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How to model the different types of data?

• High-dimensional correlated structured data
• fMRI correlation matrix, MRI, and spatial basis function matrix

• Standard vector-type variables.
• Demographic information (weight, age, gender, surgical history, etc), texture-based

features, and environmental variables
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Statistical models

• Generalized linear models (GLMs), which estimate coefficients of covariates

• Spatial-temporal models or random-effect models, which consider data dependency

• Limitations:
• Hard to directly model the correlated structured dataset (tensor)

• Dimension issue

• Adequate covariance structure (high computation cost)
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Deep learning models

• Convolutional neural networks (CNNs)

• Convolution layer: trains important neighborhood features from the input by shifting
the kernels over all pixel locations with a certain step size (stride)

• Limitations:

1. Uncertainty quantification

2. Interpretation of covariates

3. Stochastic gradient descent (SGD) algorithm is based on prediction accuracy
(not on convergence in parameter estimation)
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Research goal

• Study different types of variables simultaneously in various applications

• Estimate the coefficient of covariates

• Quantify the uncertainty in estimation and prediction

• Posterior distribution of coefficient

• Predictive distribution
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Notations

• Dataset: D = {(xn, yn), n = 1, · · · ,N}

• Layers: L layers, where the lth layer has kl nodes for l = 1, · · · , L
• A set of parameters θ: (Wl ,bl)

• Weight matrix: Wl ∈ Rkl×kl−1

• Bias vector: bl ∈ Rkl
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Neural network with dropout dl
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• σl(·): an activation function (ReLu,Sofrplus..)

• dl ∈ Rkl ∼ Bernoulli(ψl): Dropout (Srivastava et al., 2014)

• fn,0 = xn ∈ Rk0 , fn,1 = W1xn + b1 ∈ Rk1 , and fn,l = Wlϕn,l−1 + bl ∈ Rkl , l ≥ 2

• Nonlinear output feature from the lth layer: ϕn,l = σl(fn,l) ∈ Rkl
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Neural networks as a deep Gaussian process

• Deep Gaussian process (Deep GP) (Damianou and Lawrence, 2013)

• Fl = {fn,l}Nn=1 ∈ RN×kl and F(k)
l (k = 1, · · · , kl) is the kth column of Fl

F(k)
l |Fl−1 ∼ N(0, Σ̂l), l = 2, . . . , L

yn|fn,L−1 ∼ p(yn|fn,L−1),
(2)

• Empirical covariance matrix Σ̂l ∈ RN×N is

Σ̂l =
1

kl
σl(Φl−1W

⊤
l + bl)σl(Φl−1W

⊤
l + bl)

⊤, (3)

• Φl = {ϕn,l}Nn=1 ∈ RN×Kl
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Variational Bayes (VB) for deep Gaussian process

Normal mixture distribution as a variational distribution q(θ) to approximate the posterior
distribution π(θ|{xn, yn}Nn=1) of deep GP. Specifically, the variational distributions are defined
as

q(Wl) =
∏
∀i ,j

q(wl ,ij), q(bl) =
∏
∀i

q(bl ,i )

q(wl ,ij) = plN(µw
l ,ij , σ

2) + (1− pl)N(0, σ2)

q(bl ,i ) = plN(µb
l ,i , σ

2) + (1− pl)N(0, σ2),

(4)

where wl ,ij is the (i , j)th element of the weight matrix Wl ∈ Rkl×kl−1 and bl ,i is the ith
element of the bias vector bl ∈ Rkl .
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Evidence lower bound (ELBO)

Evidence lower bound (ELBO). With the independent variational distribution
q(θ) :=

∏L
l=1 q(Wl)q(bl), the log ELBO of the deep GP is

LGP-VI :=
N∑

n=1

∫
· · ·

∫ L∏
l=1

q(Wl)q(bl) log p(yn|xn, {Wl ,bl}Ll=1)dW1db1 · · · dWLdbL

− KL
( L∏

l=1

q(Wl)q(bl)
∣∣∣∣∣∣p({Wl ,bl}Ll=1)

)
.

(5)

11 / 28



Monte Carlo approximation

Since the direct maximization of (5) is challenging due to the intractable integration, Gal and
Ghahramani (2016a) replaced it with MC approximation as

LGP-MC :=
1

M

M∑
m=1

N∑
n=1

log p(yn|xn, {W(m)
l ,b

(m)
l }Ll=1)

− KL
( L∏

l=1

q(Wl)q(bl)
∣∣∣∣∣∣ L∏

l=1

p(Wl)p(bl)
)
,

(6)

where {{W(m)
l ,b

(m)
l }Ll=1}Mm=1 is MC samples from the variational distribution in (4).
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MC dropout

• MC dropout: Variational Bayes (VB) for deep GP based on Monte Carlo (MC)
approximation

• Gal and Ghahramani (2016a) show applying dropout dl after every hidden layer l can
approximate the objective function of VB for deep GP
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Idea: Φ

• Image (correlated structure) features Φ ∈ RN×kL−1 : last layer nodes

• Summarizes high-dimensional input X (matrix or tensor) to a lower dimensional
space (vector)

• Φ as a basis design matrix that encapsulates information of X

• summary statistic useful for predicting response variables
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BayesCGLM

• Covariates Z ∈ RN×p, features Φ ∈ RN×kL−1 , and response Y

• BayesCGLM

g(E [Y|Z,Φ]) = Zγ +Φδ = Aβ (7)

• β = (γ⊤, δ⊤)⊤ ∈ Rp+kL−1 : corresponding regression coefficients

• g(·): a one-to-one continuously differential link function
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Posterior distribution of coefficient

π(β|D) =

∫
π(β|D, {Wl ,bl}L−1

l=1 )

×
L−1∏
l=1

π(Wl |D)π(bl |D)dW1db1 · · · dWL−1dbL−1,

(8)

where, π(β|D, {Wl ,bl}L−1
l=1 ) is the conditional posterior, and π(Wl |D), π(bl |D) are marginal

posteriors for weight and bias, respectively. Since it is challenging to compute (8) directly, we
approximate it through MC dropout as∫

π(β|D, {Wl ,bl}L−1
l=1 )

L−1∏
l=1

q(Wl)q(bl)dW1db1 · · · dWL−1dbL−1, (9)

where q(Wl) and q(bl) are variational distributions in (4)
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Posterior distribution of coefficient

Then the MC approximation to (9) is

1

M

M∑
m=1

π(βm|D, {W(m)
l ,b

(m)
l }L−1

l=1 ). (10)

Here {{W(m)
l ,b

(m)
l }L−1

l=1 }
M
m=1 are sampled from (4).
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Laplace approximation

1. Compute Φ(m) from the given {W(m)
l ,b

(m)
l }L−1

l=1 through forward propagation

2. Obtain the maximum likelihood estimate (MLE) β̂m using GLM by regressing Y on Φ(m)

and Z

3. Approximate the posterior of βm as N (β̂m, B̂−1
m )

4. B̂m ∈ R(p+kL−1)×(p+kL−1): observed Fisher information matrix from the mth MC samples

1

M

M∑
m=1

φ(β; β̂m, B̂
−1
m ), (11)

where φ(x ;µ,Σ) is a multivariate normal density with mean µ and covariance Σ.
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Predictive distribution of the linear predictor

• A∗
m = [Z∗,Φ∗(m)] ∈ RNtest×(p+kL−1), and β̂m from (11) for m = 1, · · · ,M

• Φ∗(m) ∈ Rntest×kL−1 given X∗ and Z∗

• The predictive distribution of the linear predictor is

1

M

M∑
m=1

φ(A∗β;A∗
mβ̂m,A

∗
mB̂

−1
m A∗⊤

m ). (12)

• Gaussian response: Y∗ ∼ N ( 1
M

∑M
m=1 A

∗β̂m, σ̂
2), σ̂2 =

∑M
m=1(A

(m)β̂m − Y)⊤(A(m)β̂m − Y)/NM

• Count response: Y∗ ∼ Poisson( 1
M

∑M
m=1A

∗β̂m)
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Why use a two-stage approach?

• One-stage approach: BayesCNN (Gal and Ghahramani (2016a))

• Limitation of BayesCNN: poor convergence in parameter estimation, especially with
high-dimensional data (Goodfellow et al., 2014; Dauphin et al., 2014)

• Our approach: BayesCGLM

• Make the complex optimization into simple nonparametric regression problems with
a fixed basis function of Φ

• Φ is still informative when predicting responses because it is obtained by minimizing
the loss function
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Why use a two-stage approach?
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Figure: BayesCNN
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Figure: BayesCGLM

Figure: The profile log-likelihood for γ given other parameters. The yellow circles: true coefficient γ = (1, 1),
the green x: the profile likelihood estimates, and the red triangles: the Bayes estimates obtained by BayesCNN
and BayesCGLM, respectively.
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Real data application: malaria incidence

• Malaria in the African Great Lakes Region

• Y: 4,741 cases of malaria

• Z: average annual rainfall (Z1), vegetation index of the region (Z2), and
proximity to water (Z3)

• X: spatial basis function matrix with 239 knots

• Ntrain = 3, 500 and Ntest = 1, 241

• Compare with BayesCNN and a spatial basis regression model

22 / 28



Result

Table: Inference results for the malaria dataset from different methods. For all methods, the
posterior mean of γ, 95% HPD interval, RMSPE, prediction coverage, and computing time
(min) are reported in the table.

BayesCGLM BayesCNN Spatial model
M = 500 M = 500

γ1 (vegetation index) Mean 0.099 0.103 0.115
95% Interval (0.092, 0.107) - (0.111, 0.118)

γ2 (proximity to water) Mean 0.074 0.058 −0.269
95% Interval (0.068, 0.080) - (−0.272,−0.266)

γ3 (rainfall) Mean 0.036 0.027 −0.122
95% Interval (0.027, 0.045) - (−0.126,−0.117)

Prediction RMSPE 27.438 28.462 42.393
Coverage 0.950 0.947 0.545

Time (min) 57.518 30.580 41.285
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Uncertainty quantification
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Figure: Left: Test data Middle: Prediction Right: Prediction error
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Real data applications: brain tumor

• Brain tumor MRI
• Y: whether 4,515 patients have a brain tumor or not

• Z: first order feature of image (Z1) and second order feature of image (Z2)

• X: 240× 240 pixel gray images

• Ntrain = 2, 508 and Ntest = 2, 007

• Compare with BayesCNN and a logistic regression model
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Result

Table: Inference results for the brain tumor dataset from different methods. For all methods,
the posterior mean of γ, 95% HPD interval, accuracy, recall, precision, and computing time
(min) are reported in the table.

BayesCGLM BayesCNN GLM
M = 500 M = 500

γ1 (first order feature) Mean −5.332 0.248 −2.591
95% Interval (−7.049,−3.704) - (−2.769,−2.412)

γ2 (second order feature) Mean 4.894 0.160 2.950
95% Interval (3.303, 6.564) - (2.755, 3.144)

Prediction Accuracy 0.924 0.867 0.784
Recall 0.929 0.787 0.783
Precision 0.901 0.907 0.715

Time (min) 293.533 103.924 0.004
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Uncertainty quantification

! "# = 1 = 0.26	(0.31)! "# = 1 = 0.31	(0.29)! "# = 1 = 0.90	(0.26)

! "# = 1 = 0.37	(0.46)

! "# = 1 = 0.86	(0.32)

! "# = 1 = 0.46	(0.47) ! "# = 1 = 0.67	(0.44) ! "# = 1 = 0.94	(0.44)

Figure: The top panel illustrates correctly specified images with small prediction errors. The
bottom panel illustrates misclassified images with large prediction errors.
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Takeaways

• Unified framework for analyzing both correlated high-dimensional variables (e.g., images)
with standard vector-type variables.

• Spatial basis function matrix, MRI images, fMRI correlation matrix

• Improved prediction accuracy along with interpretation of covariates

• Uncertainty quantification

• Inference of coefficient posterior distribution and predictive distribution

• A credible interval means a lot!

• This work is published in January, 2024 in Biometrics

• Always welcome to discuss!
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