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Research interests

• Climate science

• Long range climate forecasting and model integration with machine

learning

• Climate model validation and assessment

• Detection and attribution of climate change

• Model calibration and parameter estimation

• Public health

• Vector borne disease modeling with graph neural networks

• Causal analysis, Granger causality, and interrupted time series with

deep neural networks

• Effects of extreme weather on vector borne disease

• Deep learning

• Uncertainty quantification with Bayesian and conformal methods

• Robust predictions and out of distribution generalization

• Semi-supervised learning and small data problems
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Multi-model Ensembles

Figure 1: Gobal mean predictions for each CMIP5 model (colored lines), the

model mean (red) and observations (black). Different models yield different

predictions.

• Multi-model ensemble analysis – how to combine models to best

resemble the actual climate?
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Multi-model Ensemble Analysis

• Climate models produce spatio-temporal output (discretized to a

grid). Combine directly?

Figure 2: Goal: combine multiple climate fields into a single estimate

• More informative but much more difficult than averaging global

means

• Resize to common grid - introduces bias and lose information

• Consider correlations between models and observations?

• Spatially varying weights? Tons of parameters?
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Previous Work

• There are many methods for constructing f : X 7→ Y

• Model integration – combining multiple climate projections into a

unified projection

• Ensemble averaging – democratic and weighted (Giorgi and

Mearns, 2002, 2003; Flato et al., 2014; Abramowitz et al., 2019)

• Bayesian methods (Rougier et al., 2013; Sansom et al., 2017;

Bowman et al., 2018)

• Regression (Räisänen et al., 2010; Bracegirdle and Stephenson,

2012) and Machine Learning methods (Ghafarianzadeh and

Monteleoni, 2013)

• Gaussian process regression (Harris et al., 2023)

• Climate models are used to predict observational data

• The predictions constitute an “integration” or “analysis” of the

climate models
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Distribution Shift

• Most methods are not robust to distribution shift.

• Distribution shift occurs when

Ptr (X ,Y ) ̸= Pte(X ,Y )

i.e the joint distribution of the predictors X and targets Y is different

in the train and test sets.

• If a model is not robust or invariant to distribution shift, then its

loss will generally be higher on test.

E(X ,Y )∼Ptr
[ℓ(f , (X ,Y )] ̸= E(X ,Y )∼Pte

[ℓ(f , (X ,Y )]

• Separate concept from overfitting
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Impacts to prediction

– This can have a significant impact on the predictive skill.

– Most methods show increasing error rates over time

– Some models are more robust than others

Figure 3: Decadal MSEs for 8 different model integration methods. Results

are averages (std. dev) over 16 different climate model runs.

6 / 26



Impacts to UQ

– Also significantly impacts the uncertainty quantification of these

methods

– Most methods show increasing error rates over time

– Some models are more robust than others

Figure 4: Decadal CRPS for 8 different model integration methods. Results

are averages (std. dev) over 16 different climate model runs.
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Okay and?

• We expect prediction error and predictive distributions to deteriorate

the further (more dissimilar) the test set is from the training set.

• I.e. the bigger the “gap” between Ptr (X ,Y ) and Pte(X ,Y ), the

worse a model will perform

• There is no way to make a good model that is completely immune to

this distribution shift problem

• But we can try to minimize how fast it becomes a problem.

• Goal: A model who’s error rates increase very slowly over time

• Increased forecasting skill improves long term model integration

• Increased UQ skill narrows long term model projection uncertainty
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Proposal

Three stage model: downsampling, prediction and upsampling

Figure 5: Model schematic showing how an ensemble of climate models is

downsampled, used to predict a downsampled target, then finally re-upsampled

to the target resolution.
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Proposal

Putting it all together. Our overall goal is to learn a map f : X 7→ Y .

We break this down into three stages as f (X ) = g ◦ h ◦ l(x)

1. Downsample l : X 7→ X ′ (bicubic)

2. Forecast h : X ′ 7→ Y ′ (CNN)

3. Upsample g : Y ′ 7→ Y (nngp)

– Downsampler is not trained (image resizing).

– Component 2 (forecasting) and 3 (upsampling) are trained separately.

– We call our model “dCNN” for downscaled CNN
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Why decompose?

• The GP model we use in our previous work simultaneously predicted

a target field given an ensemble of climate models.

• Automatically upscaled the inputs to match the dimension of the

output.

• Fairly sensitive to distribution shift (but better than other GPs!)

• Empirical testing shows that the CNN is relatively robust to

distributional shifts that are less than (or equal) to what our data

exhibits. I.e. a CNN (apparently) mitigates the distributional shift

issue. (we’re not sure why)

• However, the CNN struggles to upscale (blurry), which was an area

that our GP model excelled at.
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Deep Kernel Learning

• Feeding the inputs through a neural network then through a GP is

known as Deep Kernel Learning

• Deep Kernel Learning is a powerful technique for learning complex

kernel
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Bicubic Downsampling

• For downsampling we use a bicubic interpolator to “resize” each

climate field from its native resolution to an 80x100 pixel image.

Downscaler is not trained

• Each climate model is observed on its own native resolution, so this

is necessary to create a stack of models anyways
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CNN forecasting

• For testing purposes we use a small CNN (32 x 5 x 32 x 32 x 32 x 1)

with relu activations. Trained with adam on minibatches.

• Qualitative empirical findings

• Minibatching is essential for generalization (batch size 32)

• The bottleneck layer (5 channels) is necessary for generalization

• relus improves generalization over tanh, sigmoid, leakyrelus

• Further regularization (weight decay and dropout) does not seem to

matter much (but might be helpful for getting the average error rate

lower)

• CNN converts our stack of 15 models (treated as channels), X ′, into

a single (1 channel) image, Ŷ ′.

• Minimize MSE loss ||Y ′ − Ŷ ′||2
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Gaussian Process Upsampling

• For the GP we use a neural network GP (NNGP) kernel. This was

shown in our previous work to be more robust than standard

exponential and squared exp kernels.

• This time we learn a GP to map g : Y 7→ Y ′

Figure 6: NNGP upscales climate models by using the downscaled model to

predict each pixel of the upscaled model separately.
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Training

• Dataset consists of monthly aggregate 2-meter surface temperature

(T2M) as output from 16 different climate models (one output from

each model).

• We hold one model out as the ”target” and use the remaining 15

models as predictors.

• Repeat for each model as target. 16 “perfect model” experiments in

total.

• For each experiment...

• Train on historical period (1979 - 2015) match reanalysis data

availability

• Test on future simulations (2015-2100) based on SSP245

• SSP245 – Shared Socioeconomic Pathway 2 with Representative

Concentration Pathway (RCP) 4.5 (medium plausible scenario)
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Training

For each model experiment, training occurs in two stages.

• Stage 1 - CNN

• We first use the downsampler to convert all 15 predictor models X ,

into a tensor X ′.

• We also use the downsampler to conver the held out model Y into a

low res field Y ′.

• Train the CNN to minimize the MSE ||Y ′ − Ŷ ′||2

• Stage 2 - Upscaler

• We then train the upscaler (NNGP) to predict Y from the low res

version Y ′

• this is performed completely independently from the CNN (for now)
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Experiments

• Test methods ability to accurately predict future climate under many

“perfect model” scenarios

• Given 16 global climate models. Treat one model as the “truth”.

Treat other 15 as multi-model ensemble.

• Cycle through / repeat for all models as the “truth”.

• We consider two separate comparisons

• Evaluate the test MSE of the dCNN vs an NNGP model trained to

predict Y ′ from X ′ (low res forecasting)

• Evaluate the test MSE of the dCNN against an NNGP trained to

directly predict Y from X (hi res forecasting)
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Results - Downsampled

Figure 7: dCNN vs NNGP prediction MSE targeting a single climate model

– NNGP has a lower starting error, but is relative high at the end

– dCNN has almost an entirely flat error rate over the test set. CNN is

evidently robust to the distribution shift present in the data.

– Architecture improvements might bring CNN error rate down (ongoing

work) 19 / 26



Results - Downsampled

Figure 8: dCNN vs NNGP prediction MSE targeting a different climate model

– Overall performance can vary depending on the target

– Still shows improvements in the error slope over NNGP

– Architecture improvements might bring CNN error rate down (ongoing

work)
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Results - Downsampled

Figure 9: Average dCNN vs NNGP prediction MSE across all model runs.

Average error rates are comparable but the slope of the dCNN is much lower.

– Average error rates over all time tend to be comparable

– Lower dCNN error rates are possible with architecture improvements in

the CNN. (Not true for NNGP)
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Results - Upsampled

Figure 10: dCNN vs NNGP prediction MSE targeting a single climate model

– Upscale the dCNN predictions v.s. a direct NNGP approach, Error

rates are much lower, but show an upward trend now.

– Conclusion: The NNGP upscaler is responsible for the decreased

performance / weakness to distribution shift (look to replace?)
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Quantifying uncertainty

• The NNGP approach has an inbuilt mechanism for quantifying

uncertainty via the posterior predictive distribution

• Unfortunately in our case, in order to make things scalable, we

assumed the variance is shared at every spatial location.

• I.e. variance is constant over the spatial output domain (bad

approximation).

• Overestimates variance in low variability regions, underestimates in

high variability regions.

• Our new approach, involving downsampling, a CNN, and upsampling

with GPs seems hopeless for UQ

23 / 26



Functional Conformal Inference

• Conformal inference is a framework for constructing exact prediction

intervals in finite samples.

• The only requirement is exchangeability (and, in practice, enough to

data to sample split)

• That is, given a level α and a new input X conformal inference

constructs a set Cα(X ) such that

P(Y ∈ Cα(X )) ≥ 1− α

and in many cases

P(Y ∈ Cα(X )) < 1− α+ 1/(1 + n)
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Proposal

A split conformal approach for black box regression with high dimensional

targets

1. Partition our original training dataset D = {(Xi ,Yi )}ni=1 into

Dtrain = {(Xi ,Yi )}mi=1

Dval = {(Xi ,Yi )}ni=m+1

2. Train the dCNN model f on Dtrain

3. Compute the residual fields Ri = Yi − Ŷi on Dval

4. Find the set of the (1− α)% set of most central residual fields Ri

5. We predict each Yj ∈ Dtest with the set {Ŷj + Ri}ni=m+1

As long as Ri = Yi − Ŷi on Dval and Rj = Yj − Ŷj on Dtest are

exchangeable, the (1− α)% central region estimated on Dval will also

have (1− α)% coverage on Dtest .
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Results

Figure 11: dCNN vs NNGP prediction CRPS targeting a single climate model

– Continuous Ranked Probability Score (CRPS) measures the quality of

ensemble forecasts. Lower CRPS represents better UQ.

– As a consequence of mitigating distribution shift, our conformal based

prediction sets have much better UQ
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Conclusion

• Distribution shift has to be considered when applying models to

future climate data

• GP models (like NNGP) have strong performance when there is little

distribution shift. Degrade quickly with increasing distribution shift.

• Modifying the architecture of the NN does little to change things.

• CNN based models are (evidently) more robust to distribution shift

than GP models (for this problem), but require more effort to train

• More work is needed to improve the overall error rates of the CNN

based approach

• Bigger CNNs with modern tricks and data augmentation approaches

• Semi-supervised learning approaches and invariance learning

• Replace the CNN with an NNGP using a CNN kernel?

• UQ still under development!
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