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General Goal

Given multiple datasets, we want to
» isolate information shared across the datasets,
» isolate information unique to each dataset,

» use the above info to better understand the datasets
(community structure, node influence, etc).

Here, we specifically observe a network with n nodes in terms of
the following data:
» (connectivity data) adjacency matrix A € R™*"™ where A;; is
the connection strength between nodes ¢ and 7,

» (covariate data) node covariates X € R™*? so that row i of
X are the p covariates observed at row 1.

The adjacency matrix and node covariates contain information
about which nodes are important, if nodes form groups, etc.
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Real data example:
> total food commodity trade volumes between 146 countries

» 10 economic and geographic covariates at each country
including GDP, education expenditure, region, etc.

NVAGRTOTLZS || NYGORPCARCD. NYGOPTOTLRTZS SEXPOTOTLGOZS | 59O CBRTIN

(a) trade adjacency matrix (b) node covariates pairs plot

Questions: What info about the nodes can we extract from both

datasets? What can each dataset tell us about the other?
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Modeling joint and individual structure

Related work:

» Joint and individual for covariate data: JIVE (Lock et al.,
2013), AJIVE (Feng et al., 2018), DMMD (Yuan and
Gaynanova, 2022)

» Joint and individual for network data: MASE (Arroyo et al.,
2021), MultiNeSS (MacDonald et al., 2022)

» Network and covariate data: CASC (Binkiewicz et al., 2017)
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Modeling joint and individual structure

Model:
» Signal + noise model

A=P+E4 X=W+EX

> B(E4) =0, E(EX)=0
Assumption:

P> data matrices are low rank for model nontrviality and feasible
computation

» observed values are close to their means

Included models:
» stochastic block model
» random dot-product graphs,

» inhomogeneous bernoulli
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Modeling joint and individual structure

» Given P =E(A) and W = E(X), define the joint and
individual subspaces as

Joint: M =C(P)nC(W),
Network individual: RW =P, C(P),
Covariate individual: R =P C(W),

where C(+) indicates the column space and P, . is the
orthogonal projection onto M.

> Set 73y = dim M, 1, = dimR™*. Then

rank(P) =ry + 11, rank(W) =7y + T2
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Modeling joint and individual structure
Structure and identifiability:
> There exist matrices M € Q,,,, and R¥) € Q,,, such that
cM)y=M,  C(R®)=RWP
and P and W factor as
pP=(M RTW W= (M R®)r®

where
» I'%) is full rank
» M L R™ are orthogonal

» These matrices are unique up to orthogonal transformation
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lllustrative Example

Data: 40 nodes each belonging to one of 4 groups, at each node
we observe 3 covariates.
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Network:
» 3 communities (shape).
P> nodes in the same community are more connected.

Covariates:
» 3 clusters (color).

» nodes in the same cluster have similar covariates. 9/22
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Estimating joint and individual structure (spectal method)
» Step 1: Extract singular subspaces

v — SV(A,rar +11), (top left singular vectors)
Ve = SV(X,rar + 12), (top left singular vectors)

» Step 2: Extract joint singular subspace
= (‘70) 17(2))
M =SV(U,ry)

» Step 3: Extract individual singular subspaces

RY = SV(Pe i VI, 7e)
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Example
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Figure: network communities: (triangle, circle square),
covariate clusters: (red, green, cyan)
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Theory: expected error (spectral)

Notion of distance: For matrices A, B € R™*", define the
procrustes distance,

A(A,B) = jnf |4~ BQ|r

where O, is the set of orthogonal matrices
Important parameters:
» eigen/singular values: A\, v, (P), rpyytry (W)

> individual subspace separation: § = 1 — o1 ((RM)T R(?)

» standard deviation of covariate entries: 7

P variance-type term oftnetwork: % such that
P(|EA| >1t) < Cex
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Here e(1) measures how noisy the network is.
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Theory: expected error (spectral)

> Set
() _ VM AT
)‘TM+T1 (P)

Here e(1) measures how noisy the network is.

» Similarly, define the noise level in the covariates as

Ty/n(ras +12) (07, 40, (W) + p)
e? = \/ 3 M ANNTM + T2
Trp+rs (W)
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Theory: expected error (spectral)

Theorem

If || E4|| is subexponential and entries of EZ)]( are iid subgaussian,
then

Joint: E[d(M, M)] = o(\/g_M[e“) i e@)]),

Individual: ~ E[d(R®, R®)] = O( v T;” Tk 1e® + e@)])
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Estimating joint and individual structure (optimization)

» Pulling top singular vectors may discard important information

» Refine the spectral estimate by minimizing an associated loss
function:

A P+ X -
st. C(M)cCC(P)nC(W)
rank(P") = rar + 11,
rank(W) = rps + 72,
rank(M) = rpy

where A’ = |A|'/2.

» Can be solved locally by iteratively optimizing a pair of related
losses analogously to block cooridnate descent.

» Can initialize at spectral estimate
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Data Exploration

Network: International food commodity trade where nodes are
countries and edges are trade volumes

Covariates: We observe economic/geographic information at each
nation like GDP, education expenditure, and geographic region
Possible Questions:

» Can the covariates identify groupings of countries based on
how they trade?

» What information about trade relationships is explained by
economic and regional information?
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Data Exploration
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Figure: PCA (network)

Upon inspection, regional trade structure is not obvious.
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Data Exploration

™
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Figure: PCA (covariates)

Clear regional structure in the covariates. Note that the covariates
can separate nations in Africa and Asia.
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Data Exploration
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» Optimization improved group separation.

» Since the covariates separate Asia and Africa while the joint

does not, the trade relation data cannot distinguish between
Asia and Africa.
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Data Exploration

Variation Explained: ldentify variation explained by the joint and
individual structure in each dataset.

» Partition the data as
A =Poin A+ PeponA + Popay 4,

» Define
Var (A) = [Py i) Al AL

VaﬁiU(A)::”ﬁkgiw)AH%/HA”%
» Define Var7(X) and Varg,) (X) similarly.
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Data Exploration

> Varg;(A) close to one means that the covariates can explain
most of the variation in the network.

» Similar interpretations for Vars, (A), Varg;(X) and

H Dataset  Component Variation H
Network Joint 12.1%
Network Individual 79.12%
Network Residual 8.78%
Covariates Joint 50.56%
Covariates  Individual 29.13%
Covariates Residual 20.31%

Table: Proportion of variation explained by component for network and

covariate datasets
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Take home:

» We can partition the information in multiple datasets using
shared and unique structure.

» Each dataset helps to inform about the other, the partition
gives holistic view
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Take home:

» We can partition the information in multiple datasets using
shared and unique structure.

» Each dataset helps to inform about the other, the partition
gives holistic view

Future extensions:
» more than two datasets

» group structure recovery

Thank Youl
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