Bayesian Convolutional Networks-based

Generalized Linear Model

Yeseul Jeon, Won Chang, Seonghyun Jeong, Jaewoo Park

September 24, 2024

1/28



1. Research problems
2. Model
3. Applications

4. Summary

2/28



How to model the different types of data?

® High-dimensional correlated structured data
® fMRI correlation matrix, MRI, and spatial basis function matrix

e Standard vector-type variables.
® Demographic information (weight, age, gender, surgical history, etc), texture-based
features, and environmental variables

Variable Category Frequency (f) _Percentage (%)
Race African 396 291
Coloured 183 134
Indian 125 9.2
White 658 483
Gender Female 407 299
Male 955 70.1
Age (in years) 0-19 0 0.0
20-29 106 78
30-39 406 298
40-49 563 413
50-59 276 203
60-79 11 08
Occupational ~ Manager 65 48
goup Information technology 89 65
Technicians 605 444
Sales 238 17.5
Supervisory 222 16.3
Clerical or admin 143 10.5
n=1362.
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Statistical models

® Generalized linear models (GLMs), which estimate coefficients of covariates

e Spatial-temporal models or random-effect models, which consider data dependency

* Limitations:
® Hard to directly model the correlated structured dataset (tensor)

® Dimension issue

® Adequate covariance structure (high computation cost)
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Deep learning models

e Convolutional neural networks (CNNs)

® Convolution layer: trains important neighborhood features from the input by shifting
the kernels over all pixel locations with a certain step size (stride)

¢ Limitations:
1. Uncertainty quantification
2. Interpretation of covariates

3. Stochastic gradient descent (SGD) algorithm is based on prediction accuracy
(not on convergence in parameter estimation)
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Research goal

e Study different types of variables simultaneously in various applications
® Estimate the coefficient of covariates
e Quantify the uncertainty in estimation and prediction

® Posterior distribution of coefficient

® Predictive distribution
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e Dataset: D = {(x,,y,),n=1,--- N}
® Layers: L layers, where the /th layer has k; nodes for I =1,--- | L
e A set of parameters 6: (W,, b))

® Weight matrix: W, € Rk>k—1

® Bias vector: b, € R¥

7/28



Neural network with dropout d,

0, =0, (WL(;L_1 ( 03 <W302 (wza1 (Wlx,,+b1> od2+b2) od3+b3) - --)odL+bL), (1)

® o/(+): an activation function (ReLu,Sofrplus..)
e d, € R¥ ~ Bernoulli(¢/;): Dropout (Srivastava et al., 2014)
® f.o=x,¢€ Rk, fo1 = Wix,+ by € Rk, and for =Wp—1+b, € Rk, [ >2

® Nonlinear output feature from the /th layer: ¢,, = o/(f,,) € R~
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Neural networks as a deep Gaussian process

® Deep Gaussian process (Deep GP) (Damianou and Lawrence, 2013)
o F/={f,,}", e RV% and F*) (k =1,--- k) is the kth column of F,

FOIF . ~ NO,Z), 1=2,...,L

(2)
yn|fn,L—1 ~ p(ynlfn,L—l)v
e Empirical covariance matrix X, € RVXN js
PN 1
Z/ = FO'/((I)/_lw;r + b,)a,((I),_lw,T + b/)T, (3)
I

e = {¢n}), € RVN
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Variational Bayes (VB) for deep Gaussian process

Normal mixture distribution as a variational distribution (@) to approximate the posterior
distribution 7(0|{xs,yn}"N_,) of deep GP. Specifically, the variational distributions are defined

as
a(W)) =[] a(wy), a(b))=]]a(br)
Vij Vi
q(wii) = piN(ufy, 0%) + (1 — p)N(0,0?)
qa(br,i) = piN(uf, o) + (1 — p)N(0, 02),

where w; j; is the (i,j)th element of the weight matrix W, € R¥*%-1 and by ; is the ith
element of the bias vector b; € R
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Evidence lower bound (ELBO)

Evidence lower bound (ELBO). With the independent variational distribution
q(8) := [1r—; 9(W))q(b,), the log ELBO of the deep GP is

N L
Lopai=> [+ [ TLa(WDa(b1)10g plyaixs, (Wi, by Hy)dWsdbs - AW, by
n=1 =1
(5)
L
— KL TT atWna(bn|[p(wi, bite) ).

=1
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Monte Carlo approximation

Since the direct maximization of (5) is challenging due to the intractable integration, Gal and
Ghahramani (2016a) replaced it with MC approximation as

M N
1 m) (m
Lep-mc ::M E E Iogp(y,,|x,,,{W§ )’bg )}ILzl)
m=1 n=1

- KL(ﬁ a(Wi)a(b))| 1 p(W))p(by) ).
=1 =1

where {{W§m)7b§m)}/L:1}rAr/,,:1 is MC samples from the variational distribution in (4).
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e MC dropout: Variational Bayes (VB) for deep GP based on Monte Carlo (MC)
approximation

® Gal and Ghahramani (2016a) show applying dropout d, after every hidden layer / can
approximate the objective function of VB for deep GP
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® Image (correlated structure) features ® € RV*k-1: |ast layer nodes

e Summarizes high-dimensional input X (matrix or tensor) to a lower dimensional
space (vector)

® & as a basis design matrix that encapsulates information of X

® summary statistic useful for predicting response variables
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BayesCGLM

Covariates Z € RV*P, features @ € RN**-1, and response Y

BayesCGLM

g(E[Y|Z,®]) = Zy + ®5 = AB (7)

B=(y",8")" € RPtk-1: corresponding regression coefficients

® g(-): a one-to-one continuously differential link function
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Posterior distribution of coefficient

7(8ID) = [ (81D, (Wi, bi})
L1 (8)
x [ =(W,|D)r(b)|D)dW1db; - - dW;_1db;_;,
=1

where, 7(8|D, {W,, b/};‘;ll) is the conditional posterior, and 7(W,|D), 7(b/|D) are marginal
posteriors for weight and bias, respectively. Since it is challenging to compute (8) directly, we
approximate it through MC dropout as

L-1

/7?(5“3’ {W,. b} H q(W/)g(b;)dWydb; - --dW;_1db;_;, 9)
=1

where g(W)) and q(b;) are variational distributions in (4)
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Posterior distribution of coefficient

Then the MC approximation to (9) is

1 -
i 2 T(BnlD W™, b}, (10)
m=1

Here {{W§m), b;m)},Lgll}M are sampled from (4).

m=1
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Laplace approximation

1. Compute ®(™) from the given {me), bsm)}le_ll through forward propagation

2. Obtain the maximum likelihood estimate (MLE) B, using GLM by regressing Y on &(™
and Z

3. Approximate the posterior of 3, as N(Bm, §;1)
4, ﬁm € R(pTki-1)x(p+ki-1). ghserved Fisher information matrix from the mth MC samples

1 ~ o~
17 2 #(8: Bm. B, (11)
m=1

where ¢(x; p, ) is a multivariate normal density with mean g and covariance X.
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Predictive distribution of the linear predictor

A* = [Z*, &*(M] € RMex(ptki1) and B, from (11) for m=1,--- M

@*(m ¢ Rkt given X* and Z*
The predictive distribution of the linear predictor is

M

L3 (A B A A

m=1

Gaussian response: Y* ~ N (& SV A*Bpm, 32),

Count response: Y* ~ Poisson(% S°M_ A*Bpm)

A 1A*T)

=M (AMB, - )T (AMB, —Y)/NM

(12)
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Why use a two-stage approach?

One-stage approach: BayesCNN (Gal and Ghahramani (2016a))

Limitation of BayesCNN: poor convergence in parameter estimation, especially with
high-dimensional data (Goodfellow et al., 2014; Dauphin et al., 2014)

Our approach: BayesCGLM

Make the complex optimization into simple nonparametric regression problems with
a fixed basis function of ®

® is still informative when predicting responses because it is obtained by minimizing
the loss function

20/28



Why use a two-stage approach?
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Figure: BayesCNN Figure: BayesCGLM

Figure: The profile log-likelihood for « given other parameters. The yellow circles: true coefficient v = (1, 1),

the green x: the profile likelihood estimates, and the red triangles: the Bayes estimates obtained by BayesCNN
and BayesCGLM, respectively.
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Real data application: malaria incidence

¢ Malaria in the African Great Lakes Region

® Y: 4,741 cases of malaria

® Z: average annual rainfall (Z,), vegetation index of the region (Z5), and
proximity to water (Z3)

® X: spatial basis function matrix with 239 knots
® Nirain = 3,500 and Neesr = 1,241

e Compare with BayesCNN and a spatial basis regression model
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Table: Inference results for the malaria dataset from different methods. For all methods, the
posterior mean of v, 95% HPD interval, RMSPE, prediction coverage, and computing time
(min) are reported in the table.

BayesCGLM BayesCNN  Spatial model
M = 500 M = 500
71 (vegetation index) Mean 0.099 0.103 0.115
95% Interval  (0.092,0.107) - (0.111,0.118)
v2 (proximity to water) Mean 0.074 0.058 —0.269
95% Interval (0.068,0.080) - (—0.272,—-0.266)
v3 (rainfall) Mean 0.036 0.027 —0.122
95% Interval  (0.027,0.045) . (—0.126, —0.117)
Prediction RMSPE 27.438 28.462 42.393
Coverage 0.950 0.947 0.545
Time (min) 57.518 30.580 41.285
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Uncertainty quantification
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Figure: Left: Test data Middle: Prediction Right: Prediction error
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Real data applications: brain tumor

¢ Brain tumor MRI
® Y: whether 4,515 patients have a brain tumor or not
® Z: first order feature of image (Z;) and second order feature of image (Z5)
® X: 240 x 240 pixel gray images

o Nyin = 2,508 and Nyeg = 2,007

e Compare with BayesCNN and a logistic regression model
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Table: Inference results for the brain tumor dataset from different methods. For all methods,
the posterior mean of v, 95% HPD interval, accuracy, recall, precision, and computing time
(min) are reported in the table.

BayesCGLM BayesCNN GLM
M =500 M =500
~1 (first order feature) Mean —5.332 0.248 —2.591
95% Interval (—7.049, —3.704) - (—2.769, —2.412)
~2 (second order feature) Mean 4.894 0.160 2.950
95% Interval ~ (3.303,6.564) - (2.755,3.144)
Prediction Accuracy 0.924 0.867 0.784
Recall 0.929 0.787 0.783
Precision 0.901 0.907 0.715
Time (min) 293.533 103.924 0.004
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Uncertainty quantification

p( =1) = 0.90 (0.26) p(9=1) = 0.86 (0.32) p(9=1) = 031(0.29) p(§=1) =026 (0.31)

P =1) = 0.67 (0.44) p( = 1) = 0.94 (0.44)

Figure: The top panel illustrates correctly specified images with small prediction errors. The
bottom panel illustrates misclassified images with large prediction errors.
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e Unified framework for analyzing both correlated high-dimensional variables (e.g., images)
with standard vector-type variables.

® Spatial basis function matrix, MRI images, fMRI correlation matrix

® |mproved prediction accuracy along with interpretation of covariates

® Uncertainty quantification

® |nference of coefficient posterior distribution and predictive distribution

® A credible interval means a lot!

® This work is published in January, 2024 in Biometrics

® Always welcome to discuss!
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