Learning Joint and Individual Structure in Network Data with Covariates

Carson James

April 15, 2024

Joint work with:

(a) Dongbang Yuan (Meta)

(b) Irina Gaynanova (UMich)

(c) Jesús Arroyo (Texas A&M)

Given multiple datasets, we want to

Given multiple datasets, we want to

▶ isolate information shared across the datasets,

Given multiple datasets, we want to

- isolate information shared across the datasets,
- isolate information unique to each dataset,

Given multiple datasets, we want to

- isolate information shared across the datasets,
- isolate information unique to each dataset,
- use the above info to better understand the datasets (community structure, node influence, etc).

Given multiple datasets, we want to

- isolate information shared across the datasets,
- isolate information unique to each dataset,
- use the above info to better understand the datasets (community structure, node influence, etc).

Here, we specifically observe a network with \boldsymbol{n} nodes in terms of the following data:

Given multiple datasets, we want to

- isolate information shared across the datasets,
- isolate information unique to each dataset,
- use the above info to better understand the datasets (community structure, node influence, etc).

Here, we specifically observe a network with n nodes in terms of the following data:

• (connectivity data) adjacency matrix $A \in \mathbb{R}^{n \times n}$ where A_{ij} is the connection strength between nodes i and j,

Given multiple datasets, we want to

- isolate information shared across the datasets,
- isolate information unique to each dataset,
- use the above info to better understand the datasets (community structure, node influence, etc).

Here, we specifically observe a network with n nodes in terms of the following data:

- (connectivity data) adjacency matrix $A \in \mathbb{R}^{n \times n}$ where A_{ij} is the connection strength between nodes i and j,
- (covariate data) node covariates $X \in \mathbb{R}^{n \times p}$ so that row i of X are the p covariates observed at row i.

Given multiple datasets, we want to

- isolate information shared across the datasets,
- isolate information unique to each dataset,
- use the above info to better understand the datasets (community structure, node influence, etc).

Here, we specifically observe a network with n nodes in terms of the following data:

- (connectivity data) adjacency matrix $A \in \mathbb{R}^{n \times n}$ where A_{ij} is the connection strength between nodes i and j,
- (covariate data) node covariates $X \in \mathbb{R}^{n \times p}$ so that row i of X are the p covariates observed at row i.

The adjacency matrix and node covariates contain information about which nodes are important, if nodes form groups, etc.

▶ total food commodity trade volumes between 146 countries

- ▶ total food commodity trade volumes between 146 countries
- ▶ 10 economic and geographic covariates at each country including GDP, education expenditure, region, etc.

- total food commodity trade volumes between 146 countries
- 10 economic and geographic covariates at each country including GDP, education expenditure, region, etc.

(b) node covariates pairs plot

- ▶ total food commodity trade volumes between 146 countries
- ▶ 10 economic and geographic covariates at each country including GDP, education expenditure, region, etc.

2³4xx7z2vx437xxx2q451xx2qq29292525z25zz2zz2z3z3z3

(b) node covariates pairs plot

Questions:

- ▶ total food commodity trade volumes between 146 countries
- ▶ 10 economic and geographic covariates at each country including GDP, education expenditure, region, etc.

(a) trade adjacency matrix

(b) node covariates pairs plot

Questions: What info about the nodes can we extract from both datasets? What can each dataset tell us about the other?

Related work:

- Joint and individual for covariate data: JIVE (Lock et al., 2013), AJIVE (Feng et al., 2018), DMMD (Yuan and Gaynanova, 2022)
- ▶ Joint and individual for network data: MASE (Arroyo et al., 2021), MultiNeSS (MacDonald et al., 2022)
- ▶ Network and covariate data: CASC (Binkiewicz et al., 2017)

Model:

► Signal + noise model

$$A = P + E^A$$
, $X = W + E^X$

$$\mathbb{E}(E^A) = 0, \quad \mathbb{E}(E^X) = 0$$

Model:

► Signal + noise model

$$A = P + E^A$$
, $X = W + E^X$

 $\mathbb{E}(E^A) = 0, \quad \mathbb{E}(E^X) = 0$

Assumption:

- data matrices are low rank for model nontrviality and feasible computation
- observed values are close to their means

Included models:

- stochastic block model
- random dot-product graphs,
- inhomogeneous bernoulli

▶ Given $P = \mathbb{E}(A)$ and $W = \mathbb{E}(X)$, define the joint and individual subspaces as

▶ Given $P = \mathbb{E}(A)$ and $W = \mathbb{E}(X)$, define the joint and individual subspaces as

Joint:
$$\mathcal{M} = \mathcal{C}(P) \cap \mathcal{C}(W),$$
 Network individual:
$$\mathcal{R}^{(1)} = \mathcal{P}_{\mathcal{M}^{\perp}} \mathcal{C}(P),$$
 Covariate individual:
$$\mathcal{R}^{(2)} = \mathcal{P}_{\mathcal{M}^{\perp}} \mathcal{C}(W),$$

where $\mathcal{C}(\cdot)$ indicates the column space and $\mathcal{P}_{\mathcal{M}^{\perp}}$ is the orthogonal projection onto \mathcal{M}^{\perp} .

▶ Given $P = \mathbb{E}(A)$ and $W = \mathbb{E}(X)$, define the joint and individual subspaces as

Joint:
$$\mathcal{M} = \mathcal{C}(P) \cap \mathcal{C}(W),$$
 Network individual:
$$\mathcal{R}^{(1)} = \mathcal{P}_{\mathcal{M}^{\perp}} \mathcal{C}(P),$$
 Covariate individual:
$$\mathcal{R}^{(2)} = \mathcal{P}_{\mathcal{M}^{\perp}} \mathcal{C}(W),$$

where $\mathcal{C}(\cdot)$ indicates the column space and $\mathcal{P}_{\mathcal{M}^{\perp}}$ is the orthogonal projection onto \mathcal{M}^{\perp} .

ightharpoonup Set $r_M = \dim \mathcal{M}$, $r_k = \dim \mathcal{R}^{(k)}$. Then

$$rank(P) = r_M + r_1, rank(W) = r_M + r_2$$

Structure and identifiability:

Structure and identifiability:

▶ There exist matrices $M \in \mathbb{O}_{n,r_M}$ and $R^{(k)} \in \mathbb{O}_{n,r_k}$ such that

$$C(M) = \mathcal{M}, \qquad C(R^{(k)}) = \mathcal{R}^{(k)}$$

and P and W factor as

$$P = \begin{pmatrix} M & R^{(1)} \end{pmatrix} \Gamma^{(1)} \qquad W = \begin{pmatrix} M & R^{(2)} \end{pmatrix} \Gamma^{(2)}$$

where

Structure and identifiability:

lacktriangle There exist matrices $M\in \mathbb{O}_{n,r_M}$ and $R^{(k)}\in \mathbb{O}_{n,r_k}$ such that

$$C(M) = \mathcal{M}, \qquad C(R^{(k)}) = \mathcal{R}^{(k)}$$

and P and W factor as

$$P = \begin{pmatrix} M & R^{(1)} \end{pmatrix} \Gamma^{(1)} \qquad W = \begin{pmatrix} M & R^{(2)} \end{pmatrix} \Gamma^{(2)}$$

where

 $ightharpoonup \Gamma^{(k)}$ is full rank

Structure and identifiability:

lacktriangle There exist matrices $M\in \mathbb{O}_{n,r_M}$ and $R^{(k)}\in \mathbb{O}_{n,r_k}$ such that

$$C(M) = \mathcal{M}, \qquad C(R^{(k)}) = \mathcal{R}^{(k)}$$

and P and W factor as

$$P = \begin{pmatrix} M & \mathbf{R}^{(1)} \end{pmatrix} \Gamma^{(1)} \qquad W = \begin{pmatrix} M & \mathbf{R}^{(2)} \end{pmatrix} \Gamma^{(2)}$$

where

- $ightharpoonup \Gamma^{(k)}$ is full rank
- $ightharpoonup M \perp R^{(k)}$ are orthogonal

Structure and identifiability:

lacktriangle There exist matrices $M\in \mathbb{O}_{n,r_M}$ and $R^{(k)}\in \mathbb{O}_{n,r_k}$ such that

$$C(M) = \mathcal{M}, \qquad C(R^{(k)}) = \mathcal{R}^{(k)}$$

and P and W factor as

$$P = \begin{pmatrix} M & R^{(1)} \end{pmatrix} \Gamma^{(1)} \qquad W = \begin{pmatrix} M & R^{(2)} \end{pmatrix} \Gamma^{(2)}$$

where

- $ightharpoonup \Gamma^{(k)}$ is full rank
- $ightharpoonup M \perp R^{(k)}$ are orthogonal
- ▶ These matrices are unique up to orthogonal transformation

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Network:

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Network:

▶ 3 communities (shape).

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Network:

- ▶ 3 communities (shape).
- nodes in the same community are more connected.

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Network:

- ▶ 3 communities (shape).
- nodes in the same community are more connected.

Covariates:

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Network:

- ▶ 3 communities (shape).
- nodes in the same community are more connected.

Covariates:

▶ 3 clusters (color).

Data: 40 nodes each belonging to one of 4 groups, at each node we observe 3 covariates.

Network:

- 3 communities (shape).
- nodes in the same community are more connected.

Covariates:

- ▶ 3 clusters (color).
- nodes in the same cluster have similar covariates.

Estimating joint and individual structure (spectal method)

► Step 1: Extract singular subspaces

► Step 1: Extract singular subspaces

$$\widehat{V}^{(1)} = \mathrm{SV}(A, r_M + r_1), \qquad \text{(top left singular vectors)}$$

$$\widehat{V}^{(2)} = \mathrm{SV}(X, r_M + r_2), \qquad \text{(top left singular vectors)}$$

► Step 1: Extract singular subspaces

```
\widehat{V}^{(1)} = \mathrm{SV}(A, r_M + r_1), (top left singular vectors) \widehat{V}^{(2)} = \mathrm{SV}(X, r_M + r_2), (top left singular vectors)
```

► Step 2: Extract joint singular subspace

► Step 1: Extract singular subspaces

$$\widehat{V}^{(1)} = \mathrm{SV}(A, r_M + r_1),$$
 (top left singular vectors) $\widehat{V}^{(2)} = \mathrm{SV}(X, r_M + r_2),$ (top left singular vectors)

► Step 2: Extract joint singular subspace

$$\widehat{U} = (\widehat{V}^{(1)} \quad \widehat{V}^{(2)})$$

$$\widehat{M} = SV(\widehat{U}, r_M)$$

► Step 1: Extract singular subspaces

$$\widehat{V}^{(1)} = \mathrm{SV}(A, r_M + r_1),$$
 (top left singular vectors) $\widehat{V}^{(2)} = \mathrm{SV}(X, r_M + r_2),$ (top left singular vectors)

► Step 2: Extract joint singular subspace

$$\begin{split} \widehat{U} &= \left(\widehat{V}^{(1)} \quad \widehat{V}^{(2)}\right) \\ \widehat{M} &= \mathrm{SV}(\widehat{U}, r_M) \end{split}$$

► Step 3: Extract individual singular subspaces

► Step 1: Extract singular subspaces

$$\widehat{V}^{(1)} = \mathrm{SV}(A, r_M + r_1),$$
 (top left singular vectors) $\widehat{V}^{(2)} = \mathrm{SV}(X, r_M + r_2),$ (top left singular vectors)

► Step 2: Extract joint singular subspace

$$\widehat{U} = \begin{pmatrix} \widehat{V}^{(1)} & \widehat{V}^{(2)} \end{pmatrix}$$

$$\widehat{M} = SV(\widehat{U}, r_M)$$

► Step 3: Extract individual singular subspaces

$$\widehat{R}^{(k)} = SV(\mathcal{P}_{\mathcal{C}(\widehat{M})^{\perp}}\widehat{V}^{(k)}, r_k)$$

Example

Figure: network communities: (triangle, circle square), covariate clusters: (red, green, cyan)

Notion of distance:

Notion of distance: For matrices $A,B\in\mathbb{R}^{n\times r}$, define the procrustes distance,

$$d(A,B) = \inf_{Q \in \mathbb{O}_r} ||A - BQ||_F$$

where \mathbb{O}_r is the set of orthogonal matrices

Notion of distance: For matrices $A,B\in\mathbb{R}^{n\times r}$, define the procrustes distance,

$$d(A,B) = \inf_{Q \in \mathbb{O}_r} ||A - BQ||_F$$

where \mathbb{O}_r is the set of orthogonal matrices

Notion of distance: For matrices $A,B\in\mathbb{R}^{n\times r}$, define the procrustes distance,

$$d(A, B) = \inf_{Q \in \mathbb{O}_r} ||A - BQ||_F$$

where \mathbb{O}_r is the set of orthogonal matrices

Important parameters:

• eigen/singular values: $\lambda_{r_M+r_1}(P)$, $\sigma_{r_M+r_2}(W)$

Notion of distance: For matrices $A,B\in\mathbb{R}^{n\times r}$, define the procrustes distance,

$$d(A,B) = \inf_{Q \in \mathbb{O}_r} ||A - BQ||_F$$

where \mathbb{O}_r is the set of orthogonal matrices

- lacktriangle eigen/singular values: $\lambda_{r_M+r_1}(P)$, $\sigma_{r_M+r_2}(W)$
- ▶ individual subspace separation: $\delta = 1 \sigma_1((R^{(1)})^T R^{(2)})$

Notion of distance: For matrices $A, B \in \mathbb{R}^{n \times r}$, define the procrustes distance,

$$d(A, B) = \inf_{Q \in \mathbb{O}_r} ||A - BQ||_F$$

where \mathbb{O}_r is the set of orthogonal matrices

- lacktriangle eigen/singular values: $\lambda_{r_M+r_1}(P)$, $\sigma_{r_M+r_2}(W)$
- ▶ individual subspace separation: $\delta = 1 \sigma_1((R^{(1)})^T R^{(2)})$
- \blacktriangleright standard deviation of covariate entries: au

Notion of distance: For matrices $A, B \in \mathbb{R}^{n \times r}$, define the *procrustes distance*,

$$d(A, B) = \inf_{Q \in \mathbb{O}_r} ||A - BQ||_F$$

where \mathbb{O}_r is the set of orthogonal matrices

- lacktriangle eigen/singular values: $\lambda_{r_M+r_1}(P)$, $\sigma_{r_M+r_2}(W)$
- ▶ individual subspace separation: $\delta = 1 \sigma_1((R^{(1)})^T R^{(2)})$
- ightharpoonup standard deviation of covariate entries: au
- variance-type term of network: κ such that $P(\|E^A\| \ge t) \le Ce^{-\frac{t}{\kappa}}$

► Set

$$\epsilon^{(1)} = \frac{\kappa \sqrt{r_M + r_1}}{\lambda_{r_M + r_1}(P)}.$$

► Set

$$\epsilon^{(1)} = \frac{\kappa \sqrt{r_M + r_1}}{\lambda_{r_M + r_1}(P)}.$$

Here $\epsilon^{(1)}$ measures how noisy the network is.

Set

$$\epsilon^{(1)} = \frac{\kappa \sqrt{r_M + r_1}}{\lambda_{r_M + r_1}(P)}.$$

Here $\epsilon^{(1)}$ measures how noisy the network is.

Similarly, define the noise level in the covariates as

$$\epsilon^{(2)} = \frac{\tau \sqrt{n(r_M + r_2)(\sigma_{r_M + r_2}^2(W) + p)}}{\sigma_{r_M + r_2}^2(W)} \wedge \sqrt{r_M + r_2}.$$

Theorem

If $\|E^A\|$ is subexponential and entries of E^X_{ij} are iid subgaussian, then

Joint:
$$\mathbb{E}[d(\widehat{M}, M)] = O\left(\frac{\sqrt{r_M}}{\delta}[\epsilon^{(1)} + \epsilon^{(2)}]\right),$$

Individual:
$$\mathbb{E}[d(\widehat{R}^{(k)}, R^{(k)})] = O\left(\frac{\sqrt{r_M r_k}}{\delta} [\epsilon^{(1)} + \epsilon^{(2)}]\right)$$

Estimating joint and individual structure (optimization)

- Pulling top singular vectors may discard important information
- ► Refine the spectral estimate by minimizing an associated loss function:

$$\begin{split} \min_{P',M,W} & \quad \|A'-P'\|_F^2 + \|X-W\|_F^2 \\ \text{s.t.} & \quad \mathcal{C}(M) \subset \mathcal{C}(P') \cap \mathcal{C}(W) \\ & \quad \text{rank}(P') = r_M + r_1, \\ & \quad \text{rank}(W) = r_M + r_2, \\ & \quad \text{rank}(M) = r_M \end{split}$$

where $A' = |A|^{1/2}$.

- ► Can be solved locally by iteratively optimizing a pair of related losses analogously to block cooridnate descent.
- Can initialize at spectral estimate

Network: International food commodity trade where nodes are countries and edges are trade volumes

Covariates: We observe economic/geographic information at each nation like GDP, education expenditure, and geographic region

Possible Questions:

- Can the covariates identify groupings of countries based on how they trade?
- ► What information about trade relationships is explained by economic and regional information?

Figure: PCA (network)

Upon inspection, regional trade structure is not obvious.

Figure: PCA (covariates)

Clear regional structure in the covariates. Note that the covariates can separate nations in Africa and Asia.

- Optimization improved group separation.
- Since the covariates separate Asia and Africa while the joint does not, the trade relation data cannot distinguish between Asia and Africa.

Variation Explained: Identify variation explained by the joint and individual structure in each dataset.

Partition the data as

$$A = \mathcal{P}_{\mathcal{C}(\widehat{M})} A + \mathcal{P}_{\mathcal{C}(\widehat{R}^{(1)})} A + \mathcal{P}_{\mathcal{C}(\widehat{V}^{(1)})^{\perp}} A,$$

Define

$$\begin{split} \operatorname{Var}_{\widehat{M}}(A) &= \|\mathcal{P}_{\mathcal{C}(\widehat{M})}A\|_F^2/\|A\|_F^2, \\ \operatorname{Var}_{\widehat{R}^{(1)}}(A) &= \|\mathcal{P}_{\mathcal{C}(\widehat{R}^{(1)})}A\|_F^2/\|A\|_F^2 \end{split}$$

▶ Define $Var_{\widehat{M}}(X)$ and $Var_{\widehat{R}^{(2)}}(X)$ similarly.

- $ightharpoonup \operatorname{Var}_{\widehat{M}}(A)$ close to one means that the covariates can explain most of the variation in the network.
- ▶ Similar interpretations for $\operatorname{Var}_{\widehat{R}^{(1)}}(A)$, $\operatorname{Var}_{\widehat{M}}(X)$ and $\operatorname{Var}_{\widehat{R}^{(2)}}(X)$.

Dataset	Component	Variation
Network	Joint	12.1%
Network	Individual	79.12%
Network	Residual	8.78%
Covariates	Joint	50.56%
Covariates	Individual	29.13%
Covariates	Residual	20.31%

Table: Proportion of variation explained by component for network and covariate datasets

Take home:

- We can partition the information in multiple datasets using shared and unique structure.
- ► Each dataset helps to inform about the other, the partition gives holistic view

Take home:

- We can partition the information in multiple datasets using shared and unique structure.
- ► Each dataset helps to inform about the other, the partition gives holistic view

Future extensions:

- more than two datasets
- group structure recovery

Take home:

- We can partition the information in multiple datasets using shared and unique structure.
- ► Each dataset helps to inform about the other, the partition gives holistic view

Future extensions:

- more than two datasets
- group structure recovery

Thank You!

- Arroyo, J., A. Athreya, J. Cape, G. Chen, C. E. Priebe, and J. T. Vogelstein (2021). Inference for multiple heterogeneous networks with a common invariant subspace. *Journal of Machine Learning Research* 22(142), 1–49.
- Binkiewicz, N., J. T. Vogelstein, and K. Rohe (2017). Covariate-assisted spectral clustering. *Biometrika* 104(2), 361–377.
- Feng, Q., M. Jiang, J. Hannig, and J. Marron (2018). Angle-based joint and individual variation explained. *Journal of multivariate analysis* 166, 241–265.
- Lock, E. F., K. A. Hoadley, J. S. Marron, and A. B. Nobel (2013). Joint and individual variation explained (jive) for integrated analysis of multiple data types. *The Annals of Applied Statistics* 7(1), 523.
- MacDonald, P. W., E. Levina, and J. Zhu (2022). Latent space models for multiplex networks with shared structure. *Biometrika* 109(3), 683–706.

Yuan, D. and I. Gaynanova (2022). Double-matched matrix decomposition for multi-view data. *Journal of Computational and Graphical Statistics* 31(4), 1114–1126.