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Broad goal 

These images are generated by Dall-E

Month 1 Month 2 Month 3

Chronic diseases demand ongoing treatments. Can we apply reinforcement 
learning for optimal, patient-specific,  data-driven treatment policy?
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Where does it stand as an area?
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Image source: MedicineNet

Cause:  Body’s 
response to infection 
injures own tissues, 
organs.


Expensive

Challenging

In-patient cost > $22 billion

Fatality 30 %

Goal: policy learning for IV-fluid administration

Popular treatment:
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Goal:  find the best treatment sequence/ policy
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Treatment 
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Action A1 Action A2State S2State S1
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• No Markov decision process assumption + No homogeneity assumption

• Hence called Full reinforcement learning 
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S1 A1 Y1 S2 A2 Y2 YK

H1
First stage history

H2
Second stage history

History

11

…

Hk = (S1, A1, Y1, …, SK−1, AK−1, YK−1, SK)

AK

HK
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{no fluid, low, 
mid, high}

πk : Hk ↦ 𝒜

Look at Hk

Look at H1

Choose IV-fluid 
level

π1(H1) ∈ {no fluid, 
low, mid, high}
𝒜 =

π1 : H1 ↦ 𝒜

Treatment Assignments

Stage 1

Stage k
Choose IV-fluid 

level

πk(Hk) ∈

Stages 2, 3, 4, … π = (π1, …, πK)Policy 
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Optimal treatment policy: value function 

14

 potential outcome at stage  had policy   been followedYk(π) : k π

Value function of π :

Vπ = E[Y1(π)… + YK(π)]

π* = argmaxπVπ

Not observed 
random 
variables
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2. Murphy, 2003; Robins, 2004
3. Zhao et al. 2012; 2015, Laha et al. 2022

Advantage: can be model-free

Dynamic programming

Model-based 
 methods

Q-learning  ,1 A-learning2

Machine-learning 

Direct-search3

currently support 
two treatment-

options

Goal of the project:at is
1. direct search for 

arbitrary number of 
treatments

2.  Computationally 
efficient and scalable
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Only two treatment options

H1Treatment No Treatment

Benefit from 
the treatment

Treatment assignment at each stage:


 binary classification problem

Patient population

Don’t benefit from 
treatment



More than two treatment option



More than two treatment option

H1

Medium High No TreatmentLow



More than two treatment option

H1

Medium High No TreatmentLow

Classification into 
four categories

Patient population

Responds best to low

Responds best to medium

Responds best to high

Responds best tono trt



More than two treatment option
Treatment assignment at each stage: multicategory classification problem

H1

Medium High No TreatmentLow

Classification into 
four categories

Patient population

Responds best to low

Responds best to medium

Responds best to high

Responds best tono trt
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Multicategory 
classification

Stage 1

Data on n patients

Multicategory 
classification

Stage 2

Multicategory 
classification

Stage K

……

……

π* = (π*1 , …, π*K)

Maximization of  reduces to 
simultaneous  classification 
problems

Vπ

K

Loss function

The  classification 
problems are connected, 
off-the-shelves method 

will not work

K 1. Based on smoothed version of value 
function


2. non-concave


3. Convex relaxation would give 
suboptimal policies

Proposed method Estimated policy will be 
consistent if we use 

nonparametric methods, e.g., 
neural networks,  for the 

classification

Can use stochastic gradient descent (SGD)
Population level solution
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• Suppose number of stages, i.e., K = 2

• Number of treatments at each stage: 3. 

• Use neural network classifiers

• No. Of covariates: 3

• The covariates and  rewards were Gaussian, 
and the rewards were generated by a linear 
model.

Multicategory 
classification 

Stage 1

Data on n 
patients

Multicategory 
classification 

Stage 2

π = (π*1 , …, π*K)

Loss function
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Multicategory 
classification

Stage 1

Data on n patients

Multicategory 
classification

Stage 2

Multicategory 
classification

Stage K

……

……

π* = (π*1 , …, π*K)

Loss function

Implementation
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Hk

Loss

Each yellow block is a neural network

Implementation: Computational challenge

• Is it possible to sequentialize:  train 
the networks sequentially  but still 
have a good approximation of ? π*

  In other domains such as spatio-tempral 
processes, problems arise where neural networks 
need to be trained jointly, but they sequentialize 
the procedures. Can we borrow ideas from that 
literature?

K stages, 4 treatments per stage
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Optimization

• Currently using stochastic gradient descent (SGD) for optimization — too 
general. We have a specific problem — can we tailor an optimization method?

• Feng et al. (2022) used similar  loss function for another machine learning problem called ‘maximum 
score estimation”, and tailored an optimization method for their problem. Can we do something similar?

Will require analysis of the optimization landscape
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Optimization landscape

• Neural network classifiers: 
Existing deep learning results: can be used .1

Challenges: loss non-standard, existing results not 
directly applicable

• Linear classifiers:
optimization surface — specific properties: No local 
minima + regions with small gradient2

K=1, 3 treatments, one covariate ( ), linear classifierS1 ∈ ℝ

1. Nguyen et al., 2017 and 2019

2. Laha et al., 2022
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Open questions
Regret decay

• Regret:  measures how well we approximated  using Vπ* − V ̂π π* ̂π .

What is the rate of decay of regret?

Probably won’t  be very different from  the 2-treatments case (Laha 
et al., 2022).

Skills you will learn:

1. DTR

2. Empirical risk minimization theory

3. Some theory on multicategory classification

4. Some theory on policy learning in offline RL 
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Parametric Non-parametric

1.  Watkins, 1989; Schulte et al. 2014

2. Murphy, 2003; Robins, 2004

3. Zhao et al. 2012; 2015, Laha et al. 2023

Dynamic programming

Model-based 
 methods

Q-learning  ,1 A-learning2

Machine-learning 

Direct-search3+
Hybrid method (idea taken from offline RL)

If either the Q-learning model assumptions or the 
estimation of treatment assignment probabilities 

correct, then  consistently estimatedπ*

Doubly robust learning
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Open questions

1. I already have the method, but same questions on implementation

2. regret decay: consistentn−
Skills you will learn:

1. DTR

2. Q-learning

3. doubly robust offline RL

4. Some doubly robust literature in causal inference
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O1 A1 Y1 O2 A2 Y2
H1

First stage history

H2
Second stage history

Set-up

π = (π1, π2)Treatment policy

39
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*Orellana et al., 2010
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Value function estimation

40

Under standard identifiability assumptions*,

*Orellana et al., 2010

Vπ

Optimal treatment assignment π* = argmaxπ Vπ

 empirical distribution functionℙn :

≈ ℙn [(Y1 + … + YK)
π1(A1 ∣ H1)…πK(AK ∣ HK)

πb,1(A1 ∣ H1) …πb,K(AK ∣ HK) ]
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*Orellana et al., 2010

= 𝔼 [(Y1 + Y2)
1{π1(H1) = A1} 1{π2(H2) = A2}
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observed random variables

Vπ

Optimal treatment policy π* = argmaxπ Vπ



Value function

41

Under standard identifiability assumptions*,

*Orellana et al., 2010

Vπ

Optimal treatment policy π* = argmaxπ Vπ

≈
1
n

n

∑
i=1 ((Y1i + Y2i)

1{π1(H1i) = A1i} 1{π2(H2i) = A2i}
P(A1i ∣ H1i) P(A2i ∣ H2i) )



Value function

41

Under standard identifiability assumptions*,

*Orellana et al., 2010

Vπ

Optimal treatment policy π* = argmaxπ Vπ

≈
1
n

n

∑
i=1 ((Y1i + Y2i)

1{π1(H1i) = A1i} 1{π2(H2i) = A2i}
P(A1i ∣ H1i) P(A2i ∣ H2i) )

Maximize  over a. Class of policiesVπ



Value function

41

Under standard identifiability assumptions*,

*Orellana et al., 2010

Vπ

Optimal treatment policy π* = argmaxπ Vπ

≈
1
n

n

∑
i=1 ((Y1i + Y2i)

1{π1(H1i) = A1i} 1{π2(H2i) = A2i}
P(A1i ∣ H1i) P(A2i ∣ H2i) )

Discontinuous + non, convex

Direct optimization not computationally  feasible
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Shortcomings of previous method

• min
f:H↦ℝ4

E [C(H1, Y1) × 1[argmax( f(H1)) ≠ A1]]

C(H1, Y1) =
Y1

P(A1 ∣ H1)

If I don’t know what doctors were 
thinking, need to model the 

probabilities

 is small  the estimator of 
 can be highly variable

P(A1 ∣ H1) ⟹
C(H1, A1)
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Classifiers for stage 1
Possible categories

H1

Low Medium High No IV

f1(H1) f2(H1) f3(H1) f4(H1)Classifier: 


f = ( f1, …, f4) Maximum
π1(H1) = argmaxi fi(H1)

fi : H1 ↦ ℝ i = 1,…,4
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The loss function 
Case T = 1

• max
f:H1↦ℝ4

E [C(H1, Y1) × 1[argmaxi fi(H1) ≠ A1]]

In practice search 
over a smaller 

class, currently we 
consider  neural 
network classes
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The loss function 
Case T = 1

• max
f:H1↦ℝ4

E [C(H1, Y1) × 1[argmaxi fi(H1) ≠ A1]]

Discontinuity

Our proposal: smooth out the sources for discontinuity at each step
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Multicategory 
classification

Stage 1

Data on n patients

Multicategory 
classification

Stage 2

Multicategory 
classification

Stage K

……

……

Loss function

Smoothing:

π*

Smoothed loss 
function

The smoothed method will still lead to the  
optimal DTR at the population-level

Meaning: rich class of classifiers, 
e.g. neural network  
estimated policy consistent.

⟹


