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Research interests

e Climate science
e Long range climate forecasting and model integration with machine
learning
e Climate model validation and assessment
e Detection and attribution of climate change

e Model calibration and parameter estimation

e Public health

e Vector borne disease modeling with graph neural networks

e Causal analysis, Granger causality, and interrupted time series with
deep neural networks

o Effects of extreme weather on vector borne disease
e Deep learning

e Uncertainty quantification with Bayesian and conformal methods
e Robust predictions and out of distribution generalization
e Semi-supervised learning and small data problems
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Multi-model Ensembles

(a) Observed and CMIP5 simulated global mean surface air temperature
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Figure 1: Gobal mean predictions for each CMIP5 model (colored lines), the
model mean (red) and observations (black). Different models yield different
predictions.

e Multi-model ensemble analysis — how to combine models to best

resemble the actual climate?
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Multi-model Ensemble Analysis

e Climate models produce spatio-temporal output (discretized to a

grid). Combine directly?
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Figure 2: Goal: combine multiple climate fields into a single estimate

e More informative but much more difficult than averaging global

means

e Resize to common grid - introduces bias and lose information

e Consider correlations between models and observations?

e Spatially varying weights? Tons of parameters?
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e There are many methods for constructing f : X — Y

e Model integration — combining multiple climate projections into a
unified projection

e Ensemble averaging — democratic and weighted (Giorgi and
Mearns, 2002, 2003; Flato et al., 2014; Abramowitz et al., 2019)

e Bayesian methods (Rougier et al., 2013; Sansom et al., 2017;
Bowman et al., 2018)

e Regression (Riisinen et al., 2010; Bracegirdle and Stephenson,
2012) and Machine Learning methods (Ghafarianzadeh and
Monteleoni, 2013)

e Gaussian process regression (Harris et al., 2023)

e Climate models are used to predict observational data
e The predictions constitute an “integration” or “analysis” of the
climate models
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Distribution Shift

e Most methods are not robust to distribution shift.

Distribution shift occurs when

P (X, Y) % Pre(X,Y)

i.e the joint distribution of the predictors X and targets Y is different
in the train and test sets.

If a model is not robust or invariant to distribution shift, then its

loss will generally be higher on test.

Ex,vy~p, [E(f, (X, Y)] # Ex,v)~p. [, (X, Y)]

Separate concept from overfitting
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Impacts to prediction

— This can have a significant impact on the predictive skill.
— Most methods show increasing error rates over time

— Some models are more robust than others

({) Mean Squared Error (MSE) - T2M
Model ‘ 2030 2040 2050 2060 2070 2080 2090 2100

NN-GPR | 191 (0.06) 197 (0.06) 2.10(0.07) 227(0.08) 237(0.09) 253 (0.11) 2.68(0.11) 2.84(0.12)
LM | 229(0.11) 228(0.10) 238(0.12) 2.51(0.13) 254(0.14) 257(0.17) 2.62(0.17) 2.71(0.19)
WEA |329(0.22) 327(020) 340(0.23) 3.54(025) 3.54(0.25) 3.60(0.27) 3.62(0.28) 3.67(0.28)
EA | 598(0.53) 587(0.50) 5.96(0.49) 6.04(0.45) 6.00(0.45) 6.03(0.43) 5.97(043) 5.99(0.42)
GPSE | 1.91(0.06) 2.01(0.06) 226(0.08) 2.57(0.09) 2385(0.12) 3.23(0.13) 3.60(0.15) 3.96(0.17)
GPEX | 1.89(0.06) 197 (0.06) 2.19(0.07) 2.44(0.08) 2.65(0.10) 290(0.11) 3.16(0.11) 3.40(0.13)
CNN | 278(0.15) 275(0.14) 2.79(0.17) 295(0.18) 294(0.18) 2.97(0.22) 3.01(023) 3.08(0.24)
DELT | 307(022) 305(021) 3.17(023) 331(024) 330(0.23) 3.36(0.25) 3.40(0.25) 3.46(0.26)

Figure 3: Decadal MSEs for 8 different model integration methods. Results
are averages (std. dev) over 16 different climate model runs.
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Impacts to UQ

— Also significantly impacts the uncertainty quantification of these
methods

— Most methods show increasing error rates over time

— Some models are more robust than others

(1) Continuous Ranked Probability Score (CRPS) - T2M
Model ‘ 2030 2040 2050 2060 2070 2080 2090 2100

NN-GPR | 0.73 (0.01) 0.74(0.01) 0.76 (0.01) 0.79(0.01) 0.81(0.01) 0.83(0.02) 0.86(0.02) 0.88 (0.02)
LM | 0.68(0.02) 069(0.02) 0.69(0.02) 072(0.02) 073(0.02) 074(0.02) 0.74(0.02) 0.76(0.02)
WEA | 115(0.05) 115(0.05) 1.16(0.05) 1.18(0.05) 1.17(0.04) 1.18(0.04) 1.18(0.04) 1.18(0.04)
EA 1.15(005) 1.15(0.05) 1.16(0.05) 1.18(0.05) 1.17(0.04) 1.18(0.04) 1.18(0.04) 1.18(0.04)
GPSE | 073(0.01) 074(0.01) 0.77(0.01) 0.81(0.01) 0.84(0.01) 0.88(0.02) 092(0.02) 0.94(0.02)
GPEX | 0.73(0.01) 075(0.01) 078 (0.01) 0.82(0.01) 0.86(0.02) 0.92(0.02) 097(0.02) 1.02(0.02)
DELT | 3.87(0.04) 3.93(0.04) 4.00(0.04) 4.06(0.04) 4.12(0.04) 4.16(0.04) 421 (0.04) 4.24 (0.04)

Figure 4: Decadal CRPS for 8 different model integration methods. Results
are averages (std. dev) over 16 different climate model runs.
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e We expect prediction error and predictive distributions to deteriorate
the further (more dissimilar) the test set is from the training set.

e |.e. the bigger the “gap” between P (X, Y) and Pw(X,Y), the

worse a model will perform
e There is no way to make a good model that is completely immune to

this distribution shift problem

e But we can try to minimize how fast it becomes a problem.

e Goal: A model who's error rates increase very slowly over time

e Increased forecasting skill improves long term model integration
e Increased UQ skill narrows long term model projection uncertainty
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Proposal

Three stage model: downsampling, prediction and upsampling

l Downsampler Upsampler (NNGP)

< —<

Figure 5: Model schematic showing how an ensemble of climate models is
downsampled, used to predict a downsampled target, then finally re-upsampled

to the target resolution. 9/26



Putting it all together. Our overall goal is to learn a map f : X — Y,
We break this down into three stages as f(X) = go ho /(x)

1. Downsample /: X +— X’ (bicubic)
2. Forecast h: X" — Y’ (CNN)
3. Upsample g : Y’ — Y (nngp)

— Downsampler is not trained (image resizing).
— Component 2 (forecasting) and 3 (upsampling) are trained separately.

— We call our model “"dCNN" for downscaled CNN
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Why decompose?

e The GP model we use in our previous work simultaneously predicted
a target field given an ensemble of climate models.

e Automatically upscaled the inputs to match the dimension of the
output.
e Fairly sensitive to distribution shift (but better than other GPs!)

e Empirical testing shows that the CNN is relatively robust to
distributional shifts that are less than (or equal) to what our data
exhibits. l.e. a CNN (apparently) mitigates the distributional shift
issue. (we're not sure why)

e However, the CNN struggles to upscale (blurry), which was an area
that our GP model excelled at.
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Deep Kernel Learning

e Feeding the inputs through a neural network then through a GP is
known as Deep Kernel Learning

e Deep Kernel Learning is a powerful technique for learning complex
kernel
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Figure 1: Deep Kernel Learning: A Gaussian process with a deep kernel maps D dimensional
inputs x through L parametric hidden layers followed by a hidden layer with an infinite number of
basis functions, with base kernel hyperparameters 8. Overall, a Gaussian process with a deep kernel
produces a probabilistic mapping with an infinite number of adaptive basis functions parametrized
by ¥ = {w,0}. All parameters ~ are learned through the marginal likelihood of the Gaussian
process.
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Bicubic Downsampling

e For downsampling we use a bicubic interpolator to “resize” each
climate field from its native resolution to an 80x100 pixel image.
Downscaler is not trained

e Each climate model is observed on its own native resolution, so this
is necessary to create a stack of models anyways
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CNN forecasting

e For testing purposes we use a small CNN (32 x 5 x 32 x 32 x 32 x 1)

with relu activations. Trained with adam on minibatches.

e Qualitative empirical findings

e CNN converts our stack of 15 models (treated as channels), X

Minibatching is essential for generalization (batch size 32)

The bottleneck layer (5 channels) is necessary for generalization
relus improves generalization over tanh, sigmoid, leakyrelus

Further regularization (weight decay and dropout) does not seem to
matter much (but might be helpful for getting the average error rate
lower)

' into

a single (1 channel) image, Y".

e Minimize MSE loss || Y’ — Y'||
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Gaussian Process Upsampling

e For the GP we use a neural network GP (NNGP) kernel. This was
shown in our previous work to be more robust than standard

exponential and squared exp kernels.
e This time we learn a GPtomapg: Y — Y’

Y(s)

Upsampler (NNGP)

Y

Figure 6: NNGP upscales climate models by using the downscaled model to

predict each pixel of the upscaled model separately.
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e Dataset consists of monthly aggregate 2-meter surface temperature
(T2M) as output from 16 different climate models (one output from
each model).

e We hold one model out as the "target” and use the remaining 15
models as predictors.

e Repeat for each model as target. 16 “perfect model” experiments in
total.

e For each experiment...
e Train on historical period (1979 - 2015) match reanalysis data
availability
e Test on future simulations (2015-2100) based on SSP245
e SSP245 — Shared Socioeconomic Pathway 2 with Representative
Concentration Pathway (RCP) 4.5 (medium plausible scenario)
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For each model experiment, training occurs in two stages.

e Stage 1 - CNN
e We first use the downsampler to convert all 15 predictor models X,
into a tensor X’.
e We also use the downsampler to conver the held out model Y into a
low res field Y.
e Train the CNN to minimize the MSE ||Y' — Y’||

e Stage 2 - Upscaler

e We then train the upscaler (NNGP) to predict Y from the low res
version Y’
e this is performed completely independently from the CNN (for now)
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e Test methods ability to accurately predict future climate under many
“perfect model” scenarios
e Given 16 global climate models. Treat one model as the “truth”.
Treat other 15 as multi-model ensemble.
e Cycle through / repeat for all models as the “truth”.

e \We consider two separate comparisons

e Evaluate the test MSE of the dCNN vs an NNGP model trained to
predict Y’ from X’ (low res forecasting)

e Evaluate the test MSE of the dCNN against an NNGP trained to
directly predict Y from X (hi res forecasting)
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Results - Downsampled

Pred. MSE on SSP245 Smoothed Pred. MSE on SSP245

—— NNGP —— Slope = 1.276
—— dCNN 241 — Slope = 0.036
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Figure 7: dCNN vs NNGP prediction MSE targeting a single climate model

— NNGP has a lower starting error, but is relative high at the end

— dCNN has almost an entirely flat error rate over the test set. CNN is
evidently robust to the distribution shift present in the data.

— Architecture improvements might bring CNN error rate down (ongoing

work) 19/26



Results - Downsampled

Pred. MSE on SSP245 Smoothed Pred. MSE on SSP245

—— NNGP —— Slope = 0.543
—— dCNN 20{ —— Slope = 0.097
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Figure 8: dCNN vs NNGP prediction MSE targeting a different climate model

— Overall performance can vary depending on the target
— Still shows improvements in the error slope over NNGP

— Architecture improvements might bring CNN error rate down (ongoing
work)
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Results - Downsampled

Pred. MSE on SSP245 Smoothed Pred. MSE on SSP245
22
281 —— NNGP —— Slope = 0.795
264 —— dCNN 211 —— Slope = 0.116
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Figure 9: Average dCNN vs NNGP prediction MSE across all model runs.
Average error rates are comparable but the slope of the dCNN is much lower.

— Average error rates over all time tend to be comparable

— Lower dCNN error rates are possible with architecture improvements in
the CNN. (Not true for NNGP)
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Results - Upsampled

Pred. MSE on SSP245 Smoothed Pred. MSE on SSP245
24
Y NNGP —— Slope = 1.095
"] — donn ,,| — slope = 0.395
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Figure 10: dCNN vs NNGP prediction MSE targeting a single climate model

— Upscale the dCNN predictions v.s. a direct NNGP approach, Error
rates are much lower, but show an upward trend now.

— Conclusion: The NNGP upscaler is responsible for the decreased
performance / weakness to distribution shift (look to replace?)
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ifying uncertainty

e The NNGP approach has an inbuilt mechanism for quantifying
uncertainty via the posterior predictive distribution

e Unfortunately in our case, in order to make things scalable, we
assumed the variance is shared at every spatial location.

e l.e. variance is constant over the spatial output domain (bad
approximation).

e Overestimates variance in low variability regions, underestimates in
high variability regions.

e Our new approach, involving downsampling, a CNN, and upsampling
with GPs seems hopeless for UQ
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Functional Conformal Inference

e Conformal inference is a framework for constructing exact prediction
intervals in finite samples.

e The only requirement is exchangeability (and, in practice, enough to
data to sample split)

e That is, given a level a and a new input X conformal inference
constructs a set C,(X) such that

P(Y € CGo(X))>1—«
and in many cases

P(Y e Cou(X)<1—a+1/(1+n)
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A split conformal approach for black box regression with high dimensional
targets

1. Partition our original training dataset D = {(X, Y;)}"_; into

Dtrain = {(X Y)}/nll
va/ — {( ) i=m+1
2. Train the dCNN model f on Dyin
3. Compute the residual fields R; = Y; — Y; on Dy
4. Find the set of the (1 — )% set of most central residual fields R;
5. We predict each Yj € Diesr with the set {\A/J + Rt
As long as R, = Y; — \A/, on Dy and R, = Y; — \A’J on Diest are

exchangeable, the (1 — «)% central region estimated on D, will also
have (1 — a)% coverage on Dieq:.
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Conformal std. dev. Pred. CRPS on S5P245
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Figure 11: dCNN vs NNGP prediction CRPS targeting a single climate model

— Continuous Ranked Probability Score (CRPS) measures the quality of
ensemble forecasts. Lower CRPS represents better UQ.

— As a consequence of mitigating distribution shift, our conformal based
prediction sets have much better UQ
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Conclusion

e Distribution shift has to be considered when applying models to
future climate data

e GP models (like NNGP) have strong performance when there is little
distribution shift. Degrade quickly with increasing distribution shift.

e Modifying the architecture of the NN does little to change things.

e CNN based models are (evidently) more robust to distribution shift
than GP models (for this problem), but require more effort to train

e More work is needed to improve the overall error rates of the CNN
based approach

e Bigger CNNs with modern tricks and data augmentation approaches
e Semi-supervised learning approaches and invariance learning
e Replace the CNN with an NNGP using a CNN kernel?

e UQ still under development!
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