Bayesian Convolutional Networks-based Generalized Linear Model

Yeseul Jeon, Won Chang, Seonghyun Jeong, Jaewoo Park

September 24, 2024

Overview

- 1. Research problems
- 2. Model
- 3. Applications
- 4. Summary

How to model the different types of data?

- High-dimensional correlated structured data
 - fMRI correlation matrix, MRI, and spatial basis function matrix
- Standard vector-type variables.
 - Demographic information (weight, age, gender, surgical history, etc), texture-based features, and environmental variables

Variable	Category	Frequency (f)	Percentage (%
Race	African	396	29.1
	Coloured	183	13.4
	Indian	125	9.2
	White		48.3
Gender	Female	955 0	29.9
	Male		70.1
Age (in years)	0-19	0 106	0.0
	20-29	106	7.8
	30-39	396 183 125 658 407 955 0 106 406 563 276 11 65	29.8
	40-49		41.3
	50-59		20.3
	60-79		0.8
Occupational	Manager	183 125 658 407 955 0 106 406 563 276 11 65 89 605 238	4.8
group	Information technology	89	6.5
	Technicians	396 183 125 658 407 995 0 106 406 563 276 11 65 89 605 238	44.4
	Sales	238	17.5
	Supervisory	222	16.3
	Clerical or admin	143	10.5

Statistical models

- Generalized linear models (GLMs), which estimate coefficients of covariates
- Spatial-temporal models or random-effect models, which consider data dependency
- Limitations:
 - Hard to directly model the correlated structured dataset (tensor)
 - Dimension issue
 - Adequate covariance structure (high computation cost)

Deep learning models

Convolutional neural networks (CNNs)

• Convolution layer: trains important neighborhood features from the input by shifting the kernels over all pixel locations with a certain step size (stride)

• Limitations:

- 1. Uncertainty quantification
- 2. Interpretation of covariates
- 3. Stochastic gradient descent (SGD) algorithm is based on prediction accuracy (not on convergence in parameter estimation)

Research goal

- Study different types of variables simultaneously in various applications
- Estimate the coefficient of covariates
- Quantify the uncertainty in estimation and prediction
 - Posterior distribution of coefficient
 - Predictive distribution

Notations

- Dataset: $\mathbf{D} = \{(\mathbf{x}_n, \mathbf{y}_n), n = 1, \dots, N\}$
- Layers: L layers, where the Ith layer has k_l nodes for $l=1,\cdots,L$
- A set of parameters θ : $(\mathbf{W}_I, \mathbf{b}_I)$
 - Weight matrix: $\mathbf{W}_l \in \mathbb{R}^{k_l \times k_{l-1}}$
 - Bias vector: $\mathbf{b}_l \in \mathbb{R}^{k_l}$

Neural network with dropout \mathbf{d}_I

$$\mathbf{o}_{n} = \sigma_{L} \Big(\mathbf{W}_{L} \sigma_{L-1} \Big(\cdots \sigma_{3} \Big(\mathbf{W}_{3} \sigma_{2} \Big(\mathbf{W}_{2} \sigma_{1} \Big(\mathbf{W}_{1} \mathbf{x}_{n} + \mathbf{b}_{1} \Big) \circ \mathbf{d}_{2} + \mathbf{b}_{2} \Big) \circ \mathbf{d}_{3} + \mathbf{b}_{3} \Big) \cdots \Big) \circ \mathbf{d}_{L} + \mathbf{b}_{L} \Big), \quad (1)$$

- $\sigma_l(\cdot)$: an activation function (ReLu,Sofrplus..)
- $\mathbf{d}_I \in \mathbb{R}^{k_I} \sim \mathsf{Bernoulli}(\psi_I)$: Dropout (Srivastava et al., 2014)
- $\mathbf{f}_{n,0} = \mathbf{x}_n \in \mathbb{R}^{k_0}, \mathbf{f}_{n,1} = \mathbf{W}_1 \mathbf{x}_n + \mathbf{b}_1 \in \mathbb{R}^{k_1}$, and $\mathbf{f}_{n,l} = \mathbf{W}_l \phi_{n,l-1} + \mathbf{b}_l \in \mathbb{R}^{k_l}$, $l \geq 2$
- Nonlinear output feature from the /th layer: $\phi_{n,l} = \sigma_l(\mathbf{f}_{n,l}) \in \mathbb{R}^{k_l}$

Neural networks as a deep Gaussian process

- Deep Gaussian process (Deep GP) (Damianou and Lawrence, 2013)
- $\mathbf{F}_I = \{\mathbf{f}_{n,I}\}_{n=1}^N \in \mathbb{R}^{N \times k_I}$ and $\mathbf{F}_I^{(k)}$ $(k=1,\cdots,k_I)$ is the kth column of \mathbf{F}_I

$$\mathbf{F}_{l}^{(k)}|\mathbf{F}_{l-1} \sim \mathcal{N}(0,\widehat{\mathbf{\Sigma}}_{l}), \quad l=2,\ldots,L$$

$$\mathbf{y}_{n}|\mathbf{f}_{n,L-1} \sim p(\mathbf{y}_{n}|\mathbf{f}_{n,L-1}), \quad (2)$$

• Empirical covariance matrix $\widehat{\mathbf{\Sigma}}_I \in \mathbb{R}^{N \times N}$ is

$$\widehat{\mathbf{\Sigma}}_{l} = \frac{1}{k_{l}} \sigma_{l} (\mathbf{\Phi}_{l-1} \mathbf{W}_{l}^{\top} + \mathbf{b}_{l}) \sigma_{l} (\mathbf{\Phi}_{l-1} \mathbf{W}_{l}^{\top} + \mathbf{b}_{l})^{\top}, \tag{3}$$

 $\bullet \ \Phi_{I} = \{\phi_{n,I}\}_{n=1}^{N} \in \mathbb{R}^{N \times K_{I}}$

Variational Bayes (VB) for deep Gaussian process

Normal mixture distribution as a variational distribution $q(\theta)$ to approximate the posterior distribution $\pi(\theta|\{\mathbf{x}_n,\mathbf{y}_n\}_{n=1}^N)$ of deep GP. Specifically, the variational distributions are defined as

$$q(\mathbf{W}_{l}) = \prod_{\forall i,j} q(w_{l,ij}), \quad q(\mathbf{b}_{l}) = \prod_{\forall i} q(b_{l,i})$$

$$q(w_{l,ij}) = p_{l} N(\mu_{l,ij}^{w}, \sigma^{2}) + (1 - p_{l}) N(0, \sigma^{2})$$

$$q(b_{l,i}) = p_{l} N(\mu_{l,i}^{b}, \sigma^{2}) + (1 - p_{l}) N(0, \sigma^{2}),$$
(4)

where $w_{l,ij}$ is the (i,j)th element of the weight matrix $\mathbf{W}_l \in \mathbb{R}^{k_l \times k_{l-1}}$ and $b_{l,i}$ is the ith element of the bias vector $\mathbf{b}_l \in \mathbb{R}^{k_l}$.

Evidence lower bound (ELBO)

Evidence lower bound (ELBO). With the independent variational distribution $q(\theta) := \prod_{l=1}^L q(\mathbf{W}_l) q(\mathbf{b}_l)$, the log ELBO of the deep GP is

$$\mathcal{L}_{\mathsf{GP-VI}} := \sum_{n=1}^{N} \int \cdots \int \prod_{l=1}^{L} q(\mathbf{W}_{l}) q(\mathbf{b}_{l}) \log p(\mathbf{y}_{n} | \mathbf{x}_{n}, \{\mathbf{W}_{l}, \mathbf{b}_{l}\}_{l=1}^{L}) d\mathbf{W}_{1} d\mathbf{b}_{1} \cdots d\mathbf{W}_{L} d\mathbf{b}_{L}$$

$$- \mathsf{KL} \Big(\prod_{l=1}^{L} q(\mathbf{W}_{l}) q(\mathbf{b}_{l}) \Big| \Big| p(\{\mathbf{W}_{l}, \mathbf{b}_{l}\}_{l=1}^{L}) \Big).$$
(5)

11 / 28

Monte Carlo approximation

Since the direct maximization of (5) is challenging due to the intractable integration, Gal and Ghahramani (2016a) replaced it with MC approximation as

$$\mathcal{L}_{\mathsf{GP-MC}} := \frac{1}{M} \sum_{m=1}^{M} \sum_{n=1}^{N} \log p(\mathbf{y}_n | \mathbf{x}_n, \{\mathbf{W}_{l}^{(m)}, \mathbf{b}_{l}^{(m)}\}_{l=1}^{L}) - \mathsf{KL}\Big(\prod_{l=1}^{L} q(\mathbf{W}_l) q(\mathbf{b}_l) \Big| \Big| \prod_{l=1}^{L} p(\mathbf{W}_l) p(\mathbf{b}_l) \Big),$$

$$(6)$$

where $\{\{\mathbf{W}_{l}^{(m)}, \mathbf{b}_{l}^{(m)}\}_{l=1}^{L}\}_{m=1}^{M}$ is MC samples from the variational distribution in (4).

MC dropout

- MC dropout: Variational Bayes (VB) for deep GP based on Monte Carlo (MC) approximation
 - Gal and Ghahramani (2016a) show applying dropout \mathbf{d}_I after every hidden layer I can approximate the objective function of VB for deep GP

Idea: Φ

- ullet Image (correlated structure) features $\Phi \in \mathbb{R}^{N imes k_{L-1}}$: last layer nodes
- Summarizes high-dimensional input X (matrix or tensor) to a lower dimensional space (vector)
 - ullet Φ as a basis design matrix that encapsulates information of ${f X}$
 - summary statistic useful for predicting response variables

BayesCGLM

- Covariates $\mathbf{Z} \in \mathbb{R}^{N \times p}$, features $\mathbf{\Phi} \in \mathbb{R}^{N \times k_{l-1}}$, and response \mathbf{Y}
- BayesCGLM

$$g(E[Y|Z,\Phi]) = Z\gamma + \Phi\delta = A\beta$$
 (7)

- $m{\bullet}$ $m{eta} = (m{\gamma}^ op, m{\delta}^ op)^ op \in \mathbb{R}^{p+k_{L-1}}$: corresponding regression coefficients
- $g(\cdot)$: a one-to-one continuously differential link function

Posterior distribution of coefficient

$$\pi(\boldsymbol{\beta}|\mathbf{D}) = \int \pi(\boldsymbol{\beta}|\mathbf{D}, \{\mathbf{W}_{l}, \mathbf{b}_{l}\}_{l=1}^{L-1}) \times \prod_{l=1}^{L-1} \pi(\mathbf{W}_{l}|\mathbf{D})\pi(\mathbf{b}_{l}|\mathbf{D})d\mathbf{W}_{1}d\mathbf{b}_{1} \cdots d\mathbf{W}_{L-1}d\mathbf{b}_{L-1},$$
(8)

where, $\pi(\boldsymbol{\beta}|\mathbf{D}, \{\mathbf{W}_{l}, \mathbf{b}_{l}\}_{l=1}^{L-1})$ is the conditional posterior, and $\pi(\mathbf{W}_{l}|\mathbf{D})$, $\pi(\mathbf{b}_{l}|\mathbf{D})$ are marginal posteriors for weight and bias, respectively. Since it is challenging to compute (8) directly, we approximate it through MC dropout as

$$\int \pi(\boldsymbol{\beta}|\mathbf{D}, \{\mathbf{W}_{l}, \mathbf{b}_{l}\}_{l=1}^{L-1}) \prod_{l=1}^{L-1} q(\mathbf{W}_{l}) q(\mathbf{b}_{l}) d\mathbf{W}_{1} d\mathbf{b}_{1} \cdots d\mathbf{W}_{L-1} d\mathbf{b}_{L-1}, \tag{9}$$

where $q(\mathbf{W}_l)$ and $q(\mathbf{b}_l)$ are variational distributions in (4)

Posterior distribution of coefficient

Then the MC approximation to (9) is

$$\frac{1}{M} \sum_{m=1}^{M} \pi(\boldsymbol{\beta}_m | \mathbf{D}, \{\mathbf{W}_l^{(m)}, \mathbf{b}_l^{(m)}\}_{l=1}^{L-1}). \tag{10}$$

Here
$$\{\{\mathbf{W}_{l}^{(m)},\mathbf{b}_{l}^{(m)}\}_{l=1}^{L-1}\}_{m=1}^{M}$$
 are sampled from (4).

Laplace approximation

- 1. Compute $\Phi^{(m)}$ from the given $\{\mathbf{W}_{l}^{(m)}, \mathbf{b}_{l}^{(m)}\}_{l=1}^{L-1}$ through forward propagation
- 2. Obtain the maximum likelihood estimate (MLE) $\widehat{\beta}_m$ using GLM by regressing **Y** on $\Phi^{(m)}$ and **Z**
- 3. Approximate the posterior of β_m as $\mathcal{N}(\widehat{\beta}_m, \widehat{\mathbf{B}}_m^{-1})$
- 4. $\hat{\mathbf{B}}_m \in \mathbb{R}^{(p+k_{L-1})\times (p+k_{L-1})}$: observed Fisher information matrix from the mth MC samples

$$\frac{1}{M} \sum_{m=1}^{M} \varphi(\beta; \widehat{\boldsymbol{\beta}}_m, \widehat{\mathbf{B}}_m^{-1}), \tag{11}$$

where $\varphi(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is a multivariate normal density with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$.

Predictive distribution of the linear predictor

- $\mathbf{A}_m^* = [\mathbf{Z}^*, \Phi^{*(m)}] \in \mathbb{R}^{N_{\mathsf{test}} \times (p+k_{L-1})}$, and $\widehat{m{eta}}_m$ from (11) for $m=1,\cdots,M$
- ullet $\Phi^{*(m)} \in \mathbb{R}^{n_{\mathsf{test}} imes k_{L-1}}$ given $old X^*$ and $old Z^*$
- The predictive distribution of the linear predictor is

$$\frac{1}{M} \sum_{m=1}^{M} \varphi(\mathbf{A}^* \boldsymbol{\beta}; \mathbf{A}_m^* \widehat{\boldsymbol{\beta}}_m, \mathbf{A}_m^* \widehat{\mathbf{B}}_m^{-1} \mathbf{A}_m^{*\top}).$$
 (12)

- Gaussian response: $\mathbf{Y}^* \sim \mathcal{N}(\frac{1}{M} \sum_{m=1}^{M} \mathbf{A}^* \widehat{\boldsymbol{\beta}}_m, \widehat{\sigma}^2)$, $\widehat{\sigma}^2 = \sum_{m=1}^{M} (\mathbf{A}^{(m)} \widehat{\boldsymbol{\beta}}_m \mathbf{Y})^\top (\mathbf{A}^{(m)} \widehat{\boldsymbol{\beta}}_m \mathbf{Y})/NM$
- Count response: $\mathbf{Y}^* \sim \mathsf{Poisson}(\frac{1}{M} \sum_{m=1}^M \mathbf{A}^* \widehat{\boldsymbol{\beta}}_m)$

Why use a two-stage approach?

- One-stage approach: BayesCNN (Gal and Ghahramani (2016a))
- Limitation of BayesCNN: poor convergence in parameter estimation, especially with high-dimensional data (Goodfellow et al., 2014; Dauphin et al., 2014)
- Our approach: BayesCGLM
- ullet Make the complex optimization into simple nonparametric regression problems with a fixed basis function of Φ
- ullet is still informative when predicting responses because it is obtained by minimizing the loss function

Why use a two-stage approach?

Figure: BayesCNN

Figure: BayesCGLM

Figure: The profile log-likelihood for γ given other parameters. The yellow circles: true coefficient $\gamma=(1,1)$, the green x: the profile likelihood estimates, and the red triangles: the Bayes estimates obtained by BayesCNN and BayesCGLM, respectively.

Real data application: malaria incidence

Malaria in the African Great Lakes Region

- Y: 4,741 cases of malaria
- **Z**: average annual rainfall (\mathbf{Z}_1) , vegetation index of the region (\mathbf{Z}_2) , and proximity to water (\mathbf{Z}_3)
- X: spatial basis function matrix with 239 knots
- $N_{\text{train}} = 3,500 \text{ and } N_{\text{test}} = 1,241$
- Compare with BayesCNN and a spatial basis regression model

Result

Table: Inference results for the malaria dataset from different methods. For all methods, the posterior mean of γ , 95% HPD interval, RMSPE, prediction coverage, and computing time (min) are reported in the table.

		BayesCGLM $M = 500$	$\mathbf{BayesCNN}$ $M = 500$	Spatial model
γ_1 (vegetation index)	Mean	0.099	0.103	0.115
	95% Interval	(0.092, 0.107)	-	(0.111, 0.118)
γ_2 (proximity to water)	Mean	0.074	0.058	-0.269
	95% Interval	(0.068, 0.080)	-	(-0.272, -0.266)
γ_{3} (rainfall)	Mean	0.036	0.027	-0.122
	95% Interval	(0.027, 0.045)	-	(-0.126, -0.117)
Prediction	RMSPE	27.438	28.462	42.393
	Coverage	0.950	0.947	0.545
Time (min)		57.518	30.580	41.285

23 / 28

Uncertainty quantification

Figure: Left: Test data Middle: Prediction Right: Prediction error

Real data applications: brain tumor

Brain tumor MRI

- Y: whether 4,515 patients have a brain tumor or not
- Z: first order feature of image (Z_1) and second order feature of image (Z_2)
- X: 240 × 240 pixel gray images
- $N_{\text{train}} = 2,508 \text{ and } N_{\text{test}} = 2,007$
- Compare with BayesCNN and a logistic regression model

Result

Table: Inference results for the brain tumor dataset from different methods. For all methods, the posterior mean of γ , 95% HPD interval, accuracy, recall, precision, and computing time (min) are reported in the table.

		BayesCGLM $M = 500$	BayesCNN $M = 500$	GLM
γ_1 (first order feature)	Mean	-5.332	0.248	-2.591
	95% Interval	(-7.049, -3.704)	-	(-2.769, -2.412)
γ_2 (second order feature)	Mean	4.894	0.160	2.950
	95% Interval	(3.303, 6.564)	-	(2.755, 3.144)
Prediction	Accuracy	0.924	0.867	0.784
	Recall	0.929	0.787	0.783
	Precision	0.901	0.907	0.715
Time (min)		293.533	103.924	0.004

Uncertainty quantification

Figure: The top panel illustrates correctly specified images with small prediction errors. The bottom panel illustrates misclassified images with large prediction errors.

Takeaways

- Unified framework for analyzing both correlated high-dimensional variables (e.g., images) with standard vector-type variables.
 - Spatial basis function matrix, MRI images, fMRI correlation matrix
 - Improved prediction accuracy along with interpretation of covariates

Uncertainty quantification

- Inference of coefficient posterior distribution and predictive distribution
- A credible interval means a lot!
- This work is published in January, 2024 in Biometrics
- Always welcome to discuss!