Regression



Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma

Given 0 < ϵ < 1, a set X of n points in Rp, and a number
m > 8 log(n)/ϵ2, there is a linear map f : Rp → Rm, such that

(1 − ϵ)||u − v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ϵ)||u − v||2

for all u, v ∈ X

Since GP regression is based on distances between points we may
work with f(u)’s instead of u’s.

Question: Can we find such an f which is beneficial to our cause?

Answer: Yes! Define f(u) = Pu. Where P = ((Pij)) ∈ Rm×p, where
Pij ∼ N(0, 1/m).
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Compressed GP Regression

Suppose we have the following dataset Dn = {(xT
i , yi) : i = 1, ..., n}.

Consisting of n observations of a p-variate feature xi = (xi,1, ..., xi,p)
T

and a scalar-valued response yi.

Further suppose that the xi live along a noisy d-dimensional
manifold and that the relationship between xi and yi can be
characterized by

yi = f(xi) + ϵ, ϵ ∼ N(0, τ2)

We approximate the density of yi by sketching the high dimensional
xi down to lower dimension using Pxi instead

yi = f(Pxi) + ϵ, ϵ ∼ N(0, τ2)
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Compressed GP Regression: Bayesian Model

We place a GP prior on f(·),

f(·) ∼ GP(0, σ2δθ), where δθ(xi, xj) = exp(−θ||xi − xj||)

Denote f = (f(Px1), . . . , f(Pxn))
′ and C ∈ Rn×n as the covariance

matrix, Cij = δθ(Pxi,Pxj)

Hierarchical Bayesian Model

y|f, τ2 ∼ N(f, τ2I)
f|τ2 ∼ N(0, τ2ψ2C)

π(τ2) ∝ 1
τ2

for fixed length scale θ and signal to noise ratio ψ2 = σ2/τ2

This setup ensures closed-form conjugate posterior distributions.
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Posterior Distributions

We obtain the following marginal posterior distributions:

τ2|P, θ, ψ2,Dn ∼ IG(n/2, yT(ψ2C + I)−1y/2)
f|P, θ, ψ2,Dn ∼ tn(µt,Σt)

where,

µt = (I + C−1/ψ2)−1y, Σt = (2b/n)(I + C−1/ψ2)−1.
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Predictive Distributions

Now consider prediction at nnew data points x̃1, ..., x̃nnew

The posterior predictive distribution of the response
ỹnew = (ỹ1, ..., ỹnnew)

T follows,

ỹ|x̃1, ..., x̃nnew ,P, θ, ψ2,Dn ∼ tnnew(µ̃t, Σ̃t)

Where

µ̃t = ψ2Cnew,old(I + ψ2C)−1y
Σ̃t = (2b/n)

[
I + ψ2Cnew − ψ4Cnew,old(I + ψ2C)−1CT

new,old
]
. (1)

Takeaway: All of the posterior distributions are available in closed
form! Bayesian inference can proceed from exact posterior samples.
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Predictions on Swiss Roll: n = 400, p = 10, 000
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Model Averaging – Stacking of
Predictive Distributions



Model Averaging

Predictions are dependent on the random sketching matrix P and on
the parameters ψ2 and θ.

In order to lessen dependence on any single random model
M = {P, θ, ψ2} we average over many of them, M1, . . . ,MK

Previous work used Bayesian Model Averaging (BMA) but this
approach is unsatisfactory for multiple reasons.
[Guhaniyogi and Dunson, 2016]

We propose to use stacking of predictive distributions instead.

18



Issue with BMA

The relationship between the true data generator and the model list
M = {M1, . . . ,MK} falls into one of three categories:

1. M-Closed: The true data generator is one of the models inM
2. M-Complete: The true model exists but is not a member ofM.
We still wish to use the models inM for some reason.
Tractability, computational ease, etc.

3. M-Open: We know the true model is not inM and we cannot
specify it.

BMA is appropriate in in theM-Closed case but in theM-Complete
andM-Open cases BMA will asymptotically select the single model
closest to the true model in KL-divergence. [Yao et al., 2018]
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Proper Scoring

We need an averaging method which privileges the predictive
performance of the models.

”Scoring rules assess the quality of probabilistic forecasts, by
assigning a numerical score based on the predictive distribution and
on the event or value that materialized” [Gneiting and Raftery, 2007]

Since we know the posterior predictive distribution of ỹ analytically,
we can efficiently evaluate proper scoring functions. We will use this
to construct averaging weights.
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Stacking

Stacking (of means) is a direct, two-step method for obtaining point
estimates from multiple models. Given data (yi, xi), i = 1, . . . , n and
parametric models Mk having form fk(x|θk).

1. Fit each model and obtain the LOO predictor for each data point

f (−i)
k (xi) = E

[
yi|θk,y−i,Mk

]
2. Solve for the model weights by minimizing the LOO squared
error

ŵ = argmin
w

n∑
i=1

(
yi −

∑
k

wk f̂ (−i)
k (xi)

)2

Then the point prediction at a new data point xnew is given by,

ŷnew =

K∑
k=1

ŵkfk(xnew|θk)
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Stacking of Predictive Distributions

Our model returns a full distribution, not just a point estimate.

We can repeat the stacking process above, but instead of minimizing
the squared error when finding ŵ we can maximize the log score.

1. Obtain the LOO predictive densities for each model k and data
point i

pk,−i(yi) = tn−1(yi|µk,−i,Σk,−i)

2. Solve for the model weights by maximizing the score over all the
data

max
w∈△K

1
n

n∑
i=1

log

K∑
k=1

wkpk,−i(yi)

Where △K denotes the K-dimensional probability simplex.
3. The stacked estimate of the predictive density is given by

p̂(ynew|y) =
K∑

k=1
ŵkp(ynew|y,Mk)
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Stacking of Predictive Distributions

Notes:

1. µk,−i and Σk,−i are known in closed form but evaluating them
requires inverting and (n − 1)× (n − 1) matrix. For LOO stacking
we invert Kn (n − 1)× (n − 1) matrices. I think I can speed this
up by using the Sherman-Woodbury-Morrison formula.

2. Instead of LOO it is possible obtain the predictive densities in
K-fold batches. [Zhang et al., 2023] have shown good results in a
spatial setting with K = 10.

3. Solving for the model weights is done using BFGS the optimizer.
It is simple to obtain the gradient of the objective function, but
it is a surprisingly difficult optimization problem.
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Predictions on Swiss Roll: n = 400, p = 10, 000
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Predictions on Swiss Roll: n = 400, p = 10, 000
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Putting it all Together



Full Method
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Results



Swiss Roll: Prediction
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Swiss Roll: CI Length
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Swiss Roll: Run Time
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Swiss Roll: Effect of m
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Real Data: Preprocessing

Original Screened

Figure 4: Near infrared image on July 2, 2019. The plot on the left shows the
original image. The right plot shows the same image with screened out
pixels in white. Interestingly, the independent screening procedure selects
contiguous chunks and borders in the image. Screening was performed via
the NIS method [Fan et al., 2011].
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Real Data: Predictions
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Figure 5: Point prediction and 95% predictive interval at all test samples of
air pollution data for SkGP. Every fourth third point is held out for prediction.
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Real Data: Comparison

Competitor MSPE Coverage Length
SkGP 0.327 0.784 1.165
BART 0.369 0.739 1.300
SkBART 0.536 0.613 1.159

Table 1: Mean squared Prediction Error (MSPE), length and coverage of 95%
predictive intervals for the competing methods SkGP, BART and SkBART for
air pollution data.
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Conclusion

We have presented a method which allows for scalar on image
regression problems to be solved using GP regression.

Our proposed method:

1. draws predictive inference of a random variable from a
high-dimensional feature vector using “sketching” of the feature
vector when the feature vector lies on a low-dimensional noisy
unknown manifold

2. Is Fast: Requires no MCMC and is easily parallelized.
3. Scalable: Regular GP regression can be replaced with Vecchia
approximation or other scalable GP methods.

4. naturally Quantifies Uncertainty
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Questions?

Thank you!
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Extras



Choosing θ and ψ2

In order to limit sensitivity of the results to any one choice of
{Pn, θ, ψ

2} we propose to average over many models. We generate
k = 1, . . . ,K sketching matrices P(k)

n where {P(k)
n }i,j ∼ N(0, 1). Then,

using the fact that the marginal posterior distribution of θ, ψ2|P(k)
n , y

is given by

f(θ, ψ2|P(k)
n , y) ∝ 1

|ψ2C + I| 1
2

2 n
2 Γ(n

2 )

[y′(ψ2C + I)−1y]
n
2 (

√
2π)n

× π(θ)

We find a pair (θ(k), ψ2(k)) which maximize this density. Due to
intractability of obtaining the gradient of f, optimization is performed
via grid search. The grid {θ1, . . . , θt} × {ψ2

1 , . . . ψ
2
s}is constructed by

sampling θ1, . . . , θt uniformly in [3/dmax, 3/dmin] and ψ2
1 , . . . , ψ

2
t

uniformly in (0, ψ2
max], where dmax = maxi,j ||xi − xj||,

dmin = mini,j ||xi − xj|| and ψ2
max is a sufficiently large signal to noise

ratio, e.g. 10, which we allow to be user specified in our code
implementation.
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More on the J-L Lemma

•

37



References i

Denti, F. (2021).
intrinsic: An r package for model-based estimation of the
intrinsic dimension of a dataset.
arXiv preprint arXiv:2102.11425.

Fan, J., Feng, Y., and Song, R. (2011).
Nonparametric independence screening in sparse
ultra-high-dimensional additive models.
Journal of the American Statistical Association, 106(494):544–557.

Gneiting, T. and Raftery, A. E. (2007).
Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378.

38



References ii

Guhaniyogi, R. and Dunson, D. B. (2016).
Compressed gaussian process for manifold regression.
The Journal of Machine Learning Research, 17(1):2472–2497.

Yang, Y. and Dunson, D. B. (2016).
Bayesian manifold regression.
Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018).
Using stacking to average bayesian predictive distributions
(with discussion).
Zhang, L., Tang, W., and Banerjee, S. (2023).
Exact bayesian geostatistics using predictive stacking.
arXiv preprint arXiv:2304.12414.

39



Nonparametric Independence
Screening



Motivation

If the amount of noise in the ultra-high dimensional predictors is too
large compression will destroy all of the signal.

We want to remove some of the noisy, useless predictors before we
multiply by the compression matrix.

To this end we employ the Nonparametric Independence Screening
(NIS) method from [Fan et al., 2011].
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Too Much Noise
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NIS

The purpose of the NIS procedure is to quickly assess the marginal
importance of each covariate Xj, j = 1, . . . , p. for the model

yi = f(xi) + ϵ

1. Consider the p marginal nonparametric regression problems

min
gj

E
[
(y − gj(Xj))

2]
2. To obtain a sample version we use a B-spline basis using a
shared number of basis functions across all Xj.

3. Rank according to the descent order of the residual sum of
squares of the componentwise nonparametric regressions.

[Fan et al., 2011] suggest using a permutation test based cutoff for
variable selection. In our simulation studies we set a conservatively
high pscreen.
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Swiss Roll Screening
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High Noise with Screening
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Effect of Screening
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