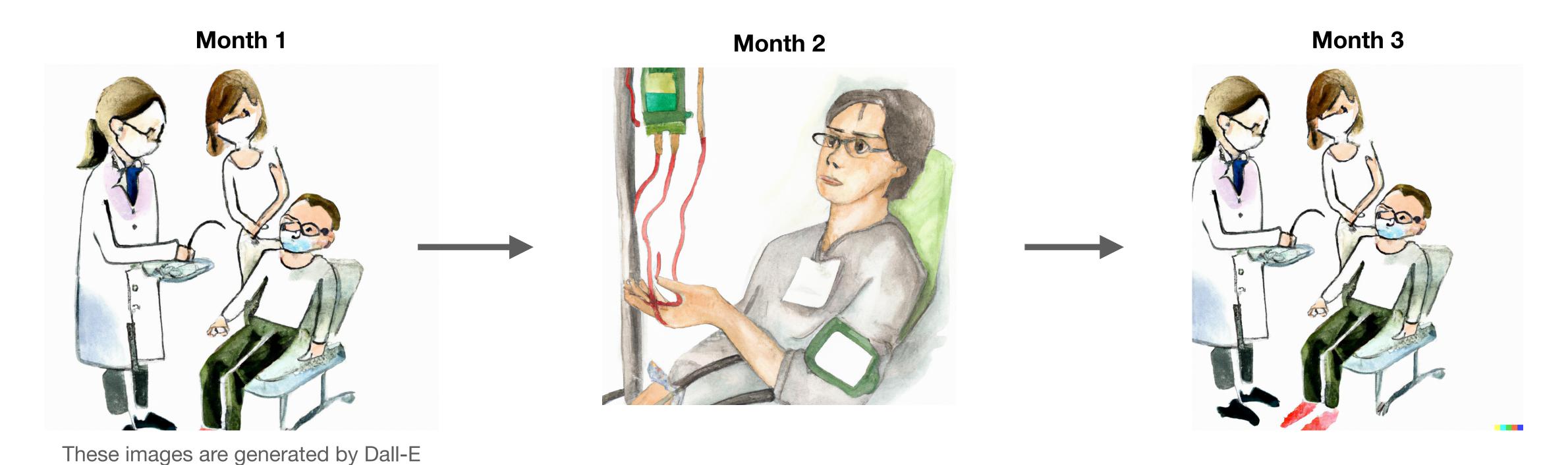
On optimal dynamic treatment regimes (full reinforcement learning)

Nilanjana Laha

Broad goal



Chronic diseases demand ongoing treatments. Can we apply reinforcement learning for optimal, **patient-specific**, data-driven treatment policy?

Dynamic treatment regimes (DTR)/ Full RL

Dynamic treatment regimes (DTR)/ Full RL

Offline reinforcement learning

Dynamic treatment regimes (DTR)/ Full RL

Offline reinforcement learning

Statistics

Individualized treatment regimes (ITR)

Statistics Dynamic treatment regimes Individualized treatment (DTR)/ Full RL regimes (ITR) Offline reinforcement learning Causal inference

Statistics Dynamic treatment regimes Individualized treatment (DTR)/ Full RL regimes (ITR) Offline reinforcement learning Causal inference Nonparametric statistics

Outline

- Example: sepsis
- Problem formulation
- Proposed method
- Open questions

Example: sepsis

Cause: Body's response to infection injures own tissues, organs.

Image source: MedicineNet

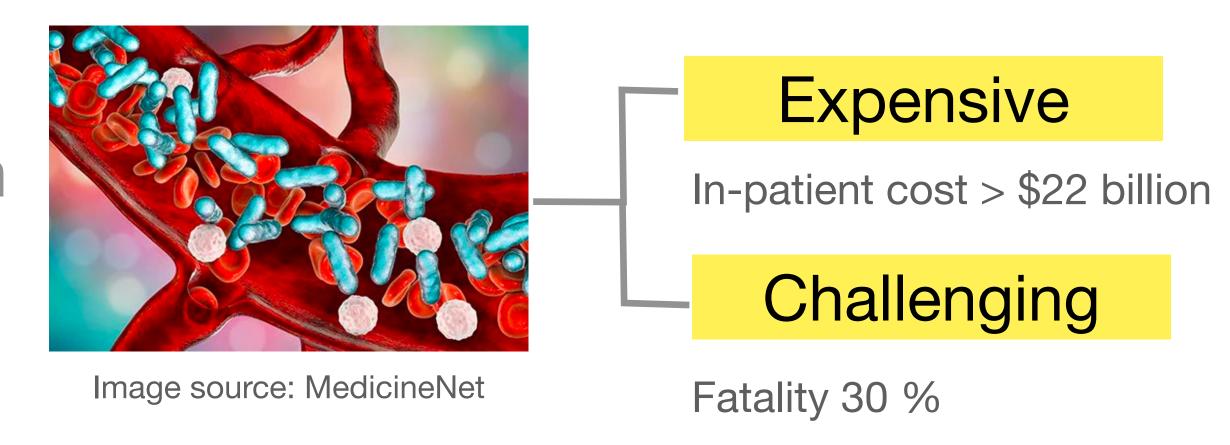
Cause: Body's response to infection injures own tissues, organs.

Image source: MedicineNet

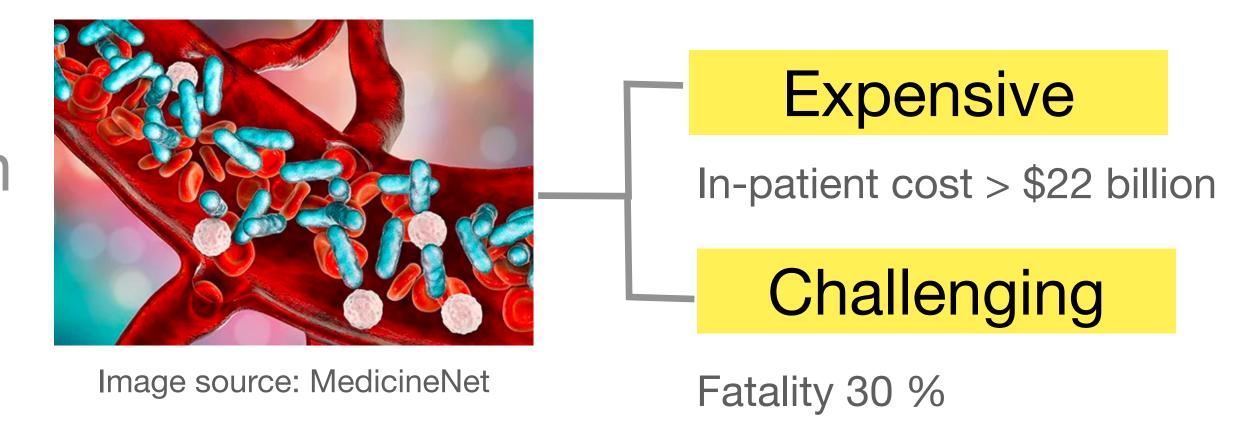
Expensive

In-patient cost > \$22 billion

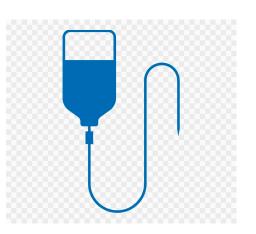
Cause: Body's response to infection injures own tissues, organs.



Cause: Body's response to infection injures own tissues, organs.

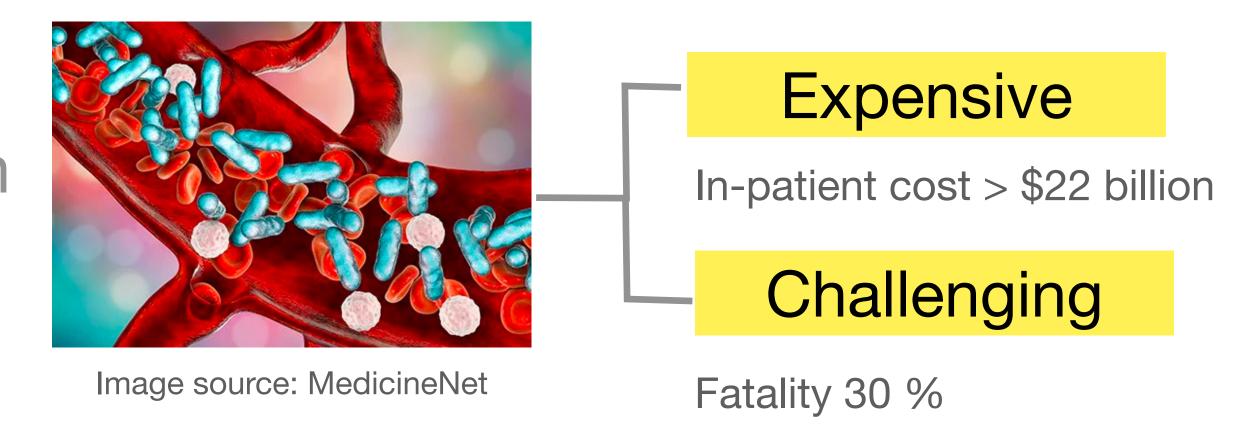


Popular treatment:

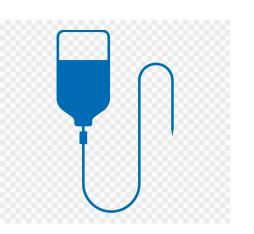


IV-fluid administration

Cause: Body's response to infection injures own tissues, organs.



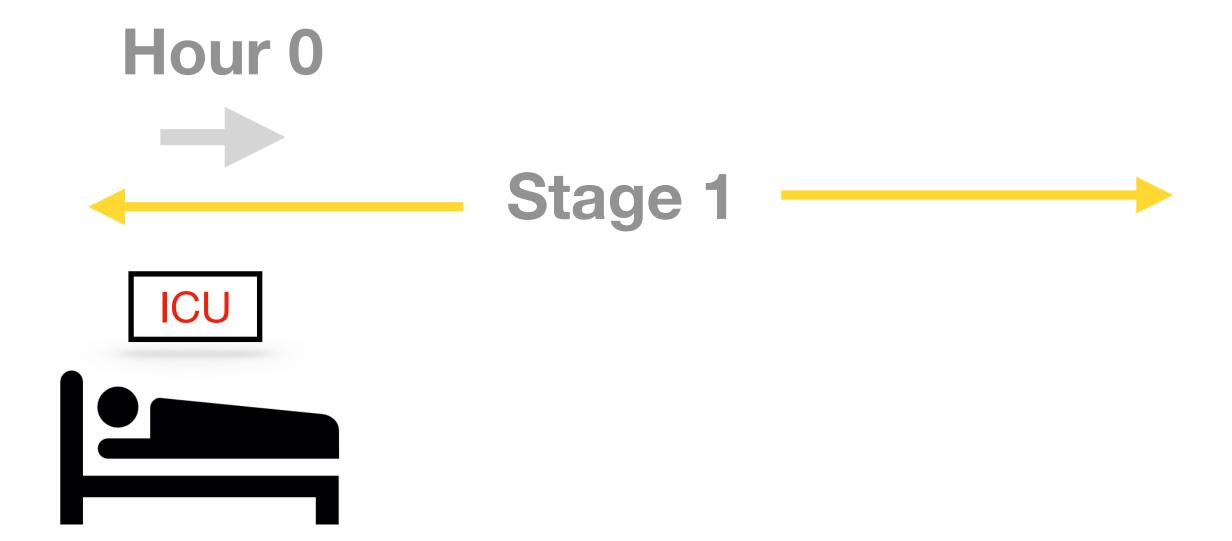
Popular treatment:

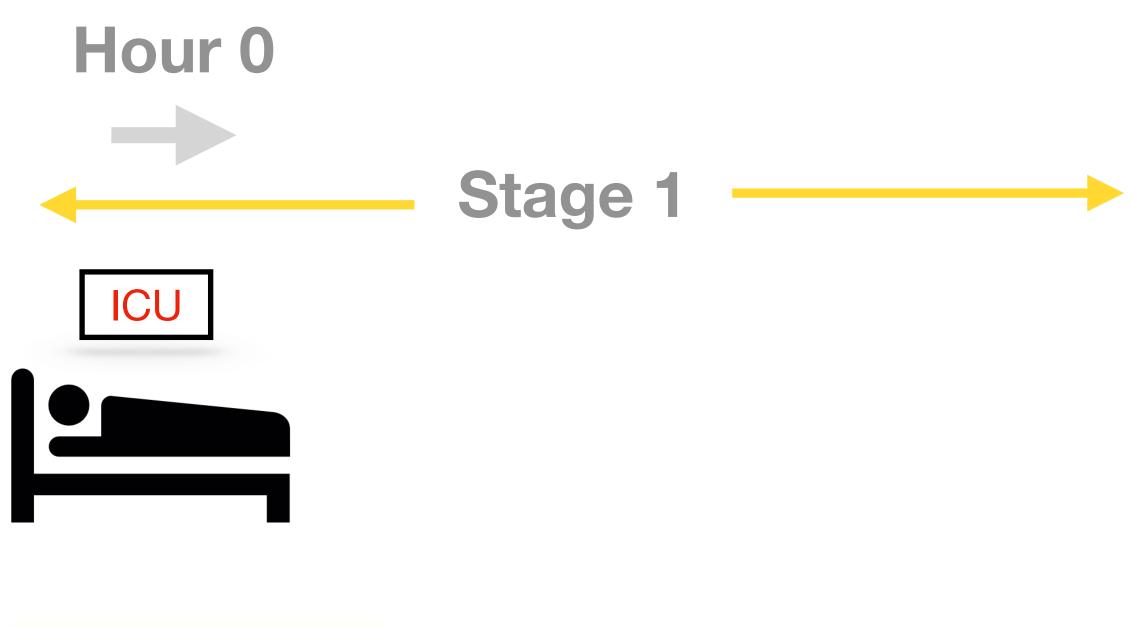


IV-fluid administration

Goal: policy learning for IV-fluid administration

Hour 0

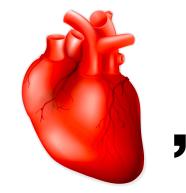


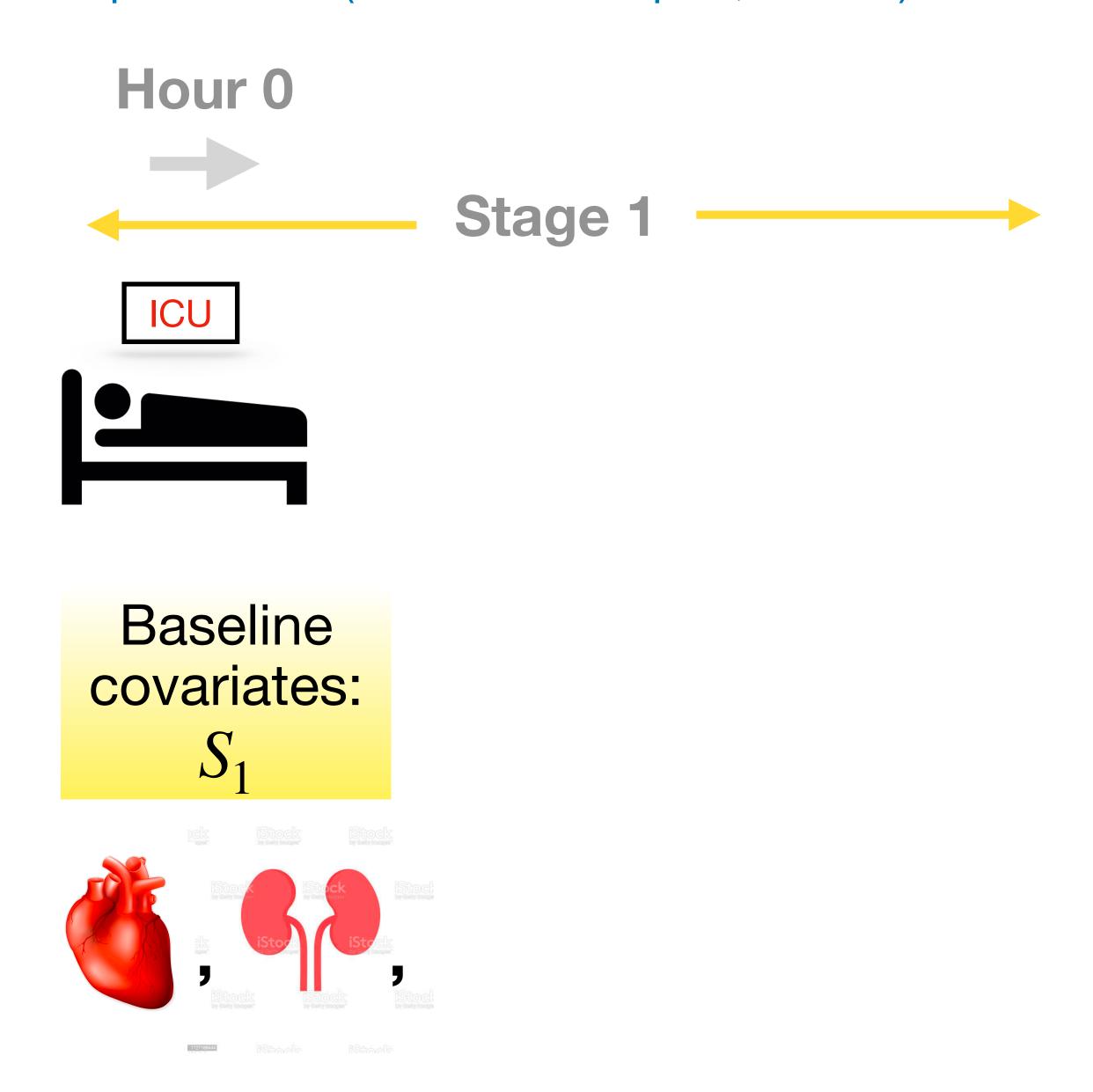


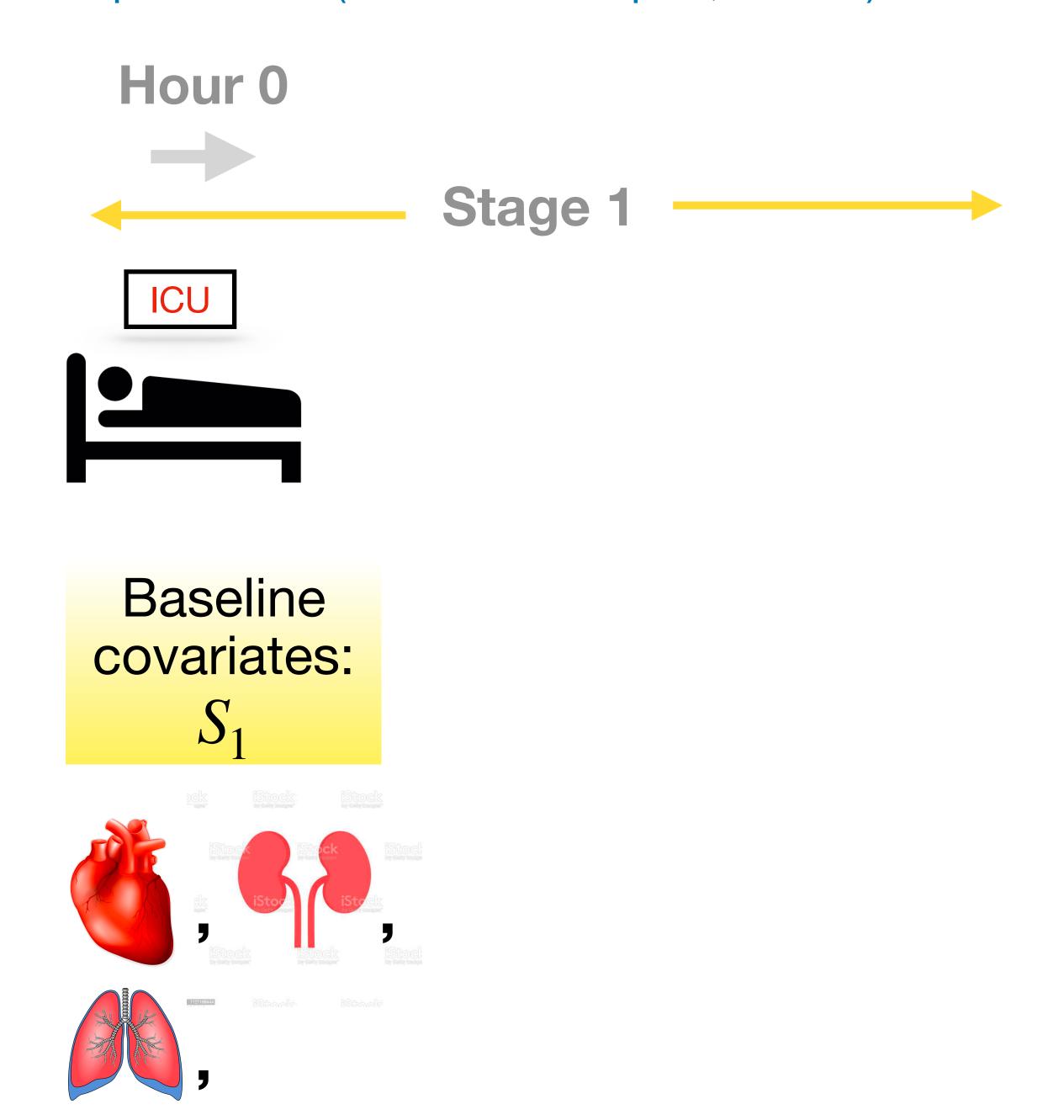
Baseline covariates: S_1

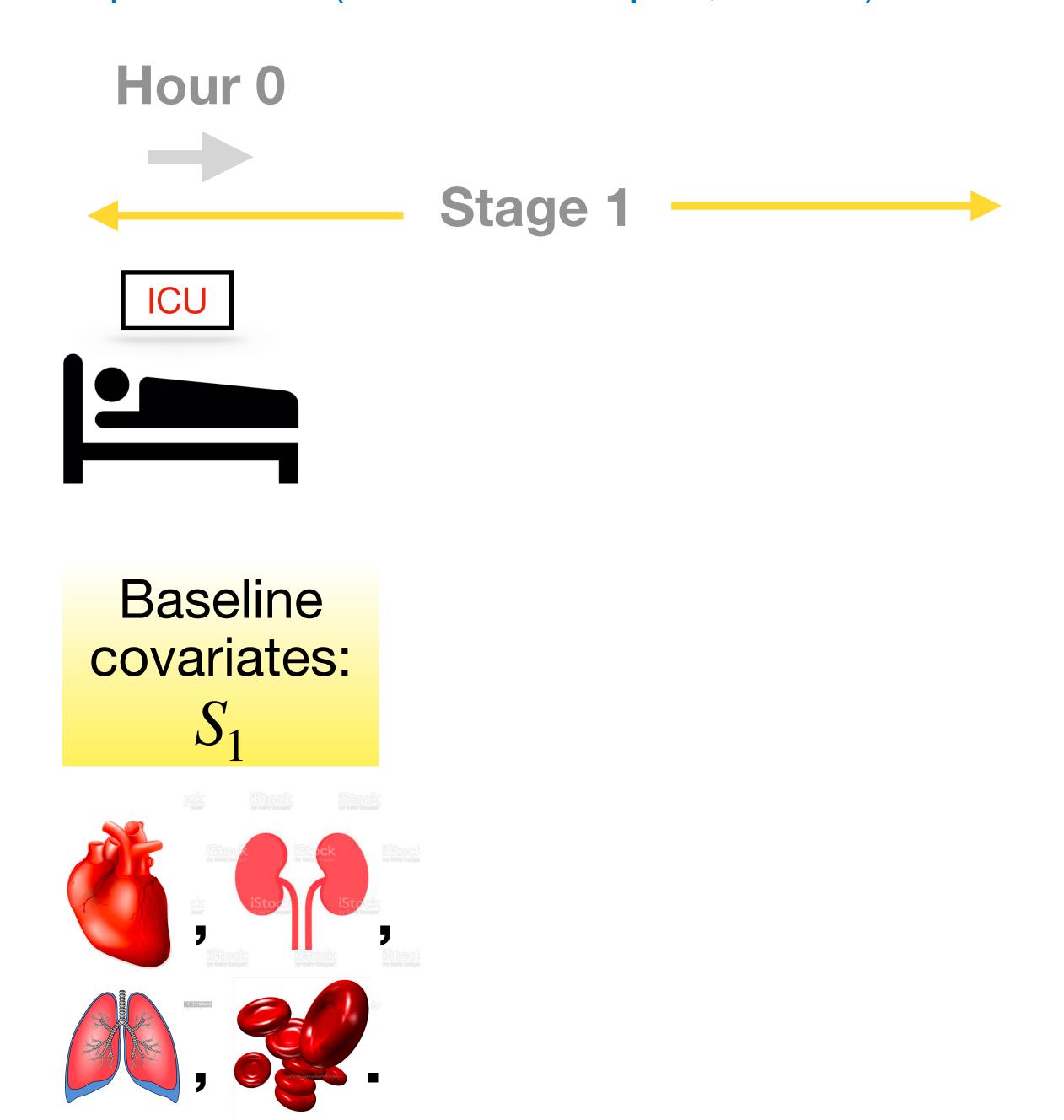


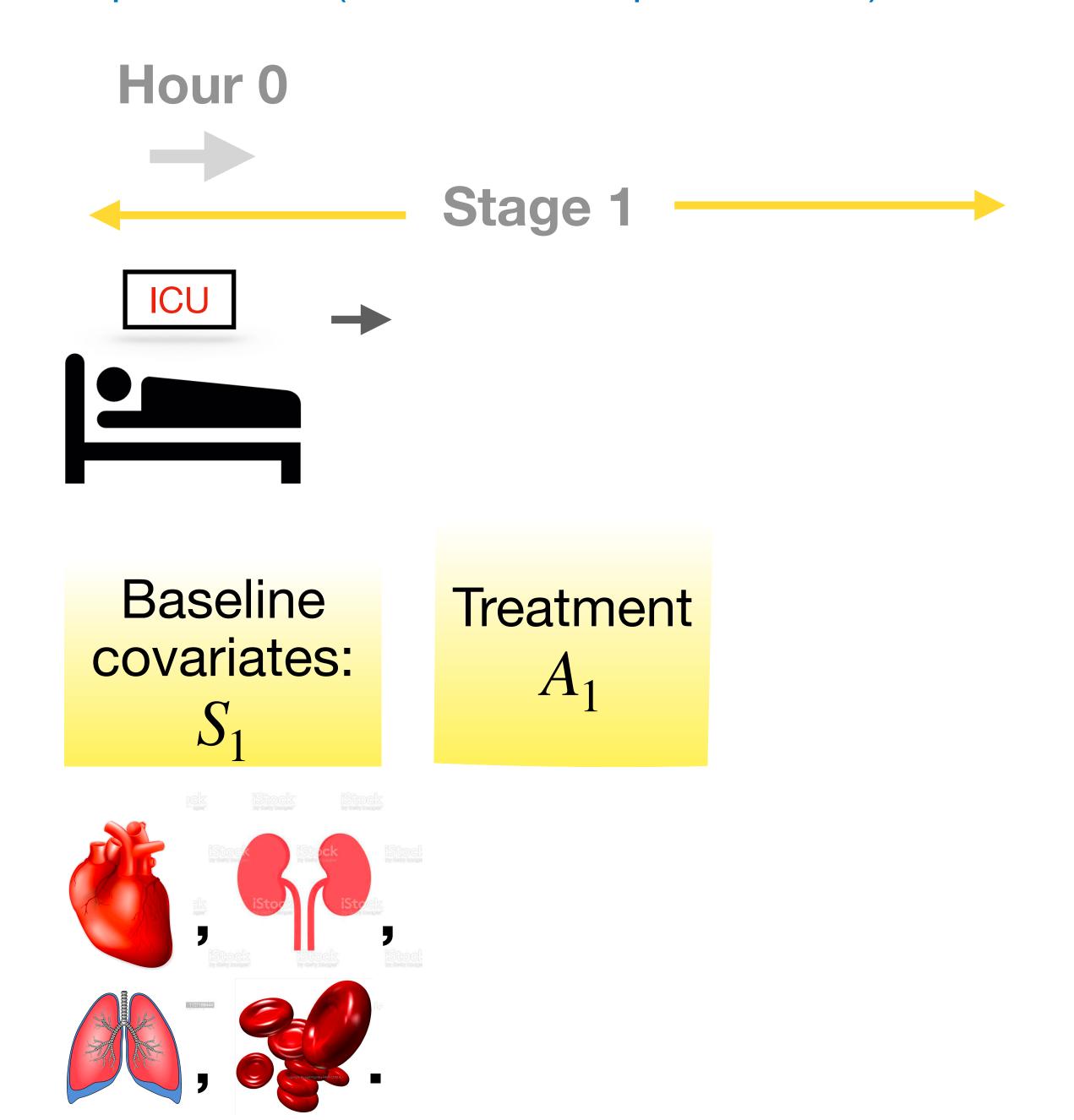
Baseline covariates: S_1

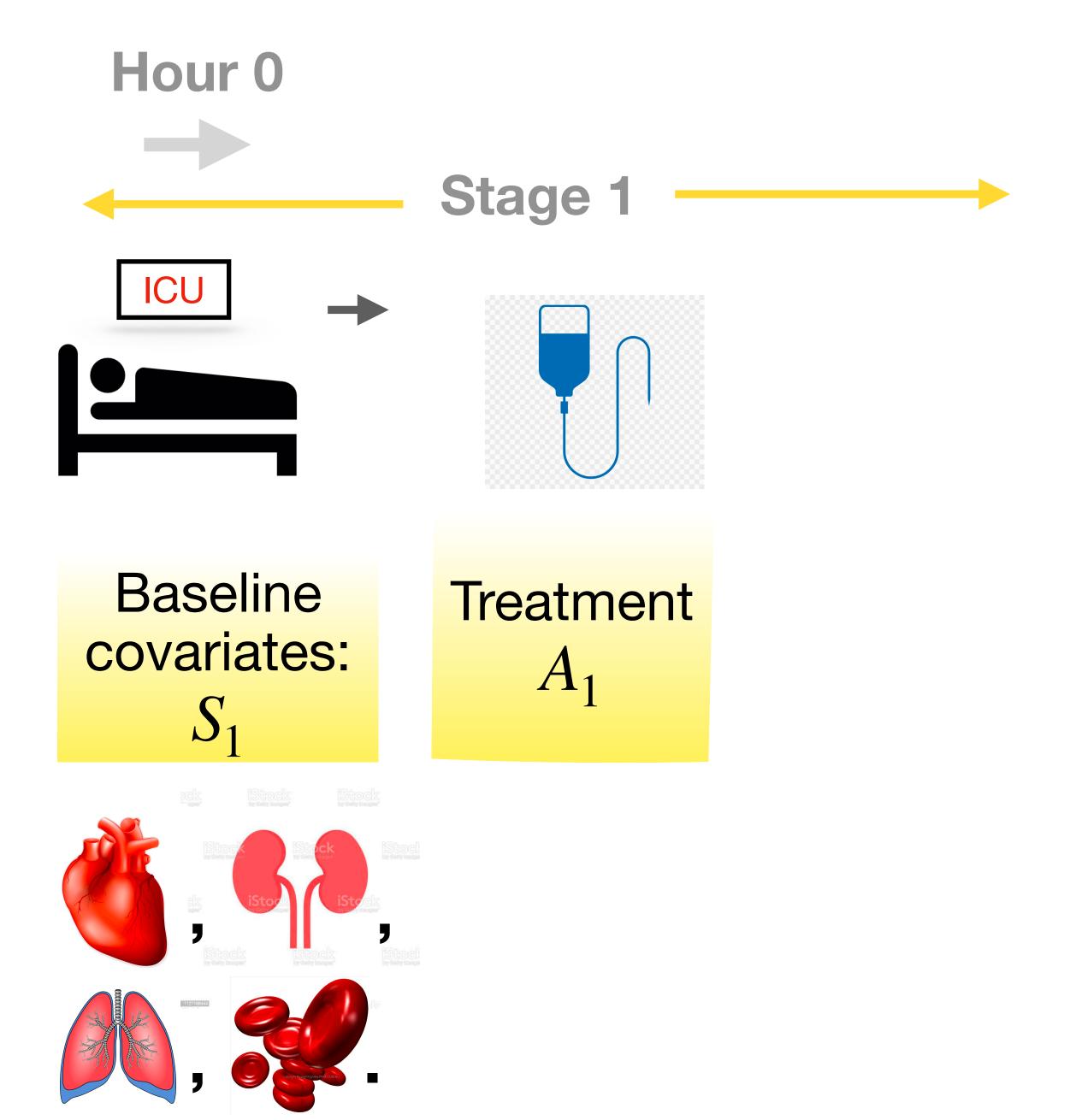


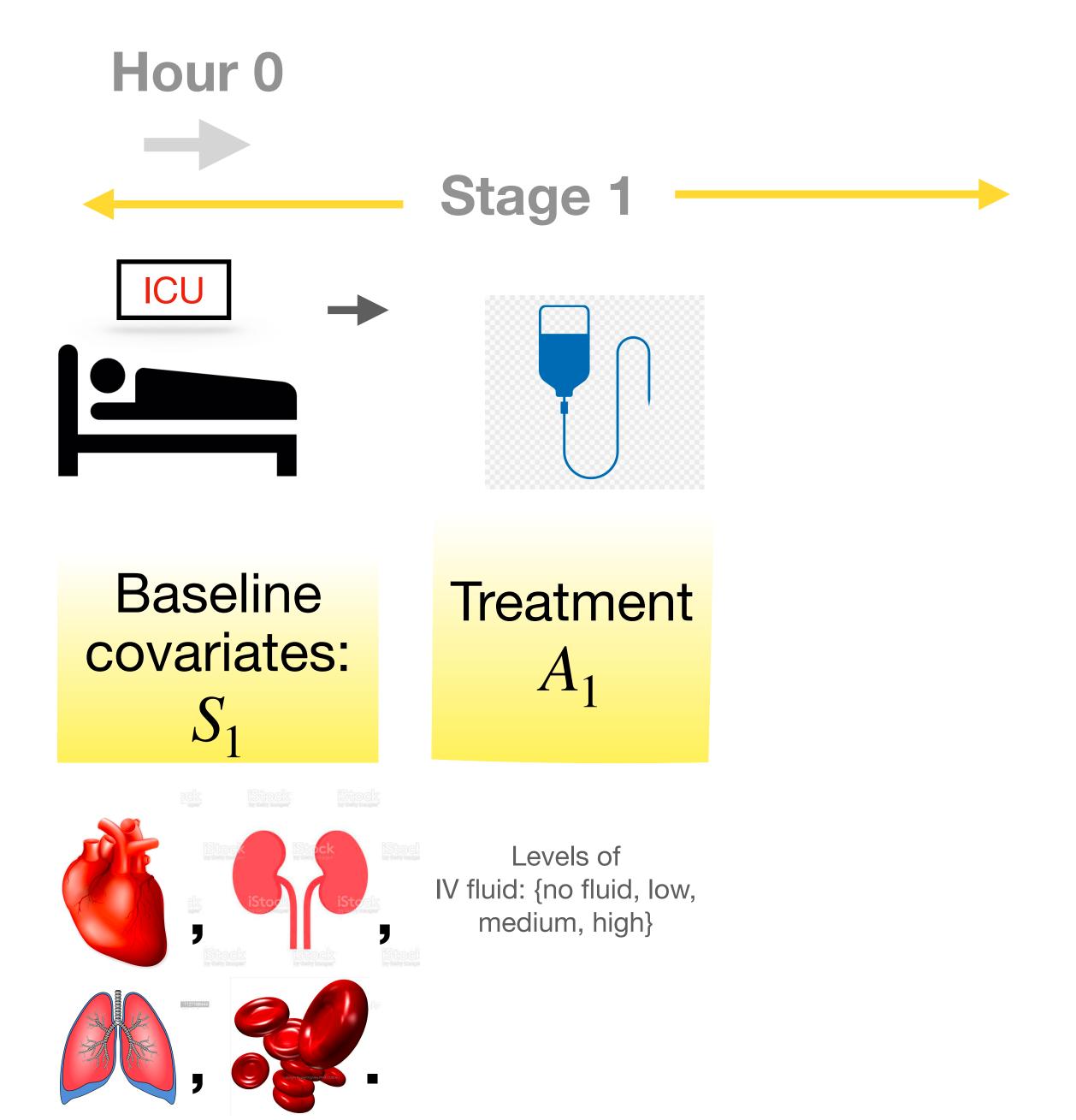


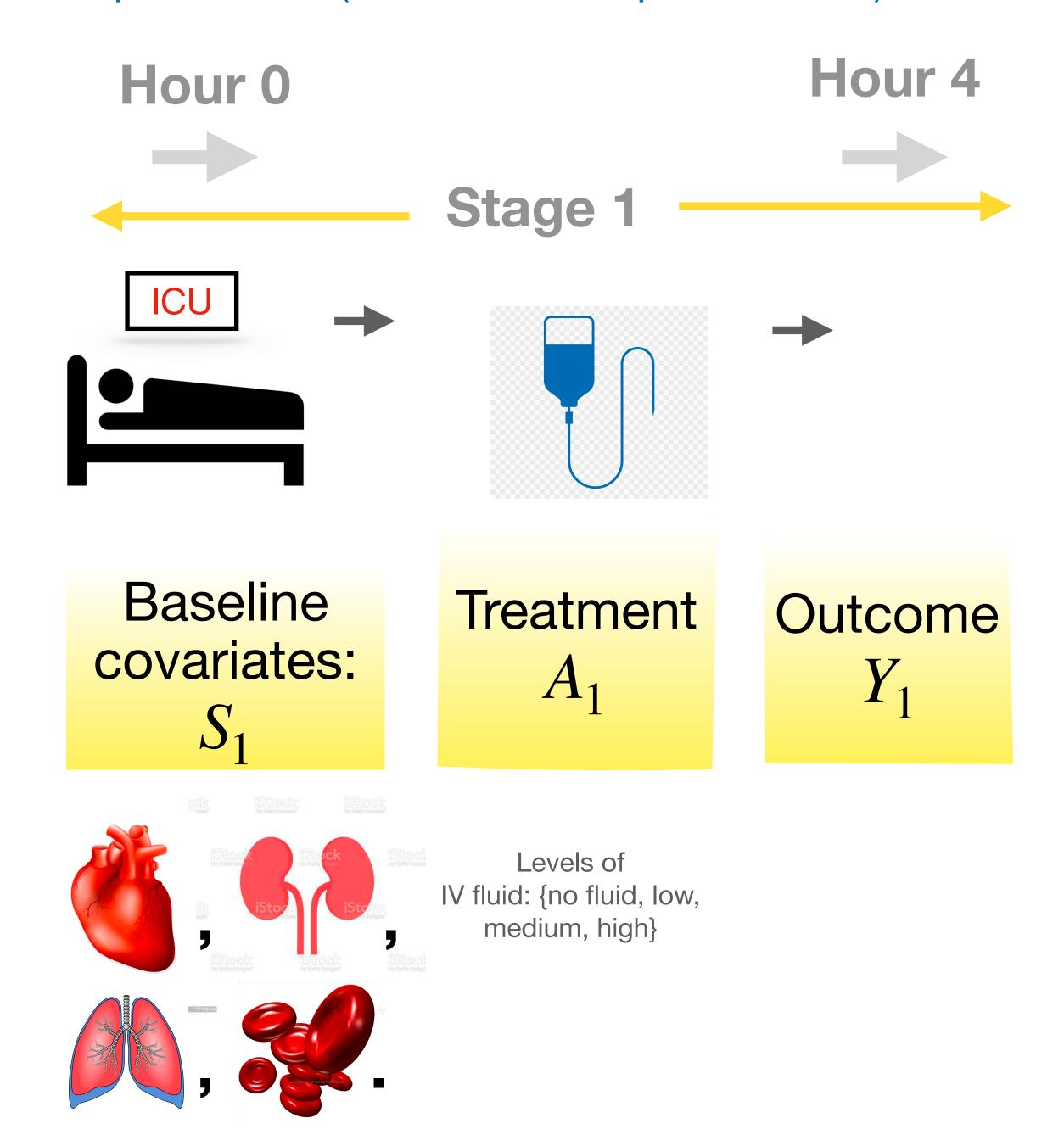


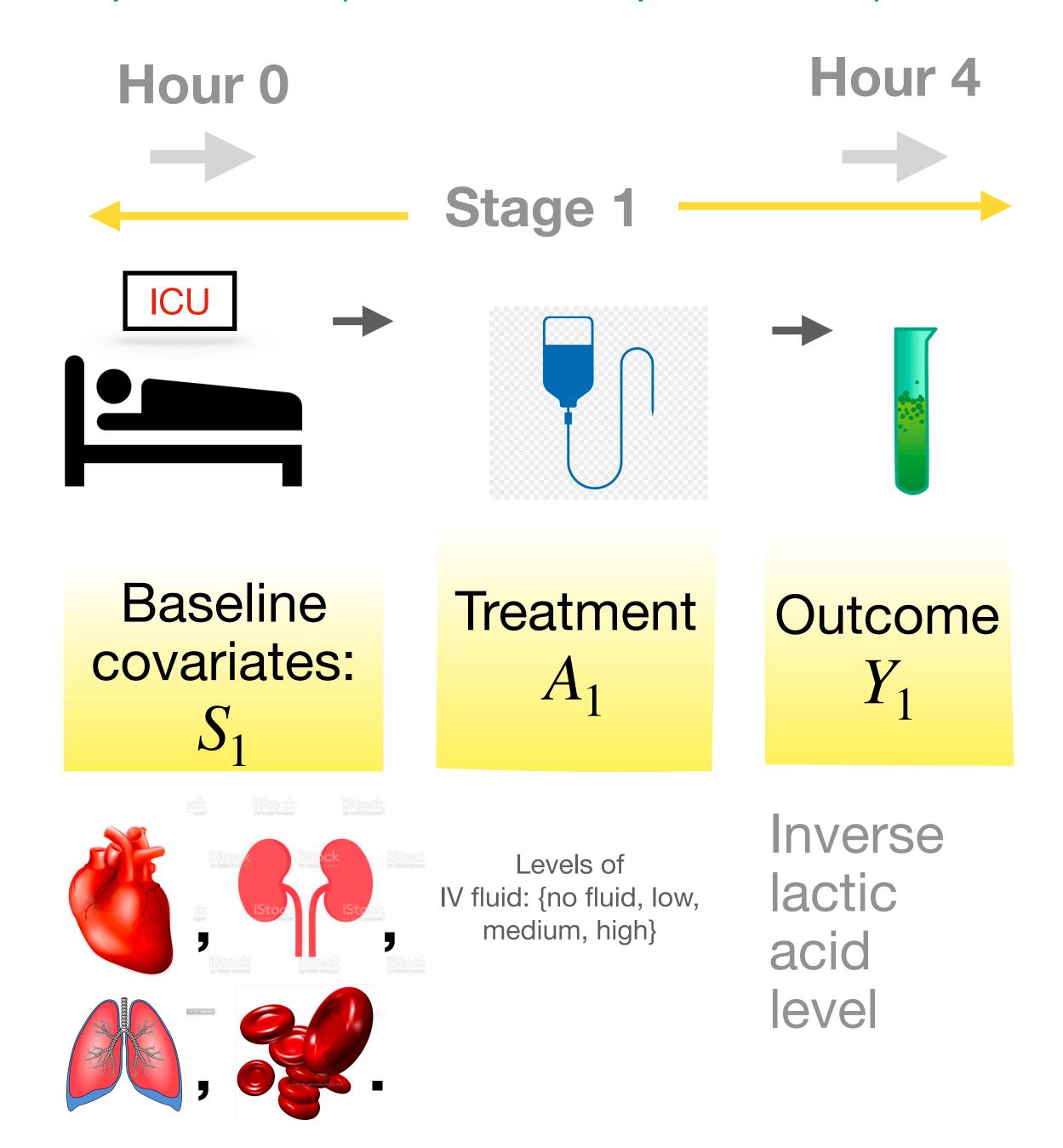


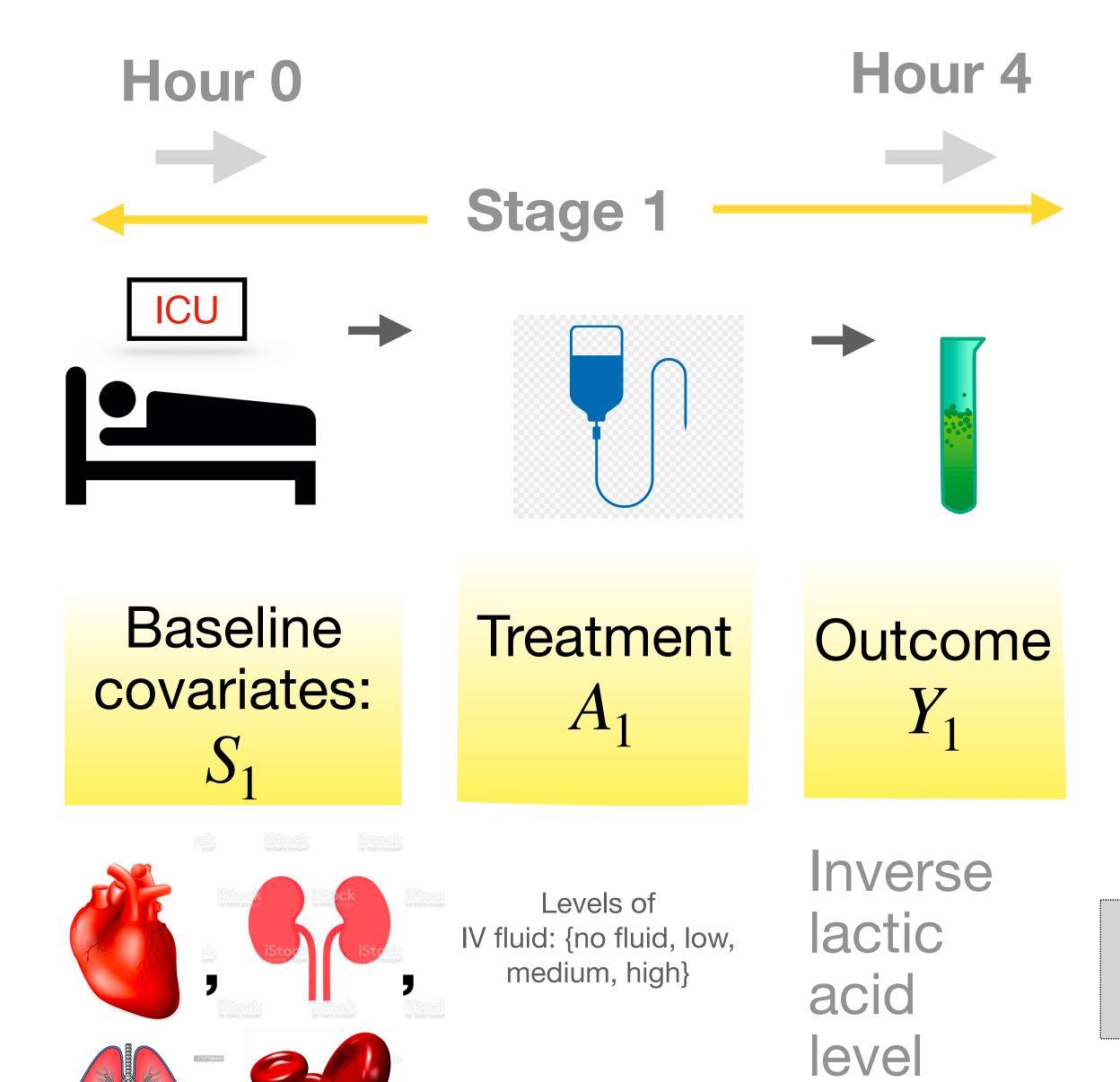








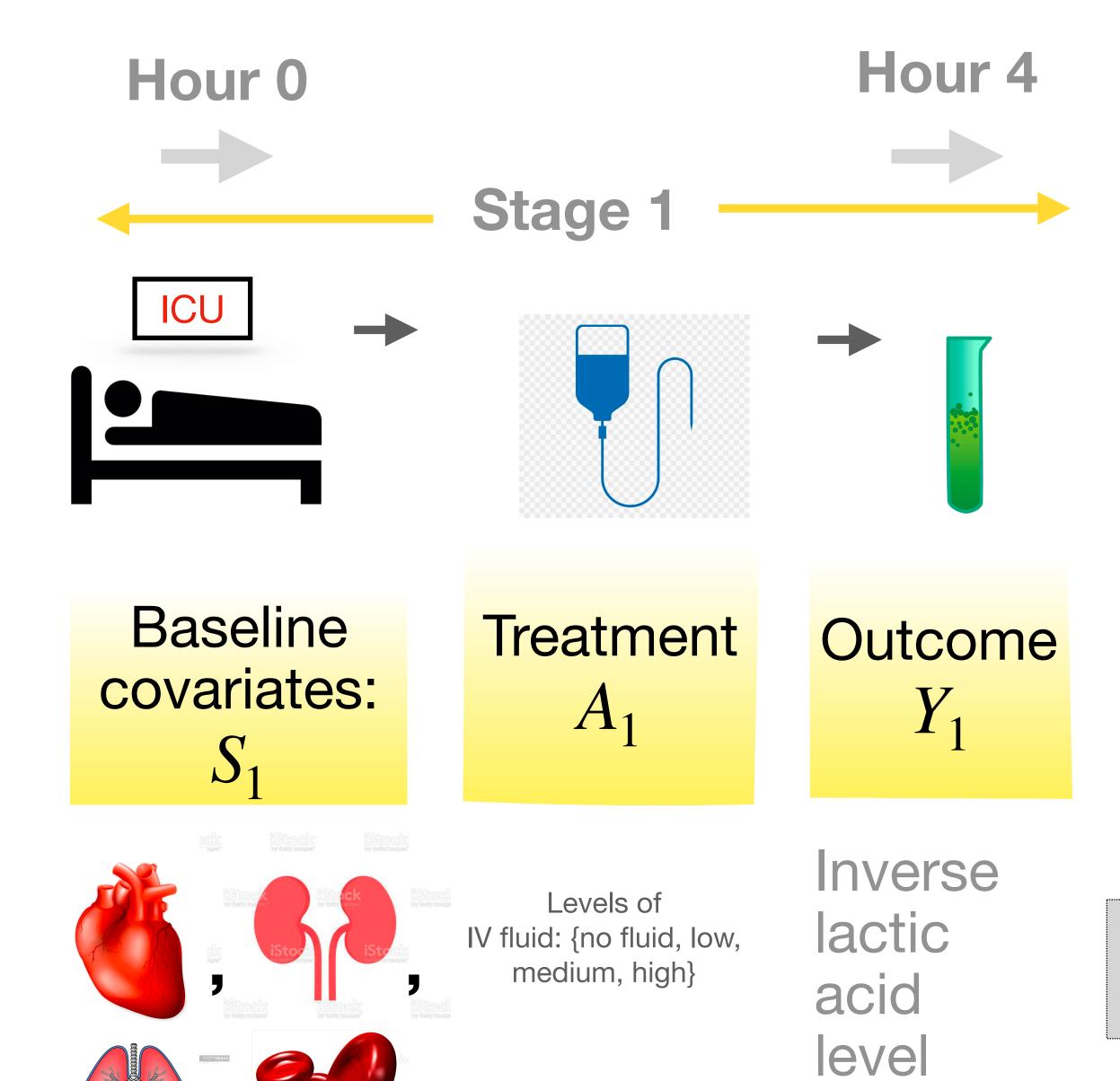




Inverse lactate level

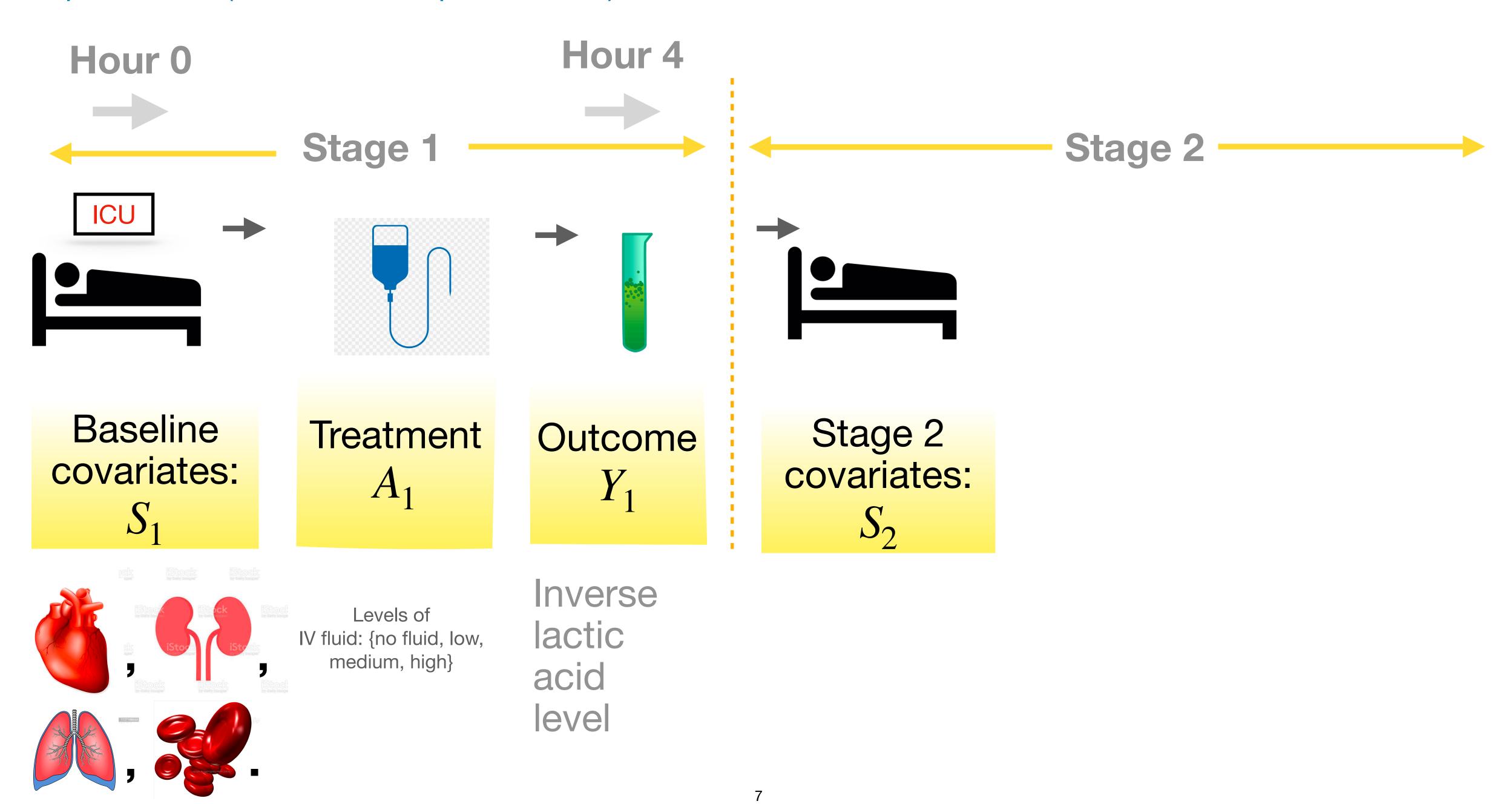


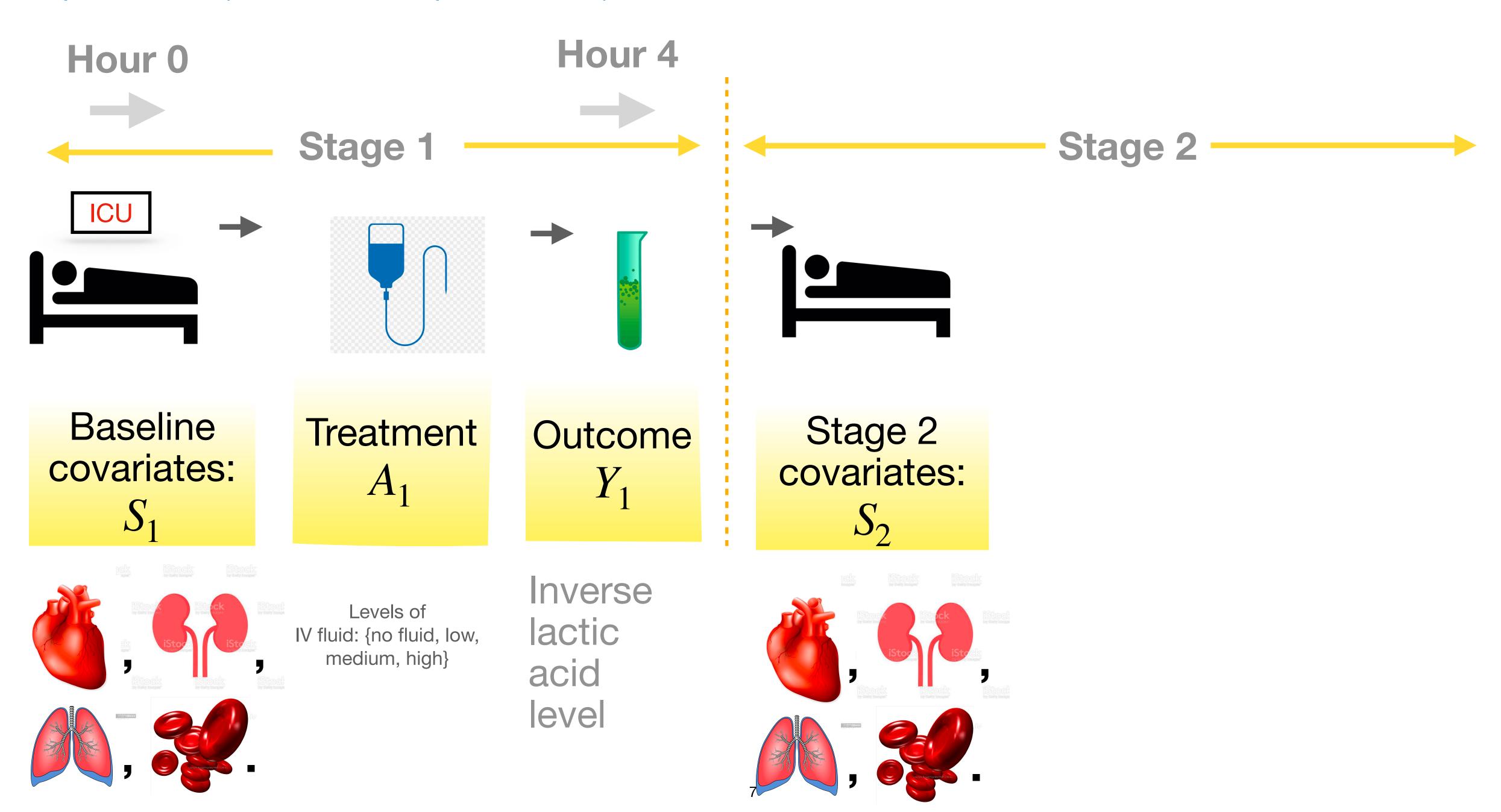
Inverse lactate level

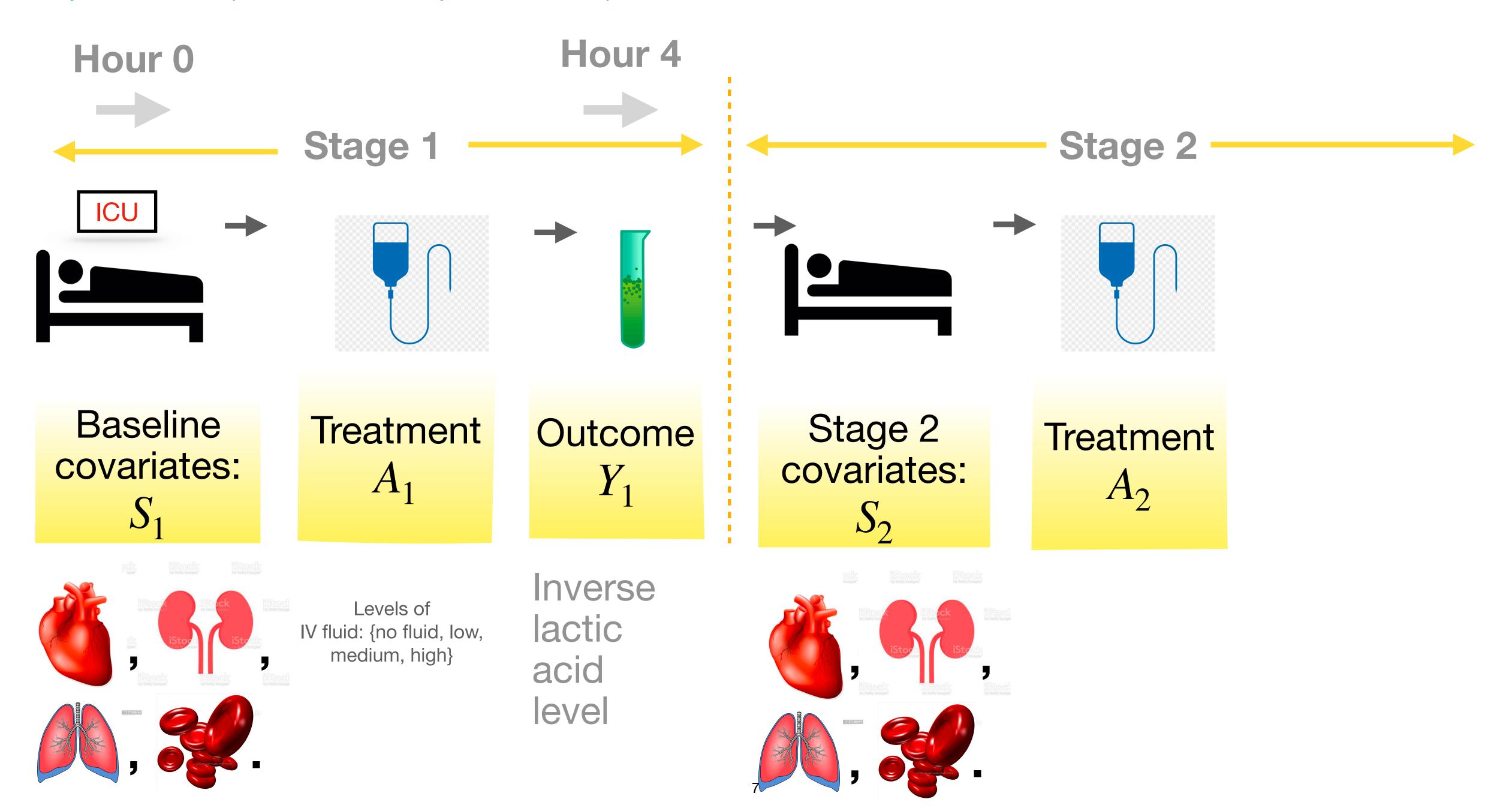


Inverse lactate level

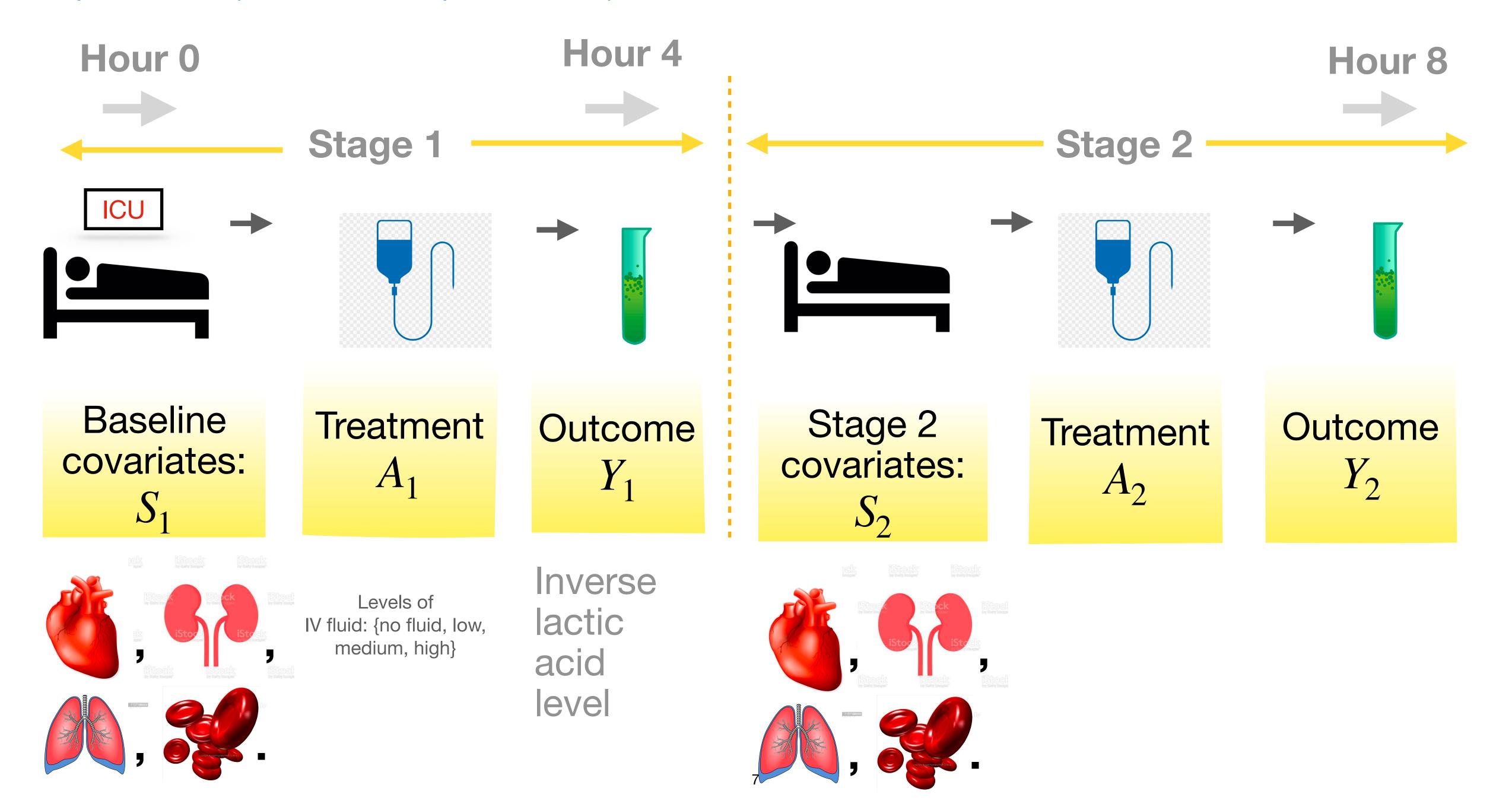
Treatment working

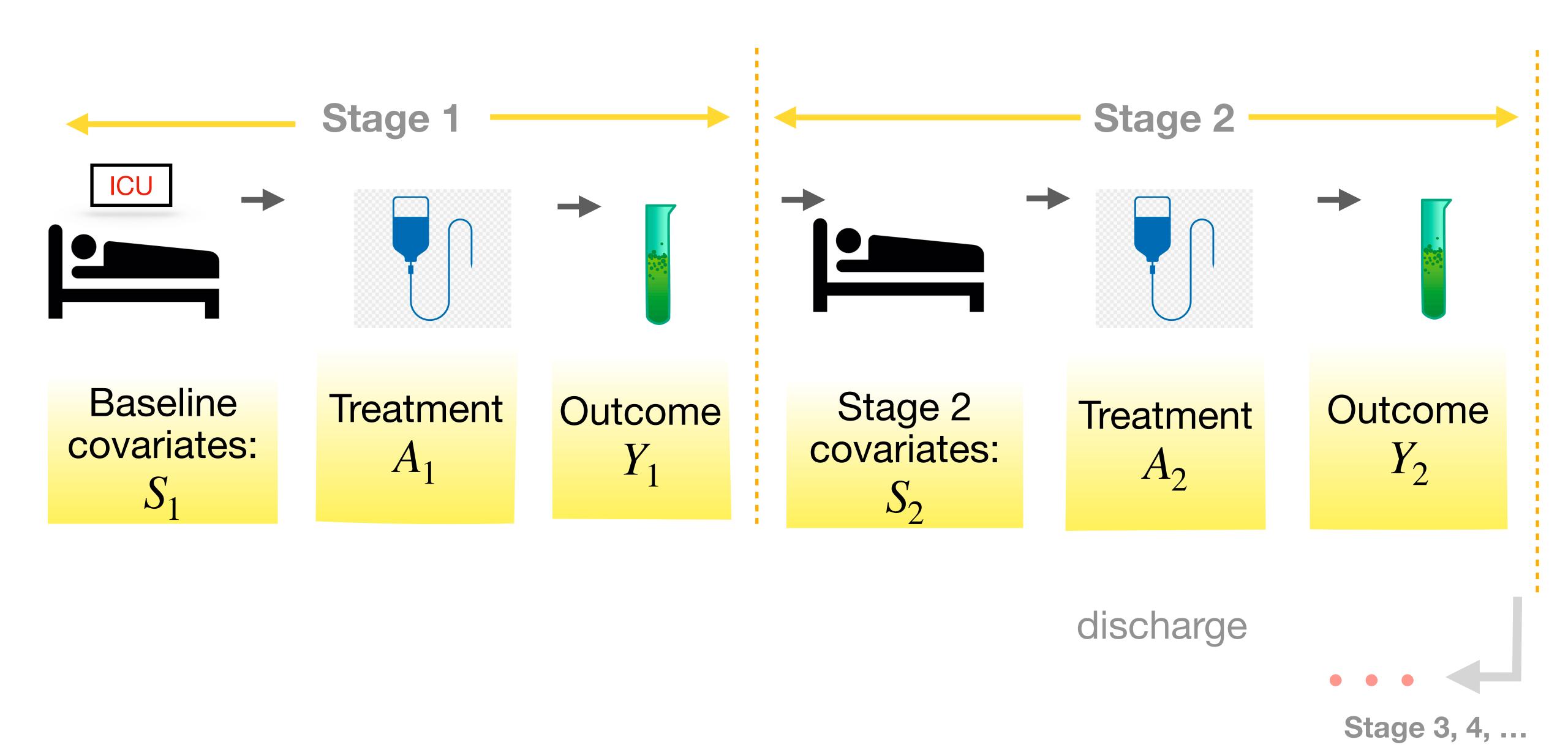




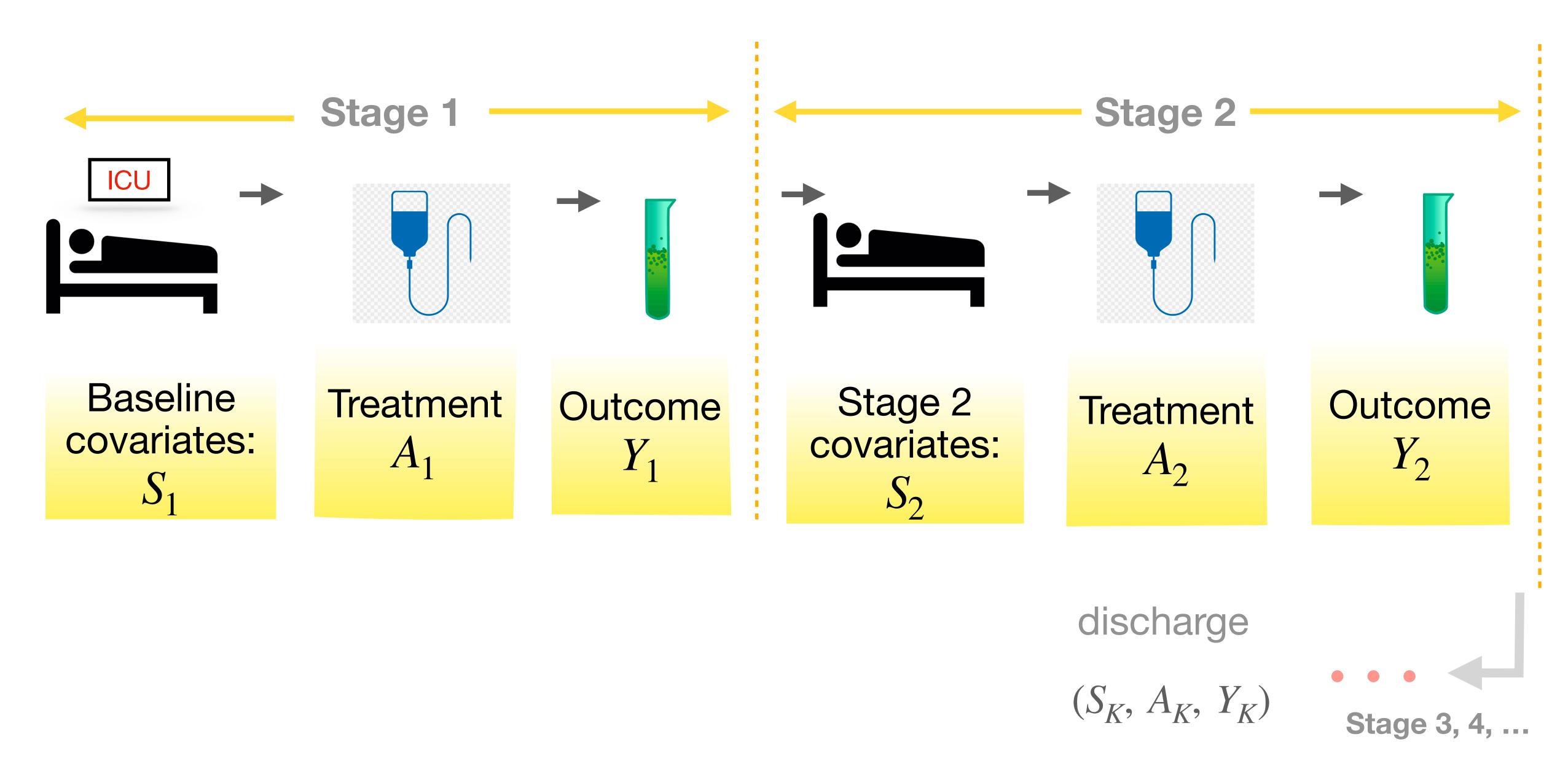


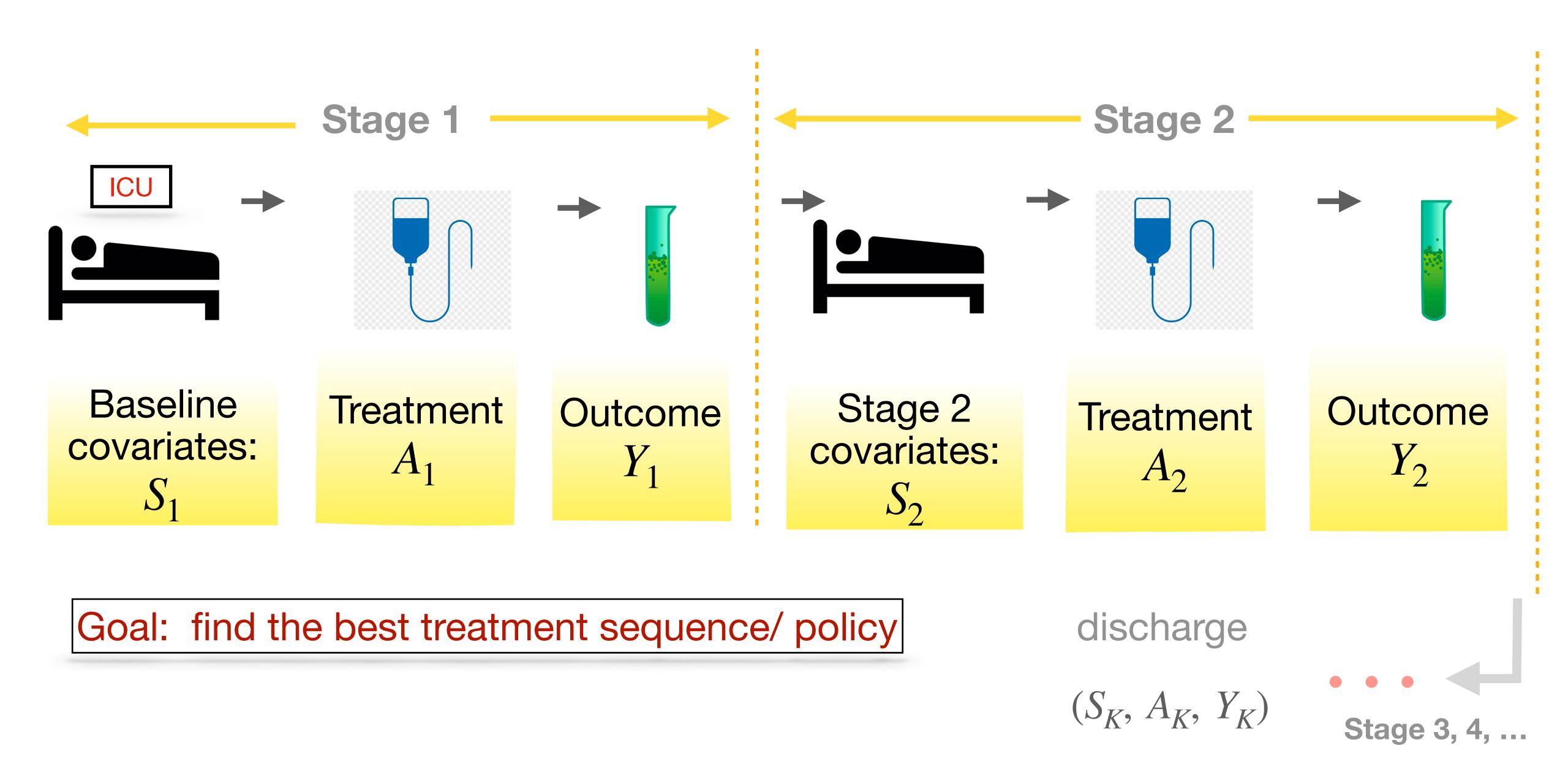
Sepsis-3 data (Beth Israel Hospital, Boston)

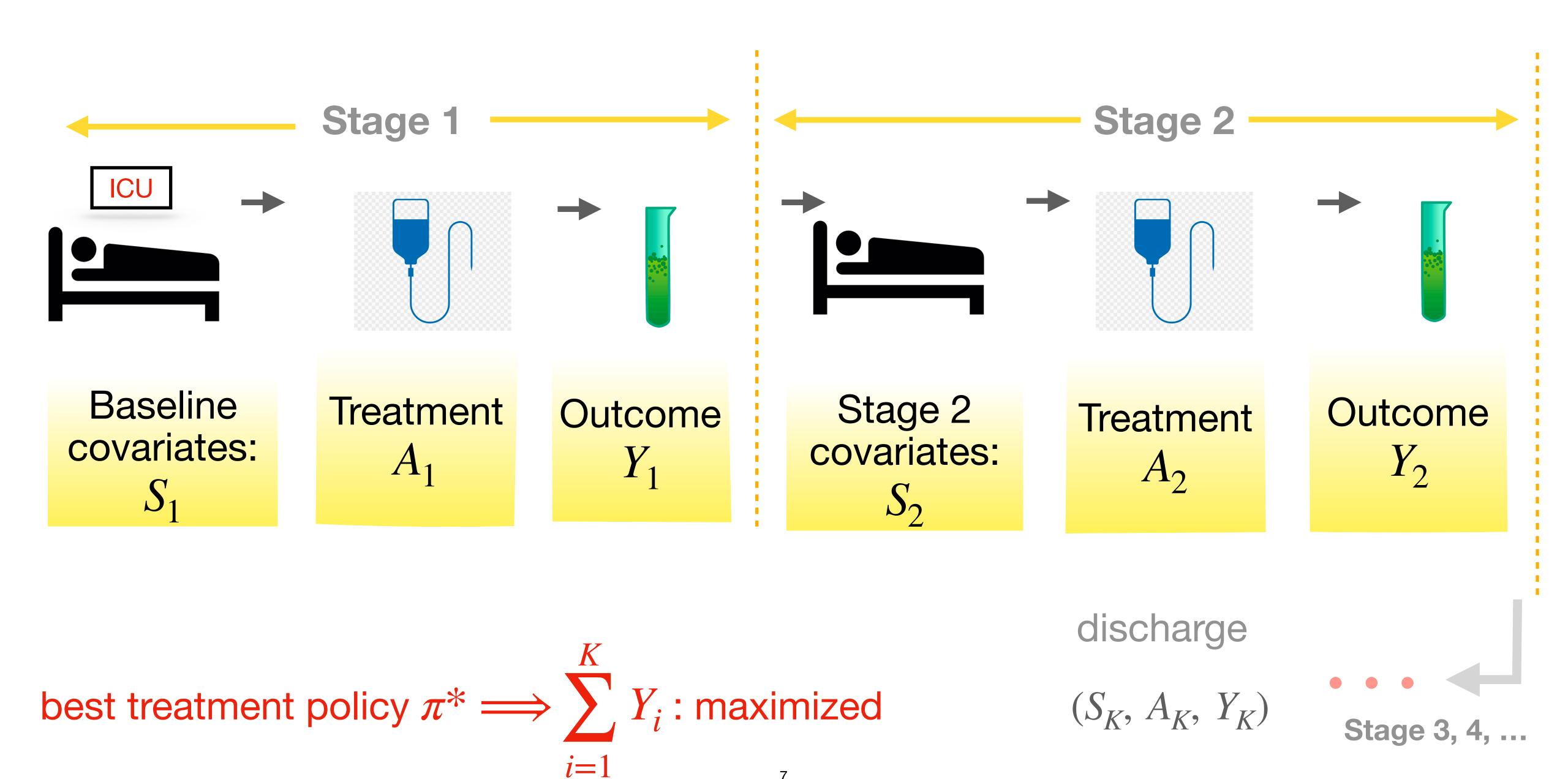


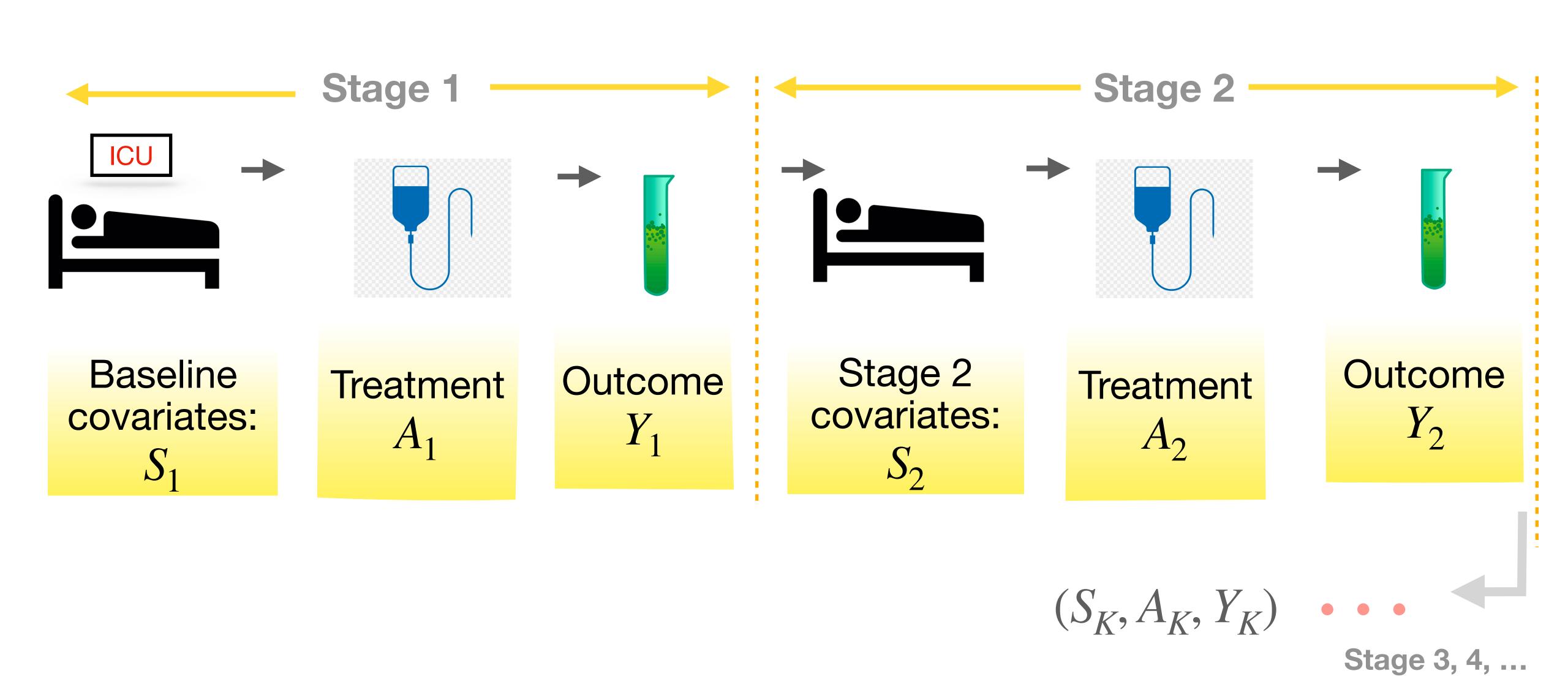


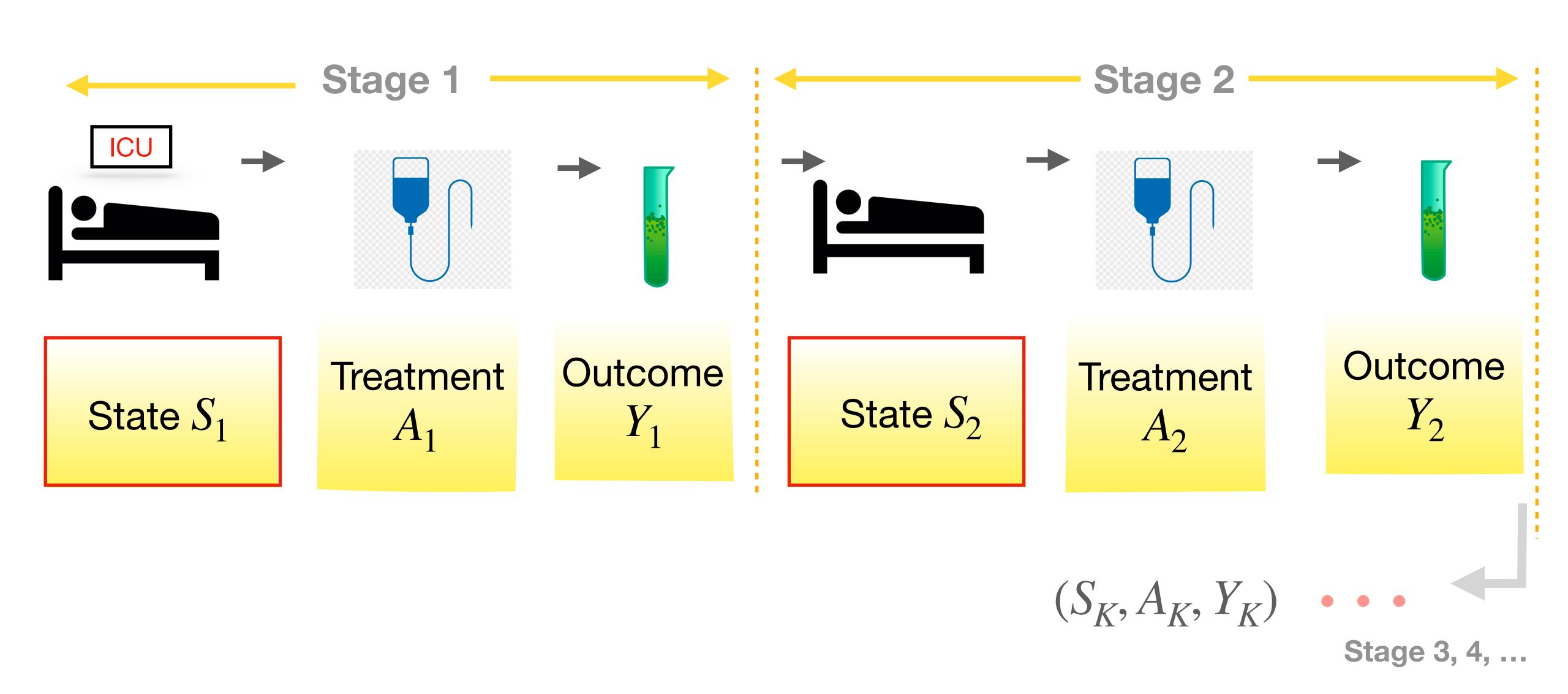
Sepsis-3 data (Beth Israel Hospital, Boston)

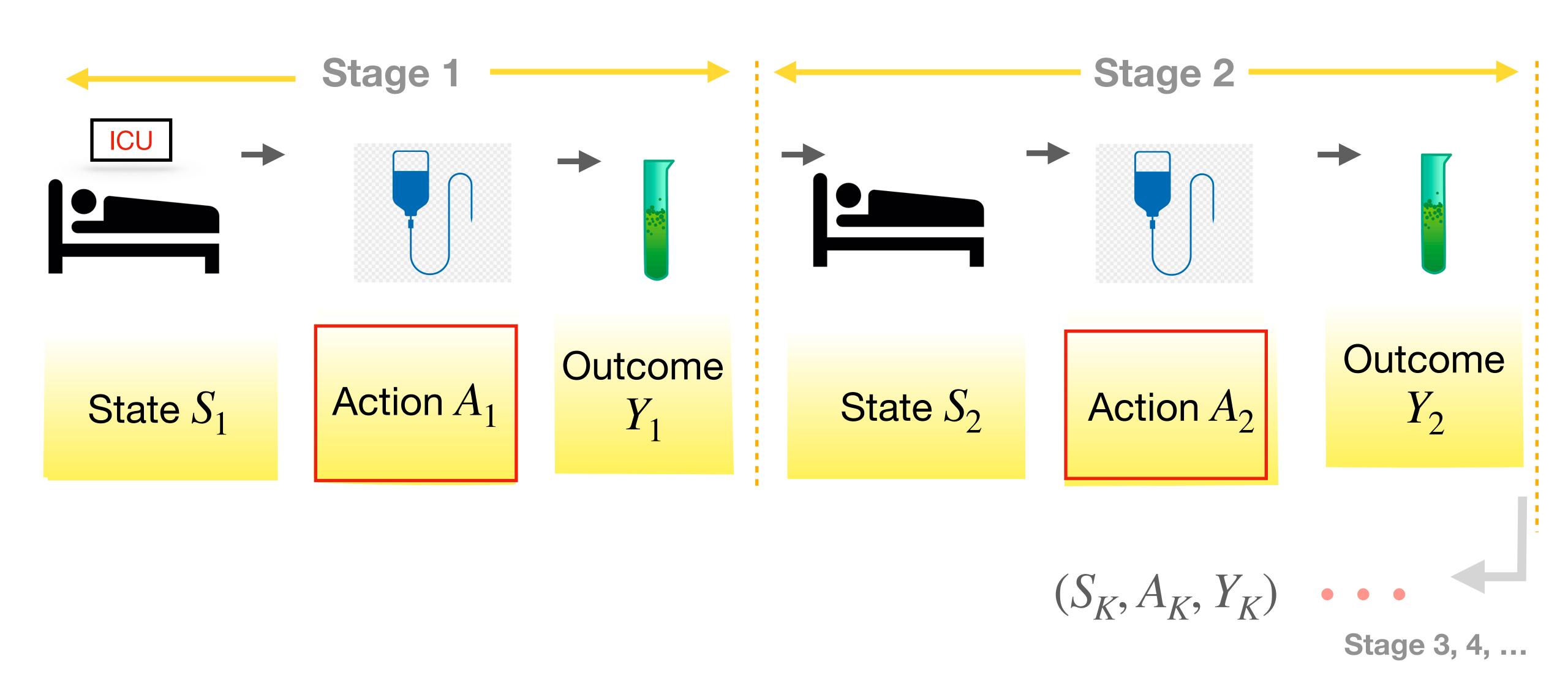


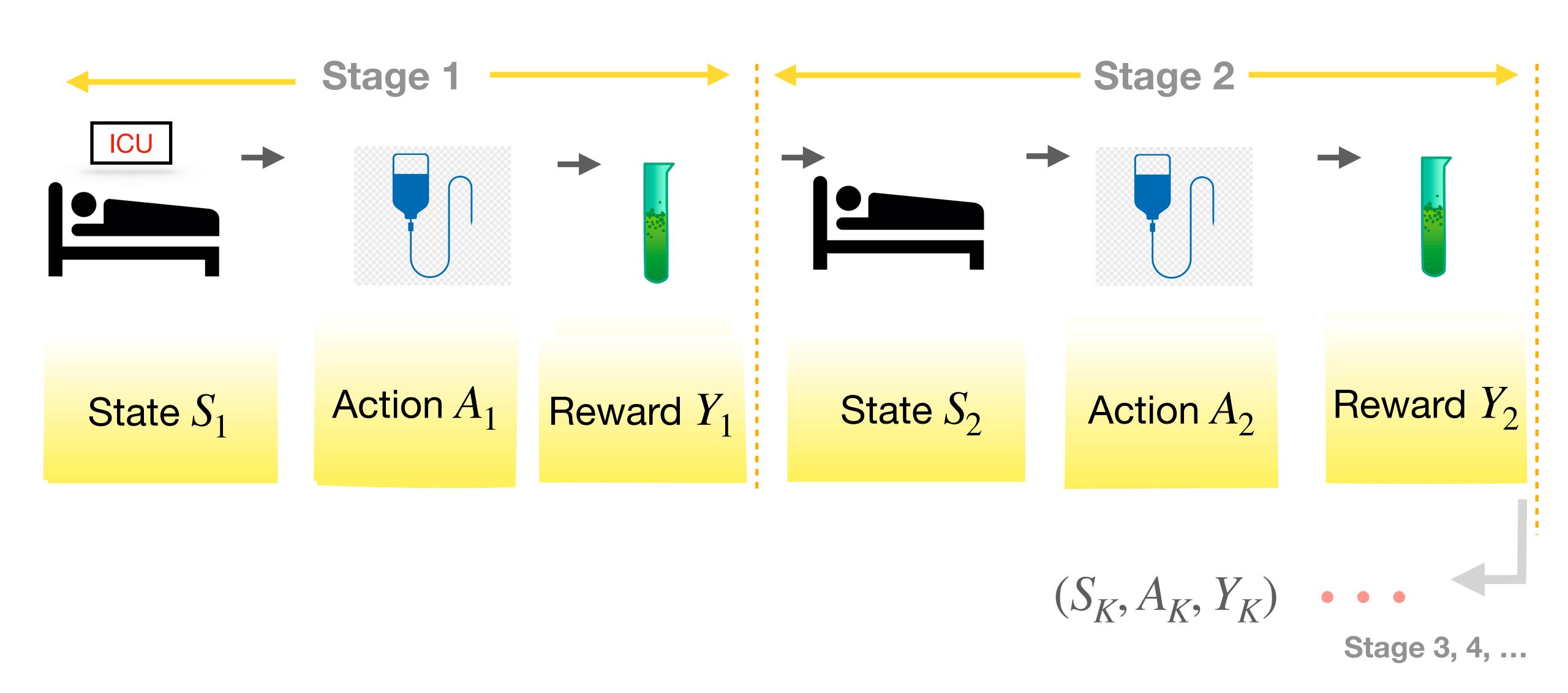


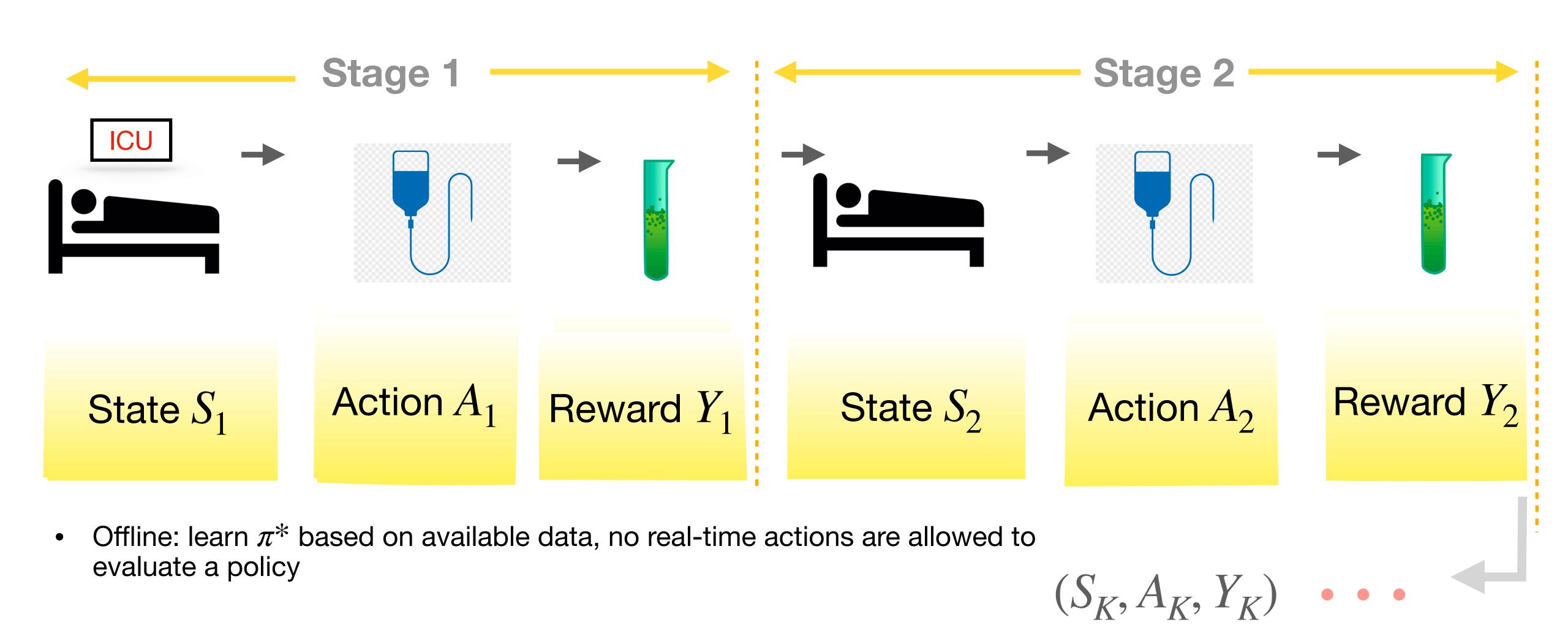




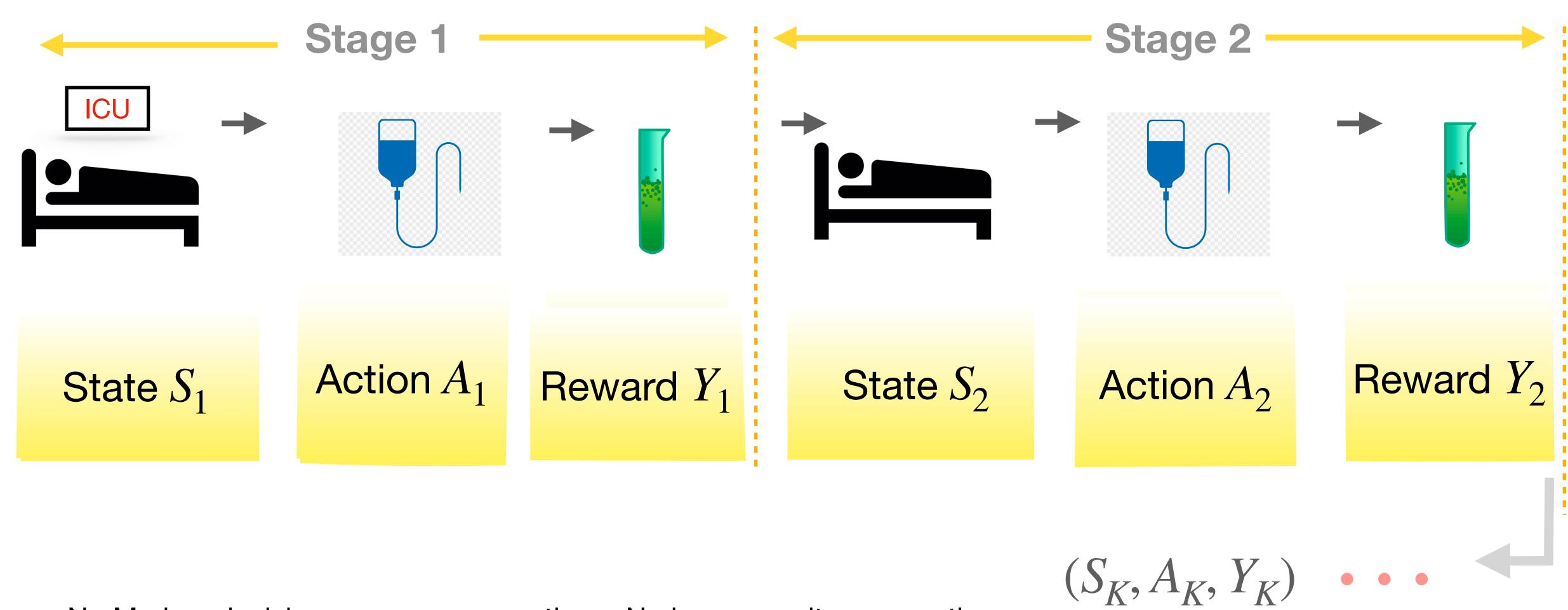






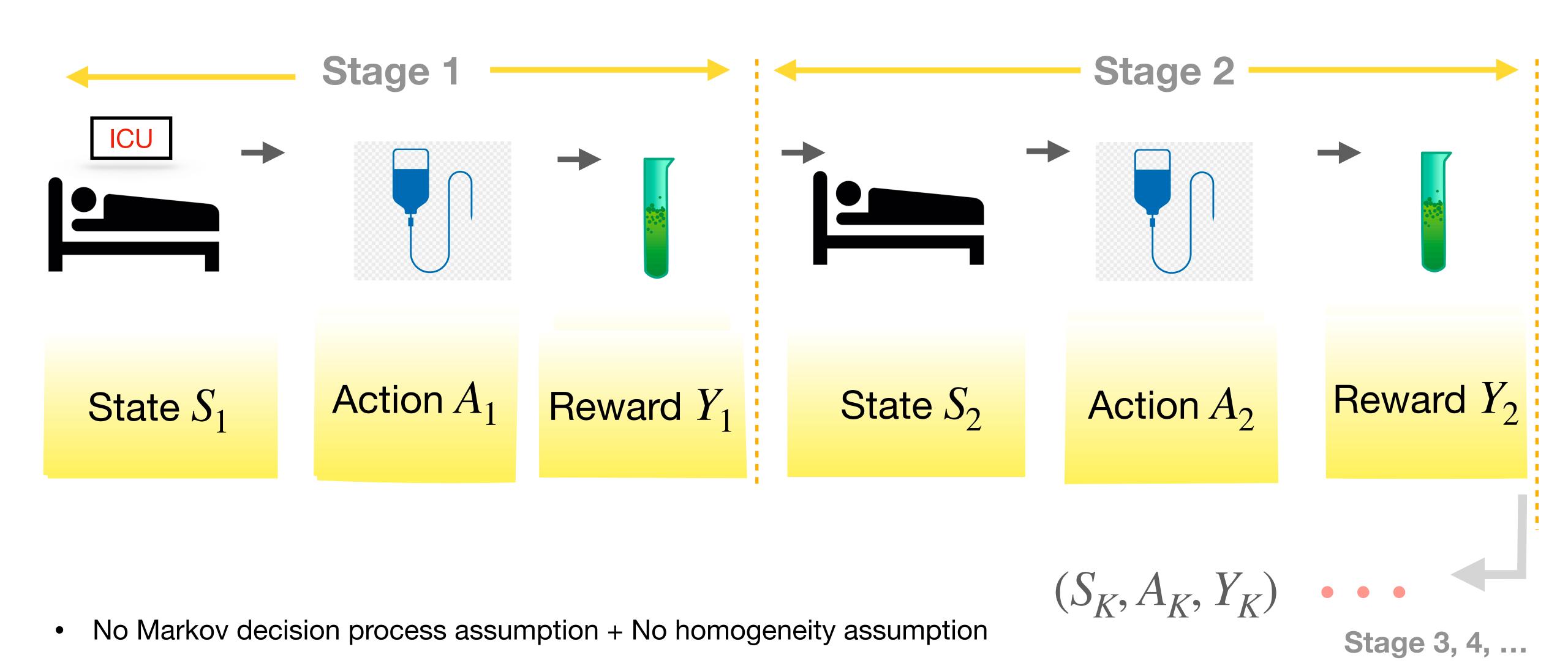


Stage 3, 4, ...



No Markov decision process assumption + No homogeneity assumption

Stage 3, 4, ...



Hence called Full reinforcement learning

Outline

- Example: sepsis
- Problem formulation
 - A. Mathematical formulation
 - B. Existing approaches
- Proposed method
- Open questions

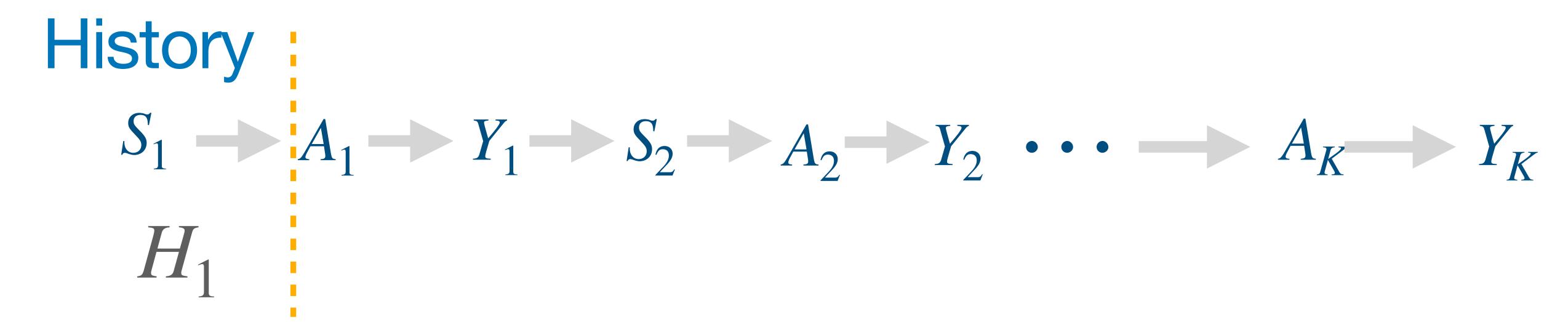
Outline

- Example: sepsis
- Problem formulation
 - A. Mathematical formulation
 - B. Existing approaches
- Proposed method
- Open questions

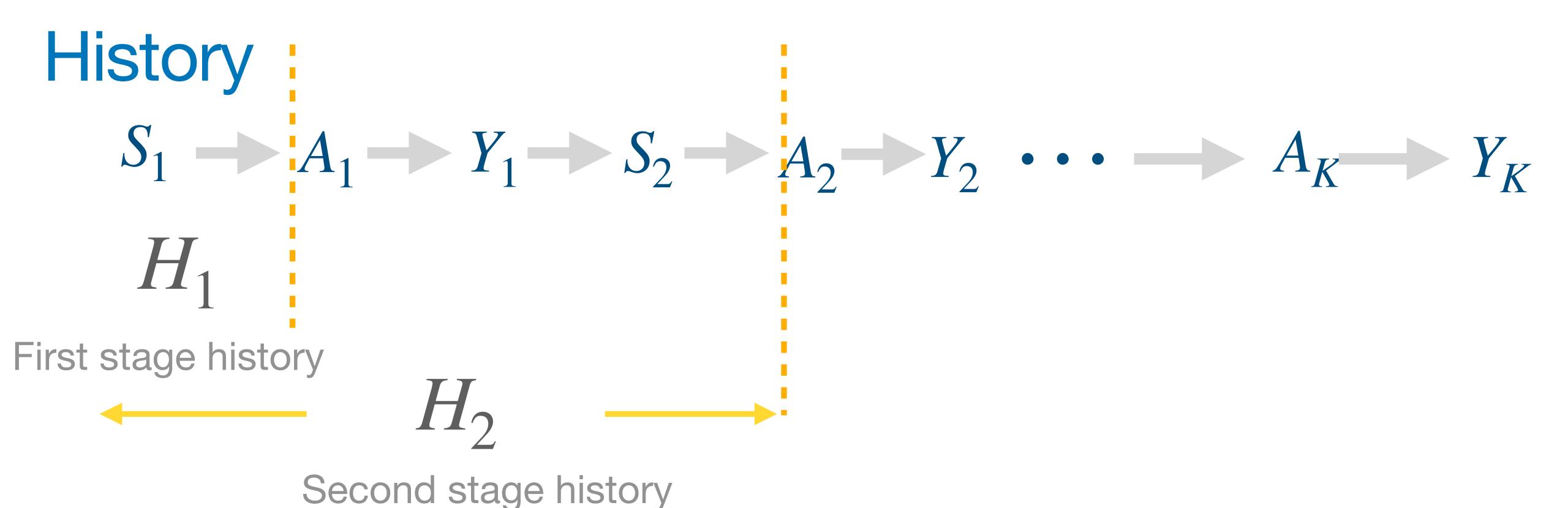
Mathematical formulation

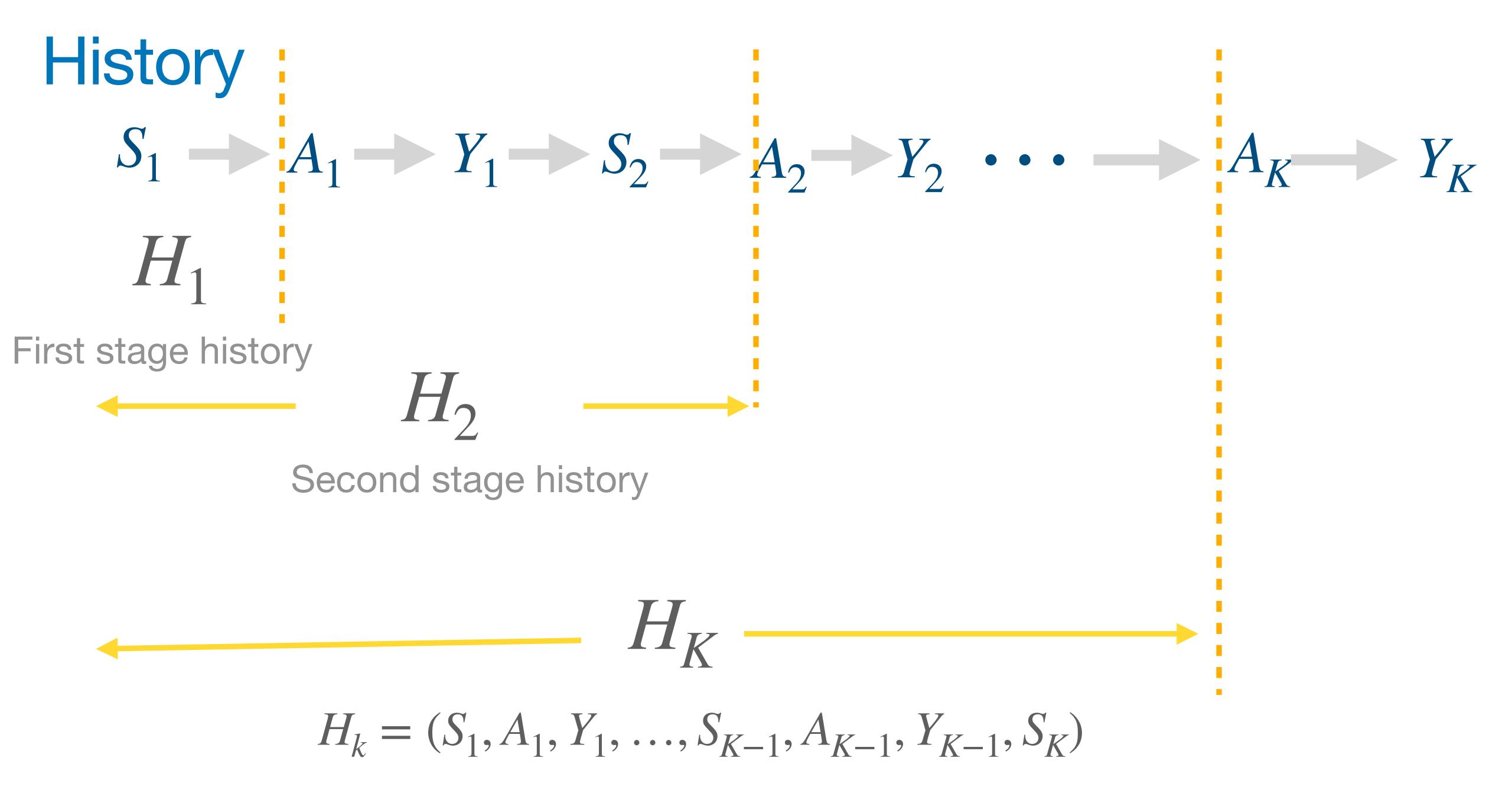
History

$$S_1 \longrightarrow A_1 \longrightarrow Y_1 \longrightarrow S_2 \longrightarrow A_2 \longrightarrow Y_2 \longrightarrow A_K \longrightarrow Y_K$$



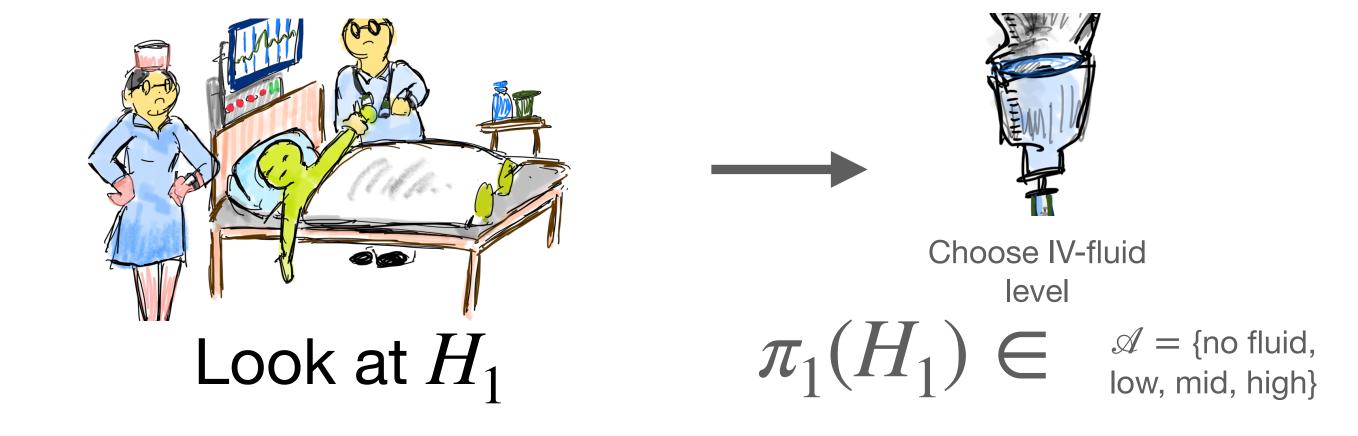
First stage history



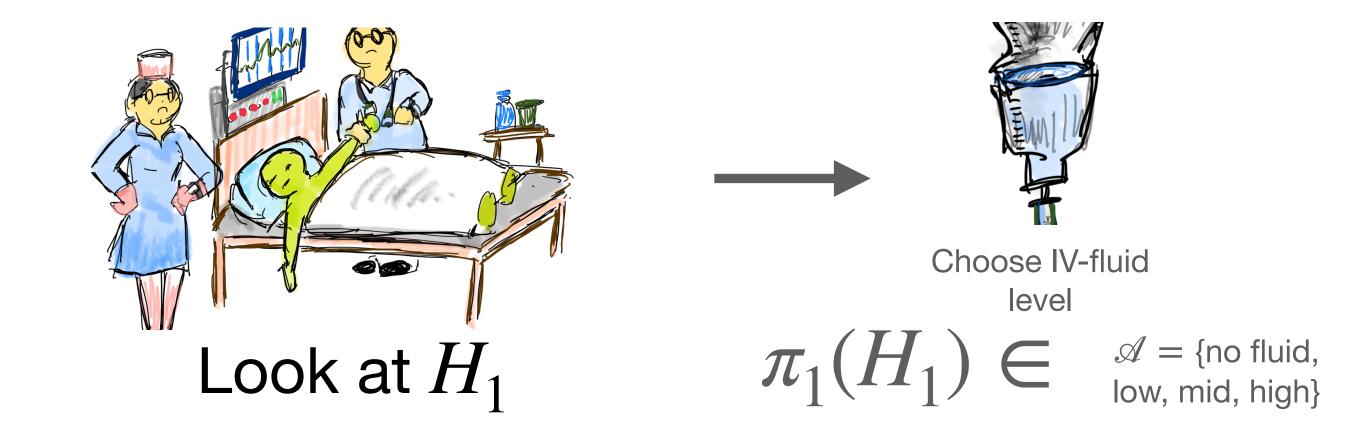


Stage 1

Stage 1



Stage 1



Treatment Assignments

$$\pi_1: H_1 \mapsto \mathcal{A}$$

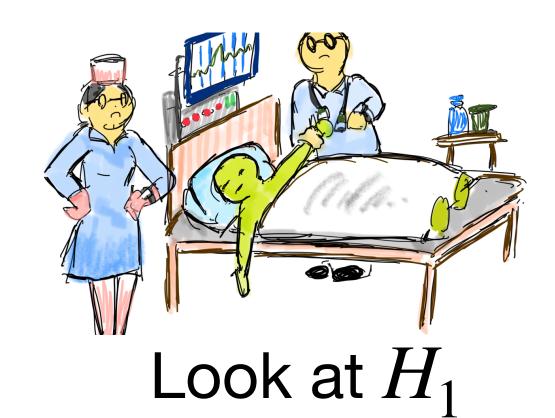
Stage 1

Choose IV-fluid level $\mathcal{A} = \{\text{no fluid}, \\ \text{low, mid, high}\}$ Look at H_1 Stages 2, 3, 4, ...

Treatment Assignments

$$\pi_1: H_1 \mapsto \mathcal{A}$$

Stage 1



Choose IV-fluid

level

 $\mathscr{A} = \{ \text{no fluid},$

low, mid, high}

Stages 2, 3, 4, ...

Stage k

Look at H_k

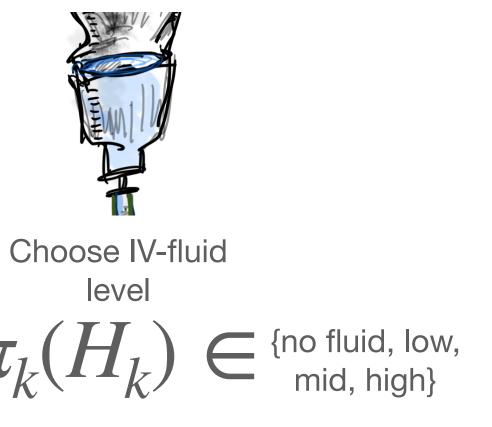
$$\pi_1: H_1 \mapsto \mathcal{A}$$

Choose IV-fluid level Look at H_1 Stages 2, 3, 4, ...

Stage k

Stage 1

Look at H_k



 $\mathscr{A} = \{ \text{no fluid},$

low, mid, high}

Treatment Assignments

$$\pi_1: H_1 \mapsto \mathcal{A}$$

Stage 1

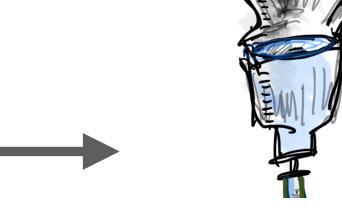


LOUK at 11

Stages 2, 3, 4, ...

Stage *k*

Look at H_k



Choose IV-fluid level

$$\pi_1(H_1) \in \mathcal{A} = \{\text{no fluid, low, mid, high}\}$$

Choose IV-fluid level

$$\pi_k(H_k) \in {}^{ ext{no fluid, low,}}$$

Treatment Assignments

$$\pi_1: H_1 \mapsto \mathcal{A}$$

$$\pi_k: H_k \mapsto \mathscr{A}$$

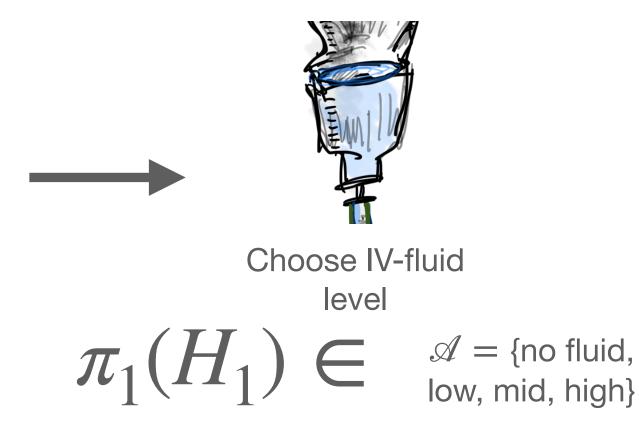
Stage 1

Look at H_1

Stages 2, 3, 4, ...

Stage k

Look at H_k



Treatment Assignments

$$\pi_1: H_1 \mapsto \mathcal{A}$$

Policy
$$\pi = (\pi_1, \dots, \pi_K)$$

Choose IV-fluid level

$$\pi_k(H_k) \in {}^{ ext{no fluid, low,}}$$

 $\pi_k: H_k \mapsto \mathscr{A}$

Stage 1:

Stage 1:

T₁

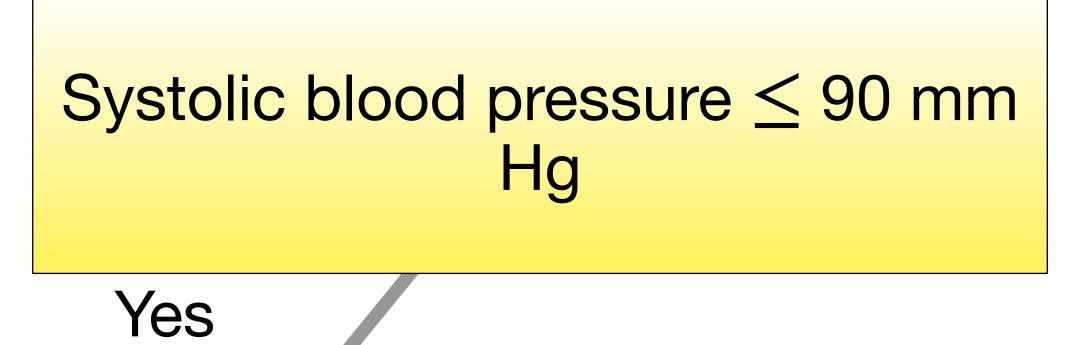
Systolic blood pressure ≤ 90 mm Hg

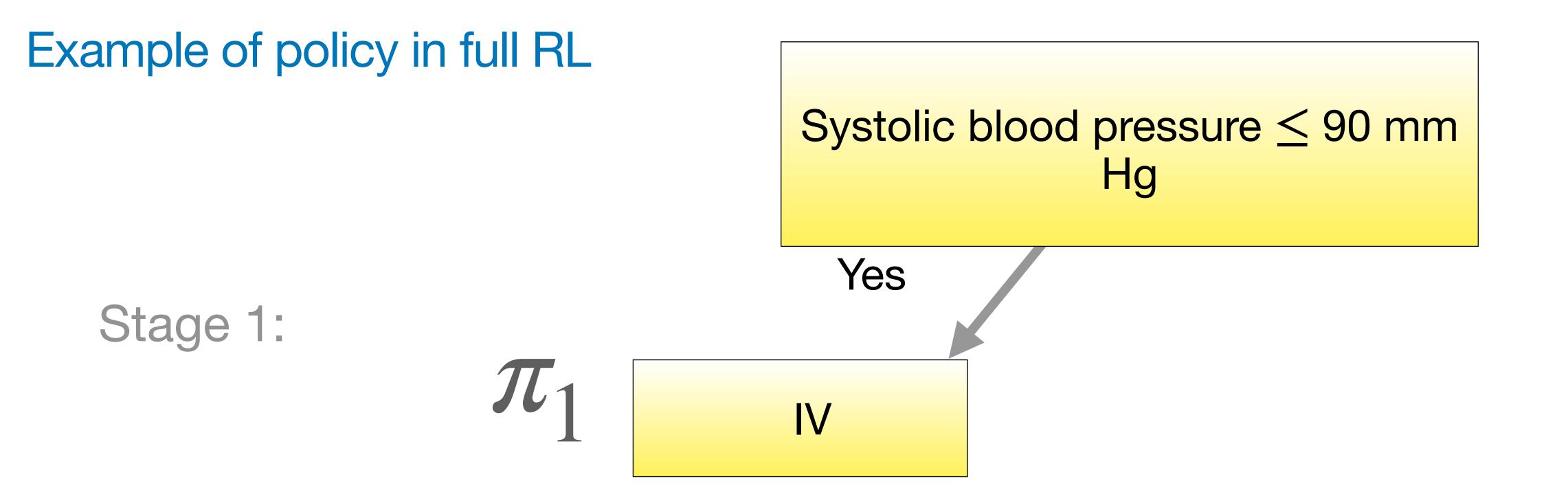
Stage 1:

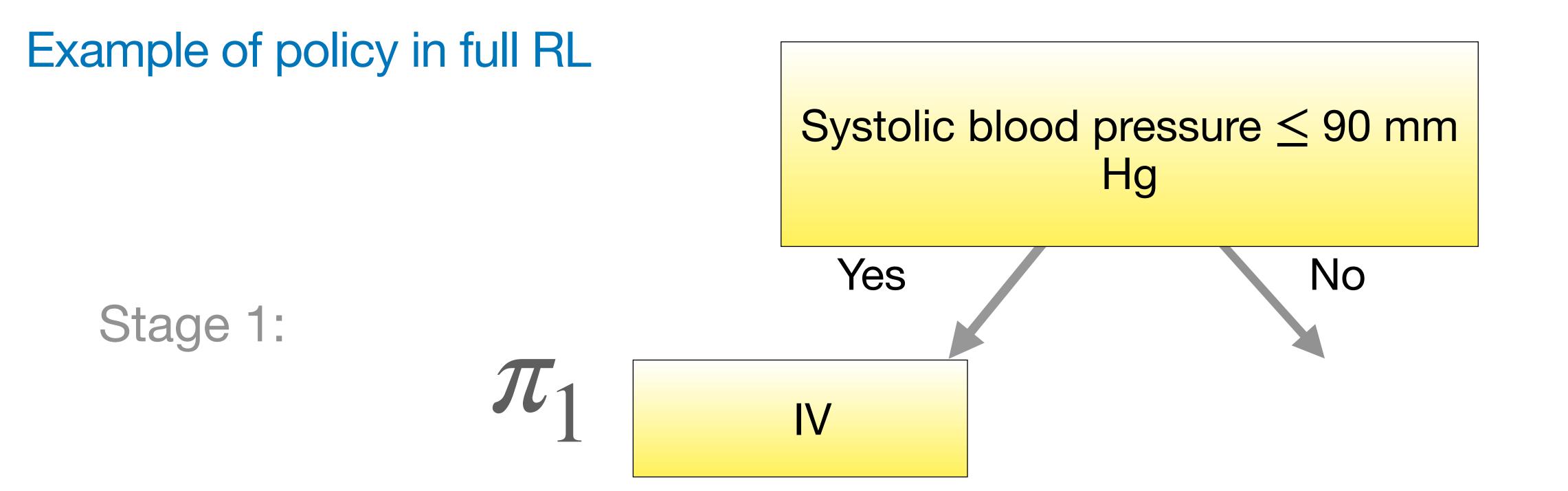
 π_1

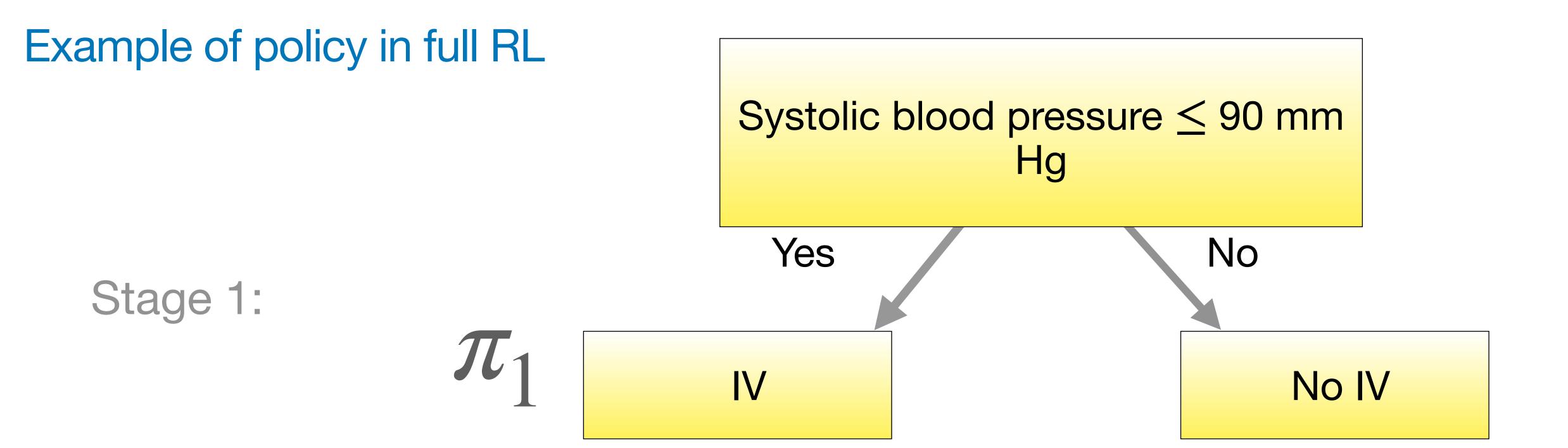
Stage 1:

 π_1









Example of policy in full RL Systolic blood pressure \leq 90 mm Hg No IV

Stage k:

t = 2, ..., K.

Example of policy in full RL Systolic blood pressure ≤ 90 mm Hg Yes No Stage 1:

IV

No IV

Stage k:

$$t = 2, ..., K$$
.

 \mathcal{T}_{k}

Example of policy in full RL

Systolic blood pressure ≤ 90 mm Hg

No

Stage 1:

T₁ IV No IV

Stage k:

$$t = 2, ..., K$$
.

Systolic blood pressure ≤ 90 mm Hg for the most recent two stages and lactate ≥ 4 mmol/L

 π_k

Yes

Example of policy in full RL

Systolic blood pressure ≤ 90 mm Hg

Stage 1:

 π_1

IV

Yes

No IV

No

Stage k:

$$t = 2, ..., K$$
.

 π_k

Systolic blood pressure ≤ 90 mm Hg for the most recent two stages and lactate ≥ 4 mmol/L

Yes

Example of policy in full RL Systolic blood pressure ≤ 90 mm Hg Yes No Stage 1: IV No IV Systolic blood pressure ≤ 90 mm Hg for the most recent two stages Stage k: and lactate ≥ 4 mmol/L t = 2, ..., K. Yes 13

Example of policy in full RL Systolic blood pressure ≤ 90 mm Hg Yes No Stage 1: IV No IV Systolic blood pressure ≤ 90 mm Hg for the most recent two stages Stage k: and lactate ≥ 4 mmol/L t = 2, ..., K. No Yes 13

Example of policy in full RL Systolic blood pressure ≤ 90 mm Hg Yes No Stage 1: IV No IV Systolic blood pressure ≤ 90 mm Hg for the most recent two stages Stage k: and lactate ≥ 4 mmol/L t = 2, ..., K. No Yes No IV IV 13

 $Y_k(\pi)$: potential outcome at stage k had policy π been followed

 $Y_k(\pi)$: potential outcome at stage k had policy π been followed

Value function of π :

$$V^{\pi} = E[Y_1(\pi)... + Y_K(\pi)]$$

 $Y_k(\pi)$: potential outcome at stage k had policy π been followed

Value function of π :

$$V^{\pi} = E[Y_1(\pi)... + Y_K(\pi)]$$

$$\pi^* = \operatorname*{argmax}_{\pi} V^{\pi}$$

 $Y_k(\pi)$: potential outcome at stage k had policy π been followed

Value function of π :

$$V^{\pi} = E[Y_1(\pi)... + Y_K(\pi)]$$

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$

Optimal policy

 $Y_k(\pi)$: potential outcome at stage k had policy π been followed

Value function of π :

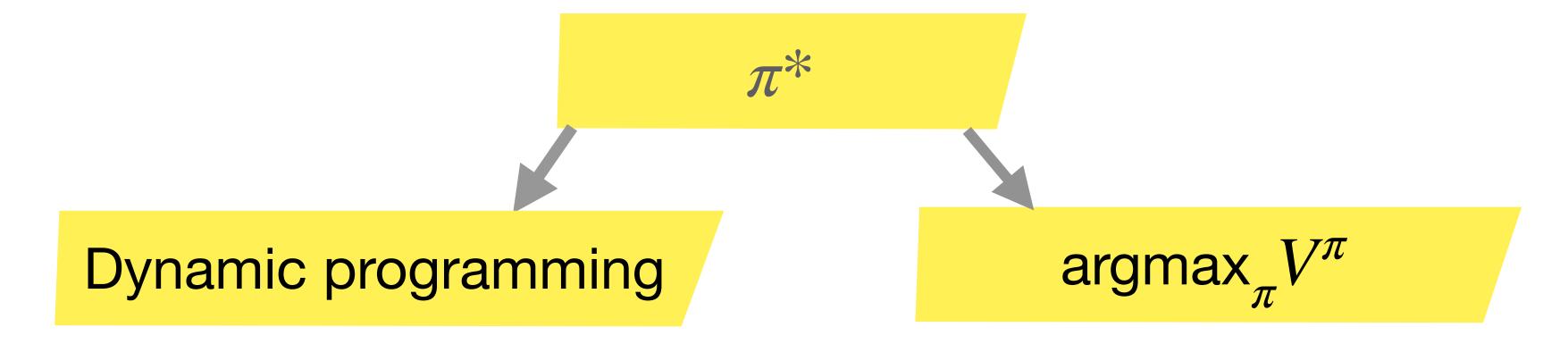
$$V^\pi = E[Y_1(\pi) \ldots + Y_K(\pi)] \longrightarrow$$
 Not observed random variables

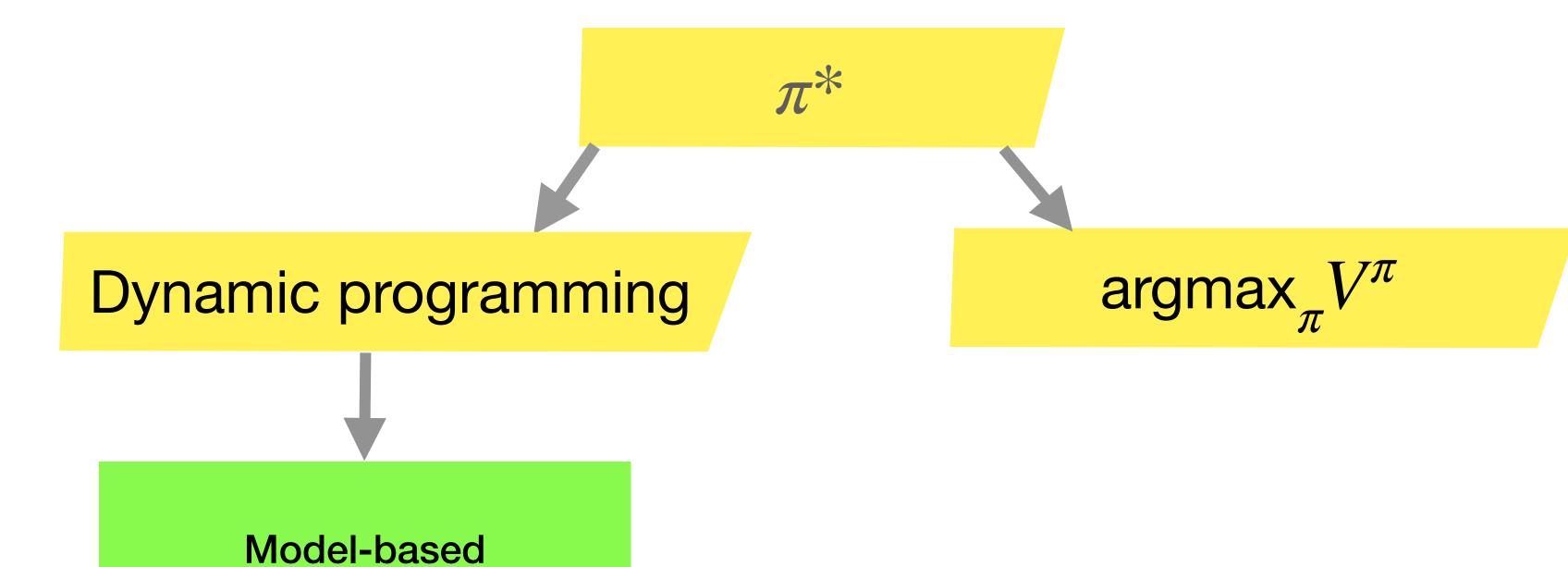
$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$

Outline

- Example: sepsis
- Problem formulation
 - A. Mathematical formulation
 - B. Existing approaches
- Proposed method
- Open questions

Existing approaches

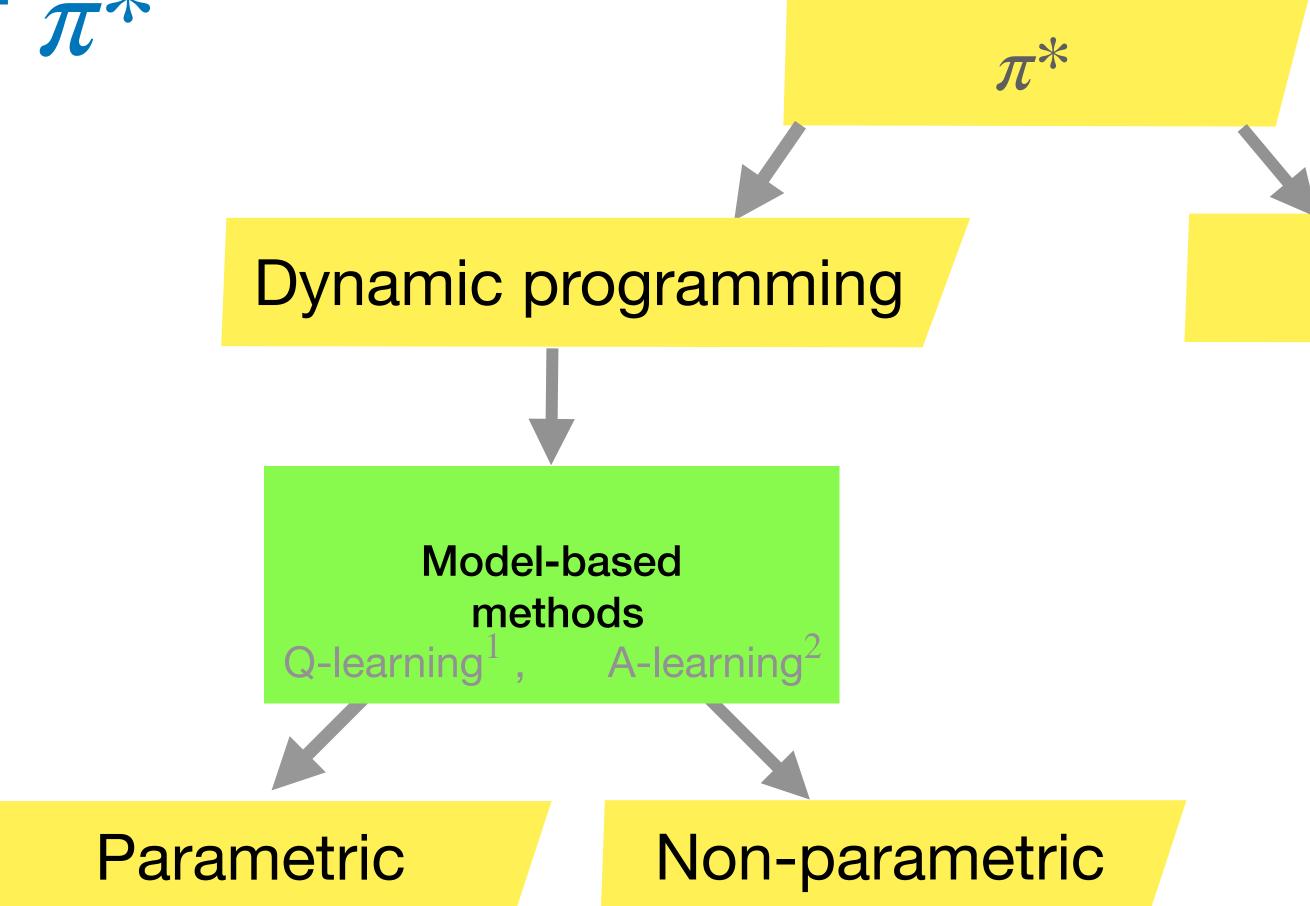




- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004

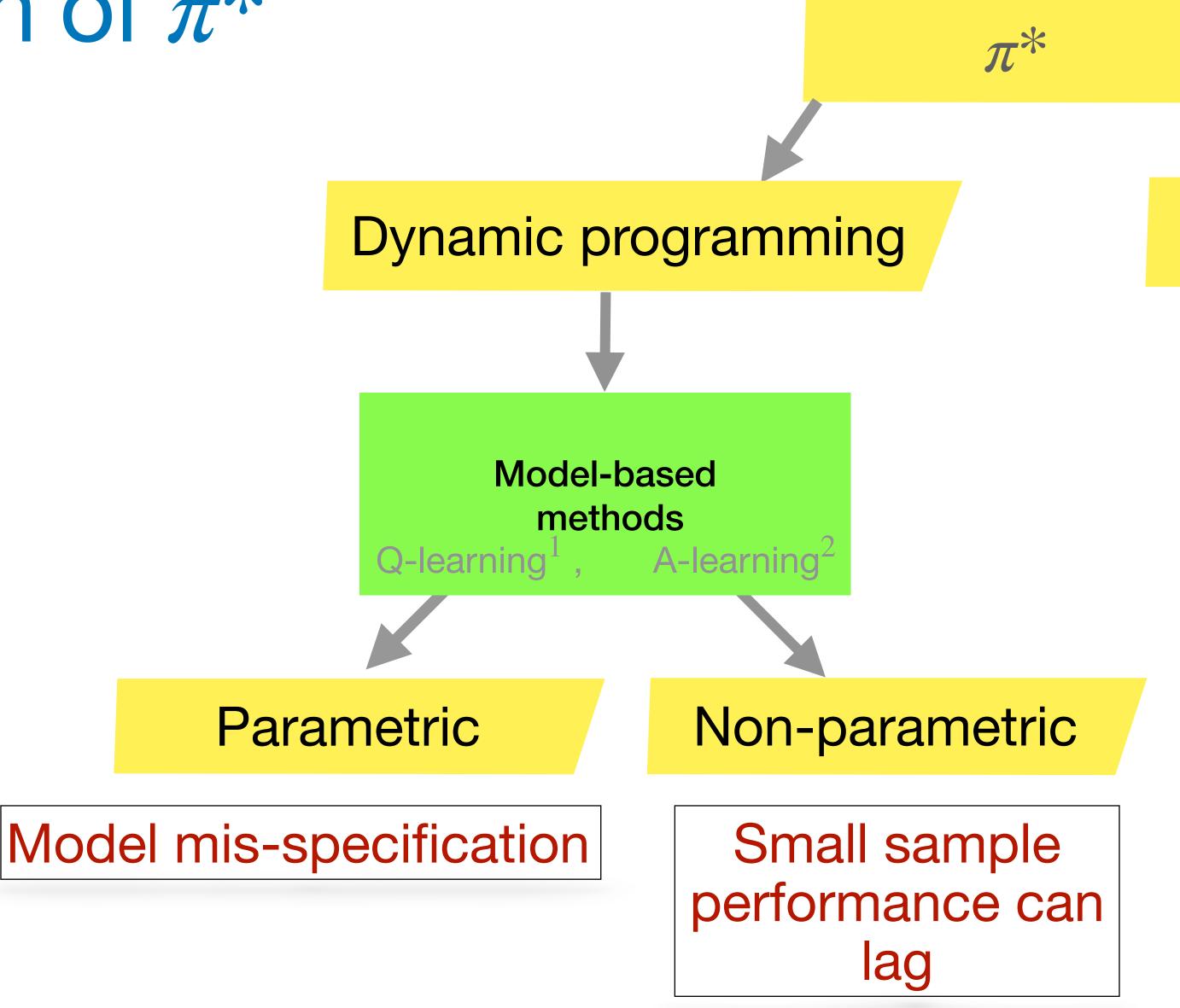
methods

Q-learning¹, A-learning²



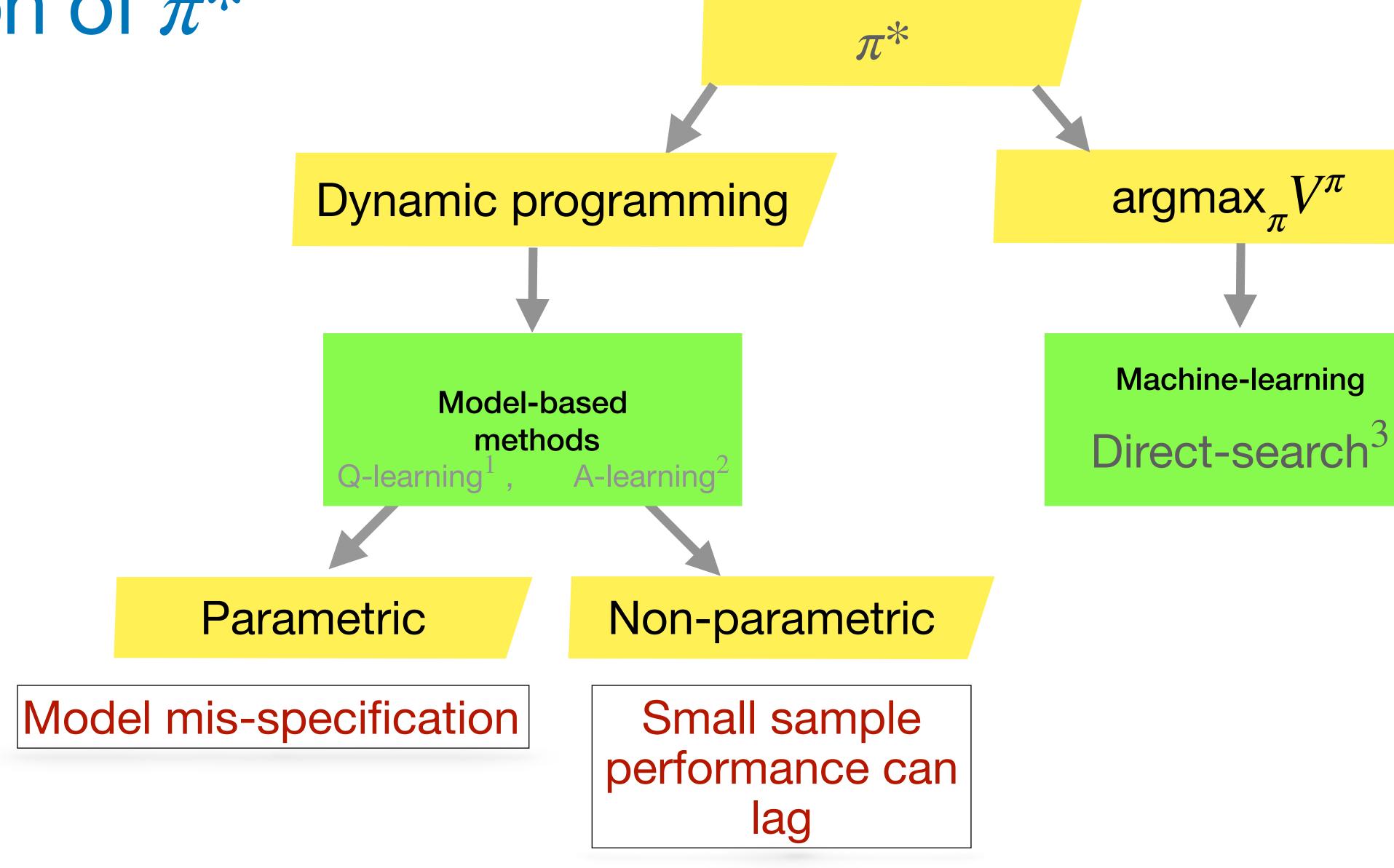
 $\operatorname{argmax}_{\pi}V^{\pi}$

- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004

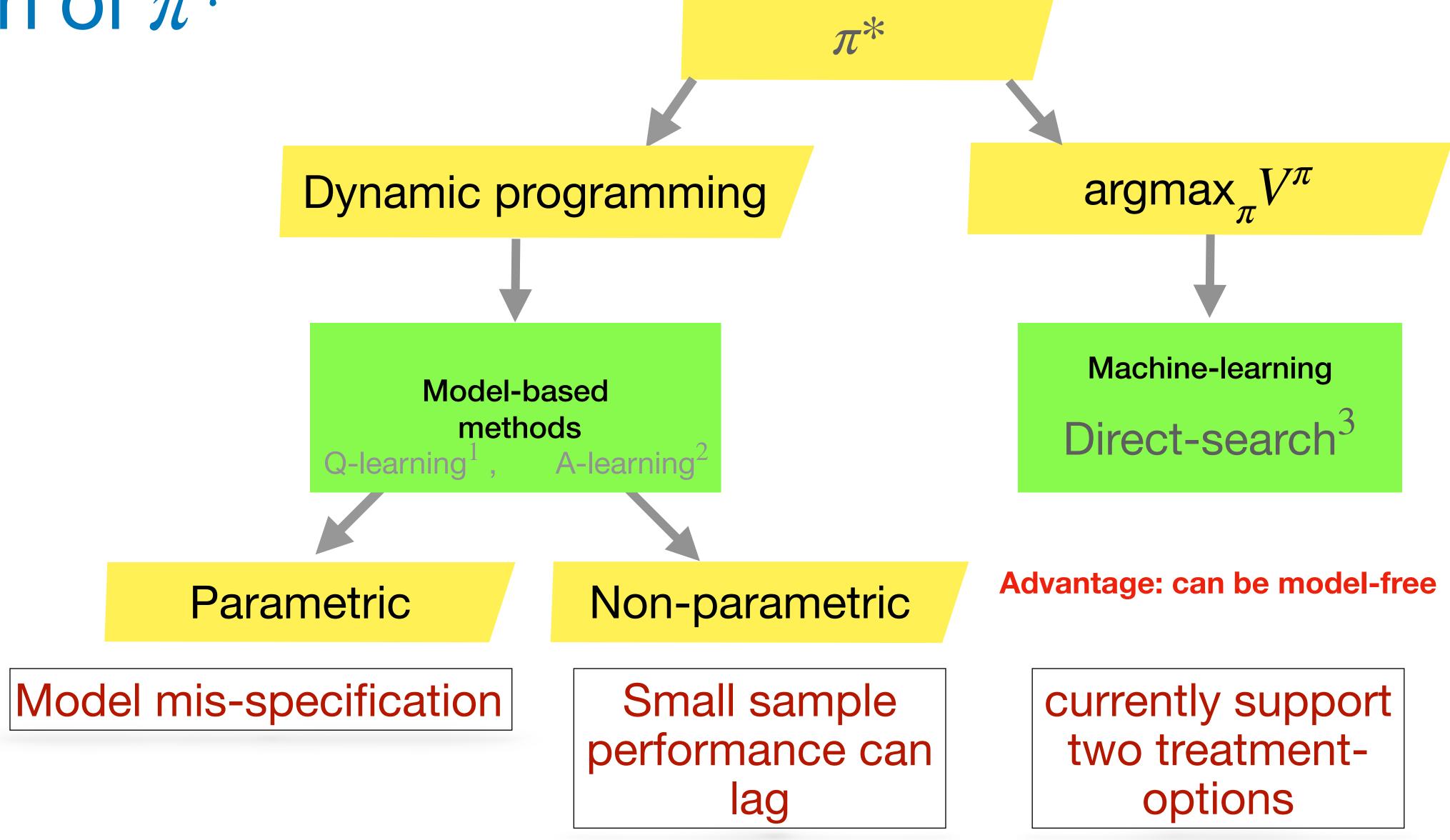


- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004

 $\operatorname{argmax}_{\pi}V^{\pi}$



- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2022



- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2022

Goal of the project: Q-learning¹, Parametric

Dynamic programming

Model-based methods

Q-learning 1 , A-learning 2

Model mis-specification

Non-parametric

Small sample performance can lag

 $\operatorname{argmax}_{\pi}V^{\pi}$

Machine-learning

Direct-search³

Advantage: can be model-free

currently support two treatment-options

- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2022

Goal of the project:

1. direct search for arbitrary number of treatments

Dynamic programming

Model-based methods

Q-learning¹, A-learning²

Parametric

Model mis-specification

Non-parametric

Small sample performance can lag

 $\operatorname{argmax}_{\pi}V^{\pi}$

Machine-learning

Direct-search³

Advantage: can be model-free

currently support two treatment-options

- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2022

Goal of the project:

- 1. direct search for arbitrary number of treatments
- 2. Computationally efficient and scalable

 $\operatorname{argmax}_{\pi}V^{\pi}$ Dynamic programming Machine-learning Model-based Direct-search³ methods Q-learning¹, A-learning²

Parametric

Model mis-specification

Non-parametric

Small sample performance can lag

Advantage: can be model-free

currently support two treatment-options

- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2022

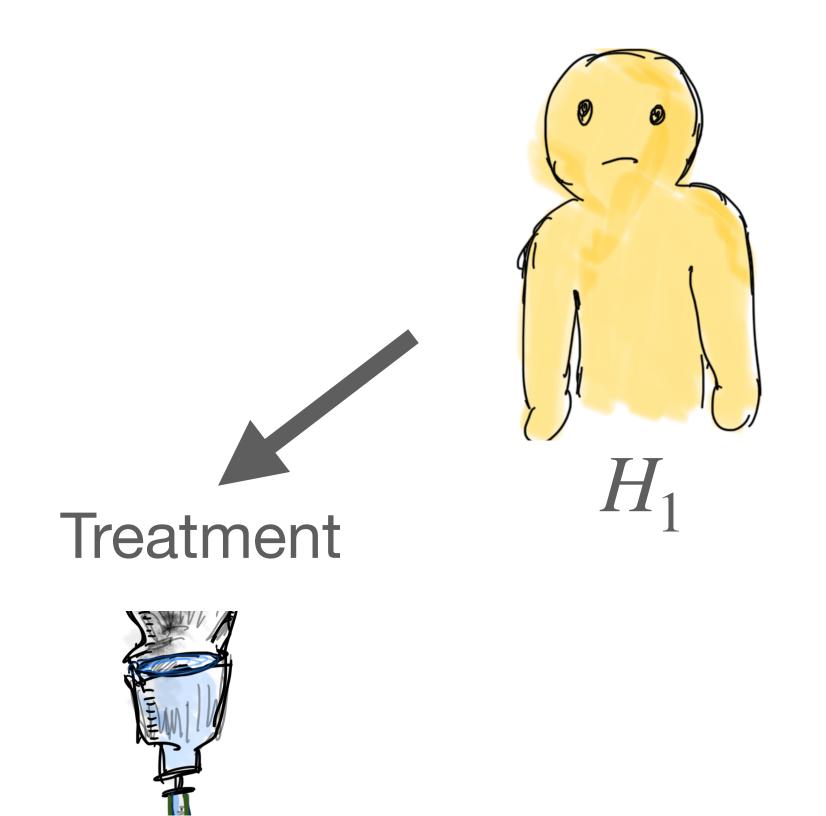
Outline

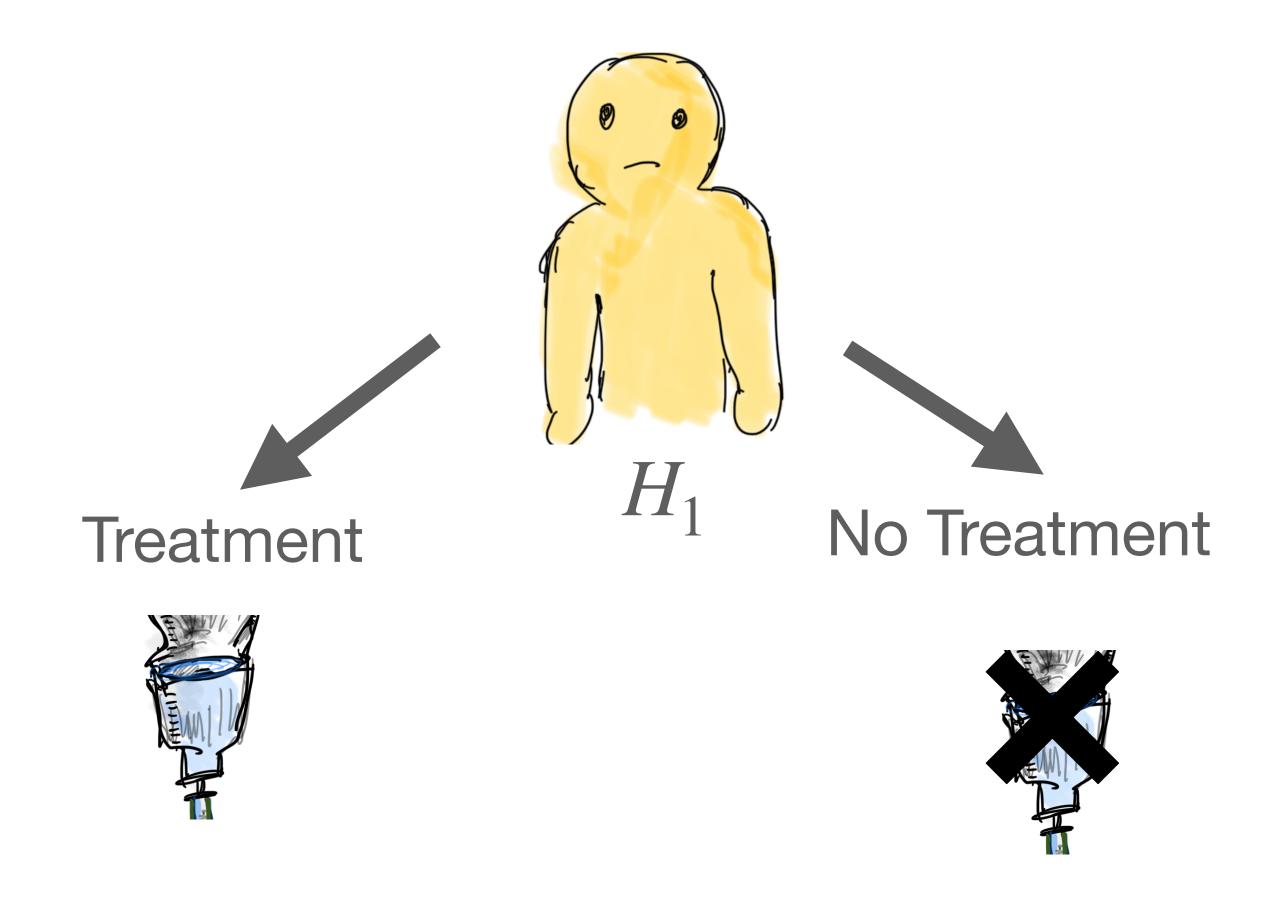
- Example: sepsis
- Problem formulation
- Proposed method
 - A. Methodology
 - B. Example on a toy data
- Open questions

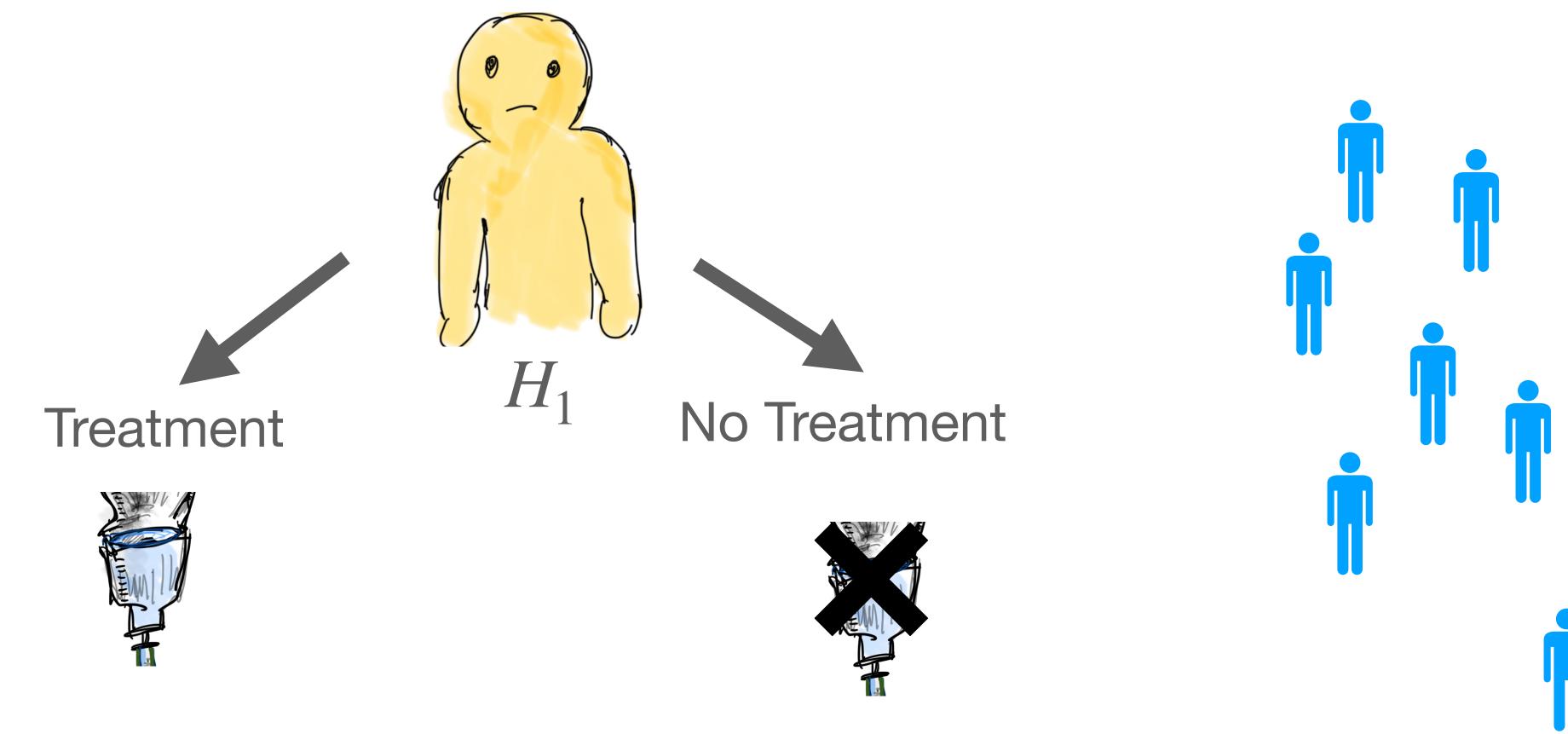
Outline

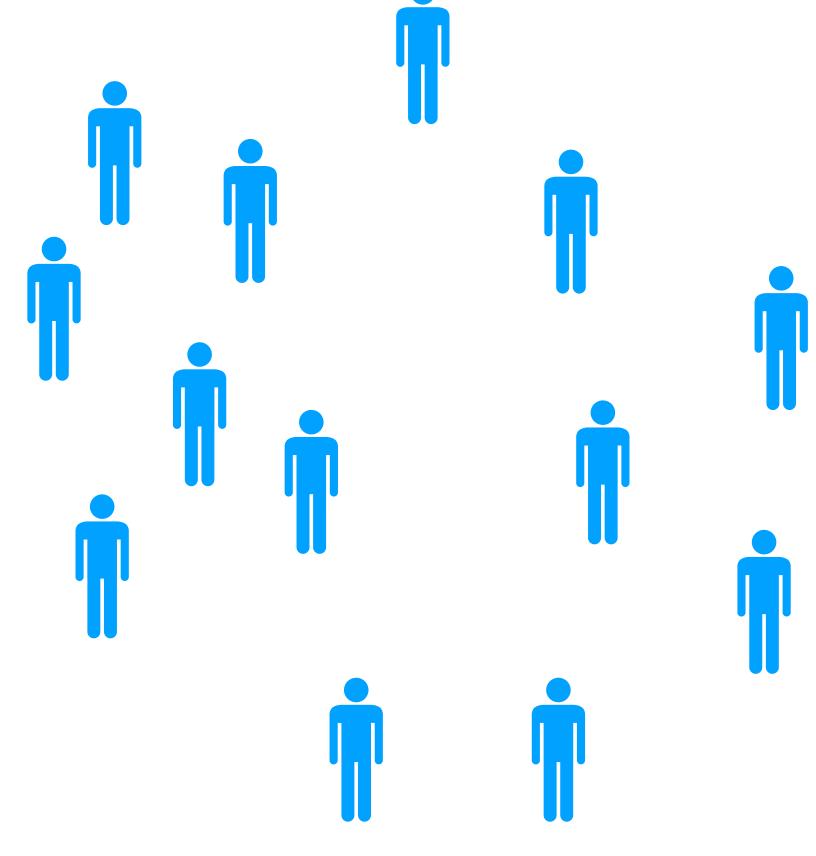
- Example: sepsis
- Problem formulation
- Proposed method
 - A. Methodology
 - B. Example on a toy data
- Open questions

Proposed method

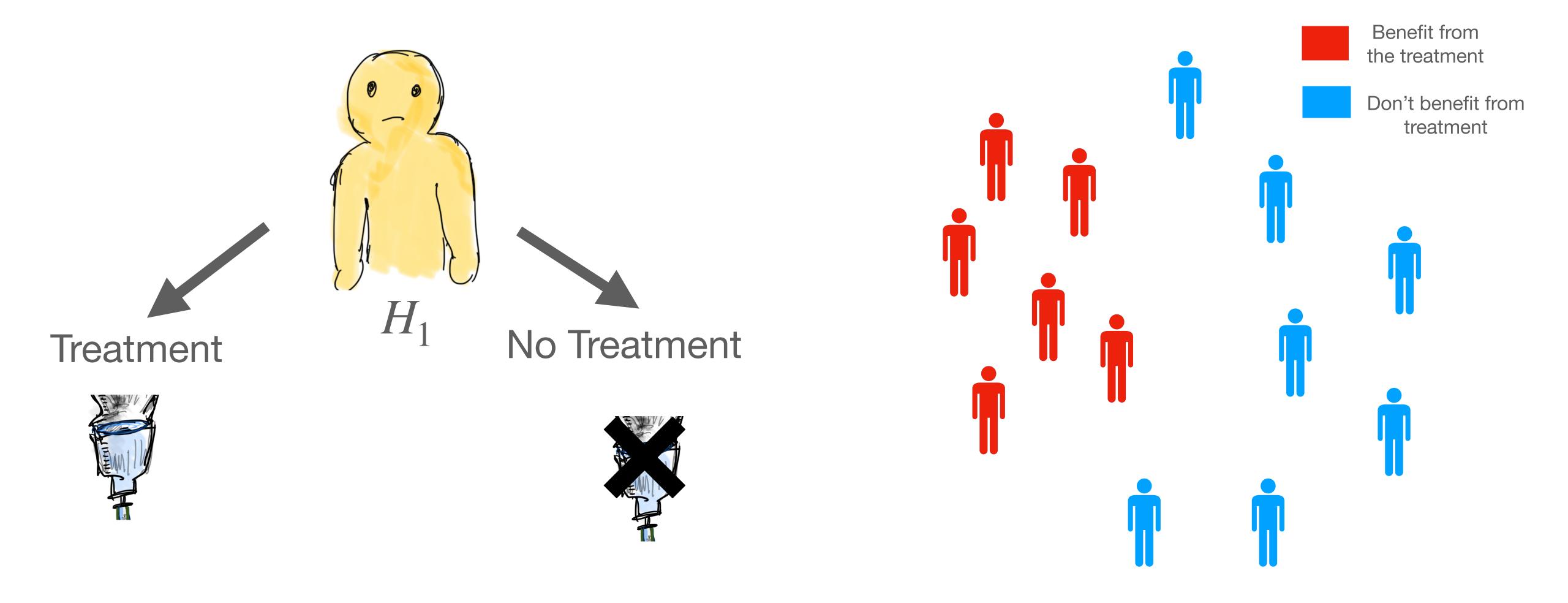






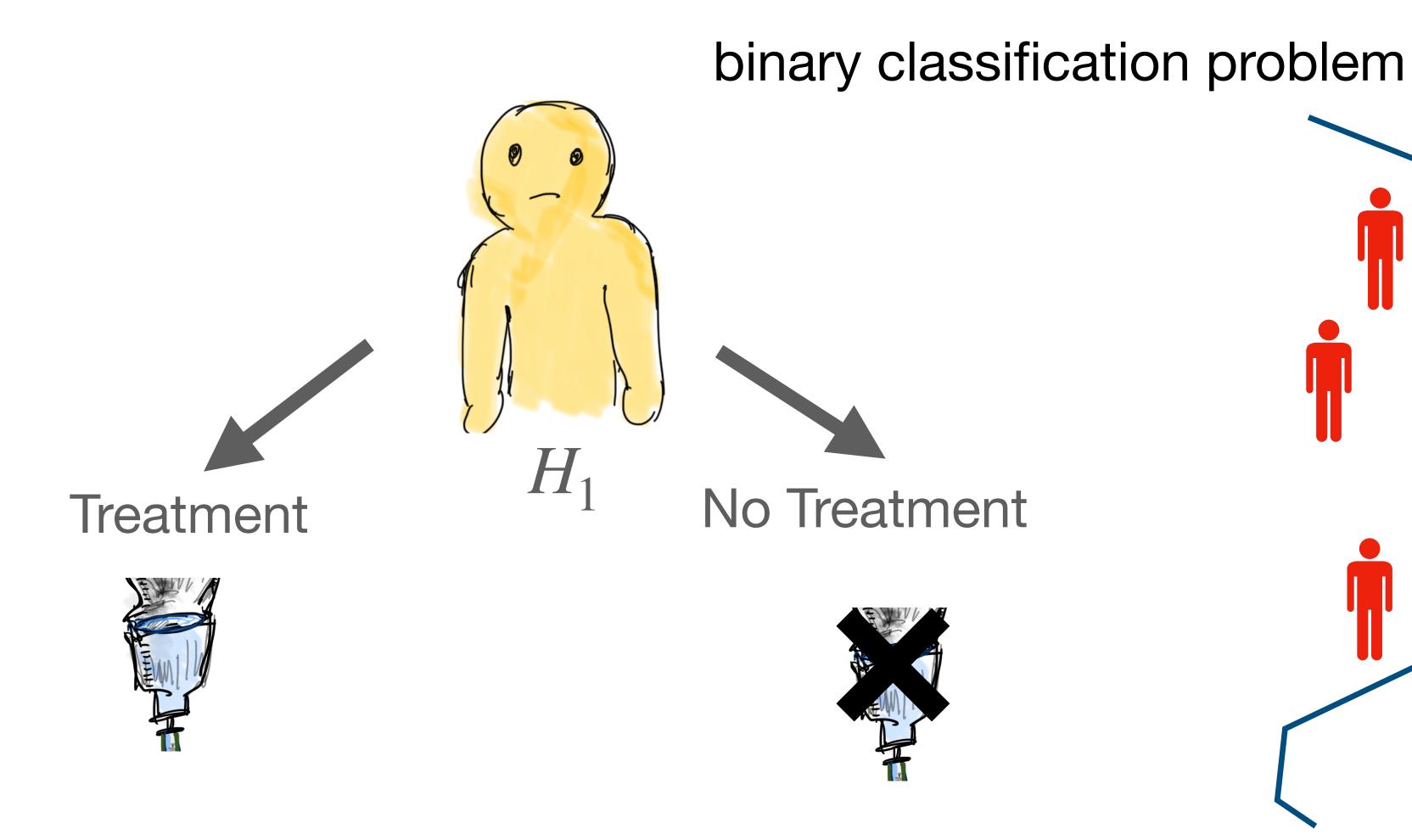


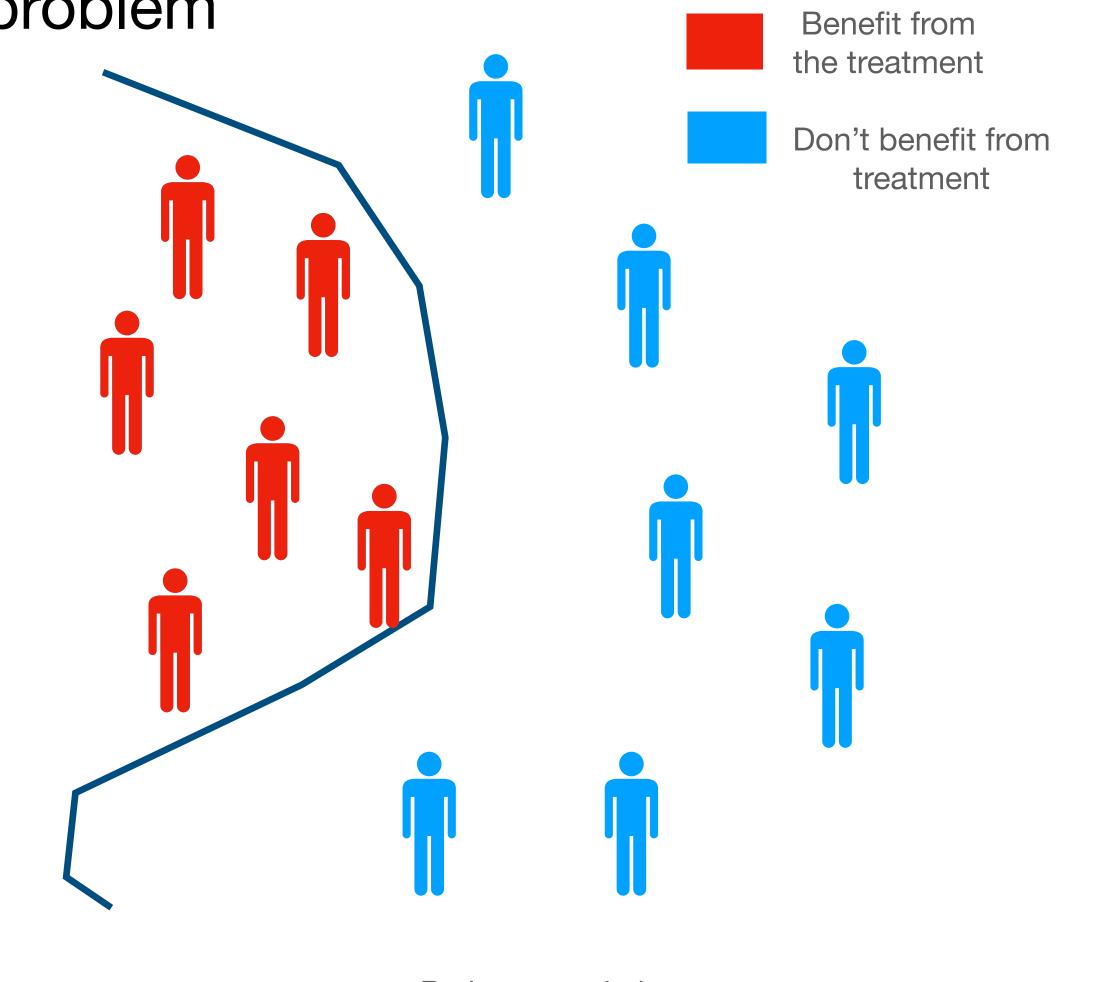
Patient population



Patient population

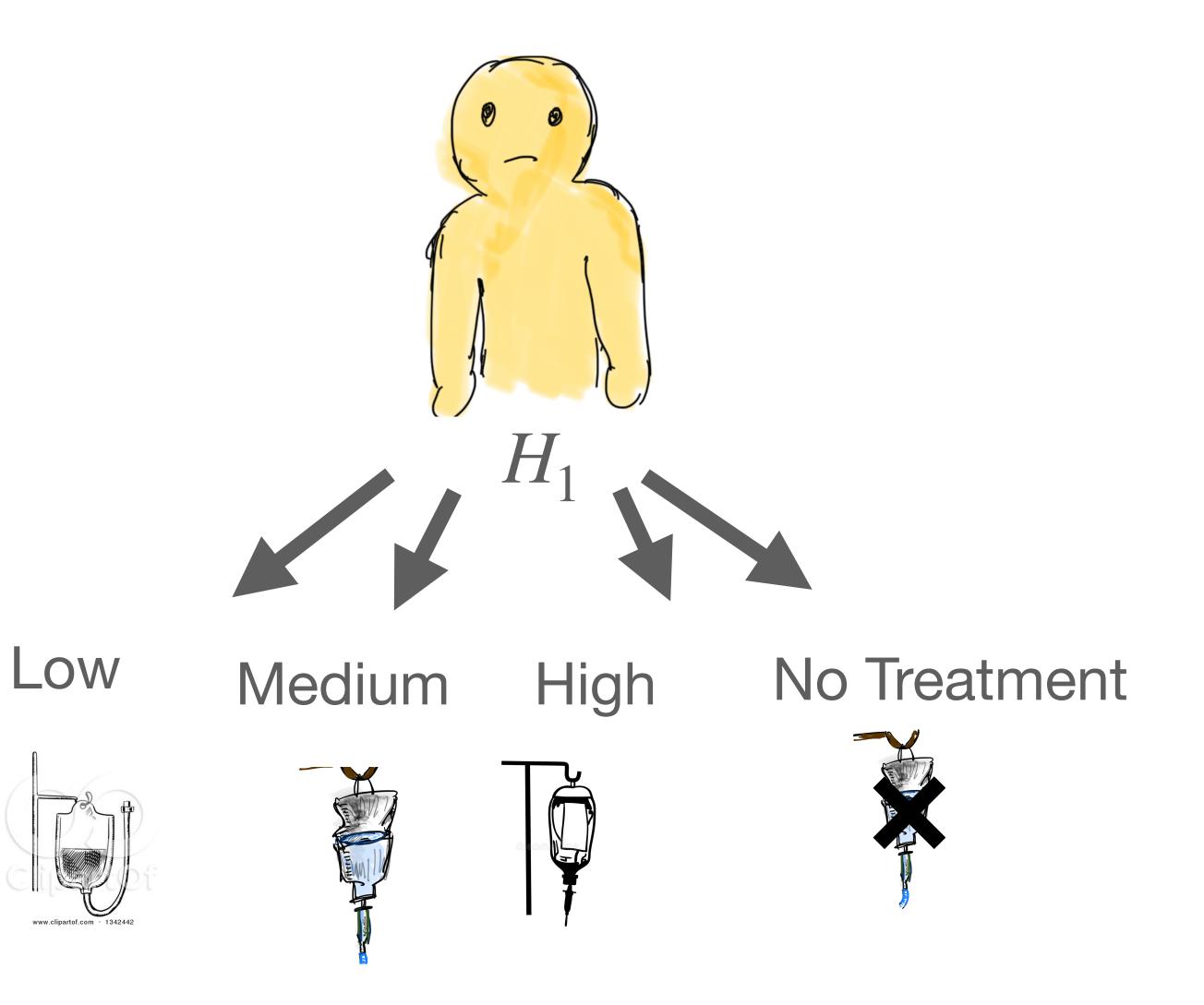
Treatment assignment at each stage:



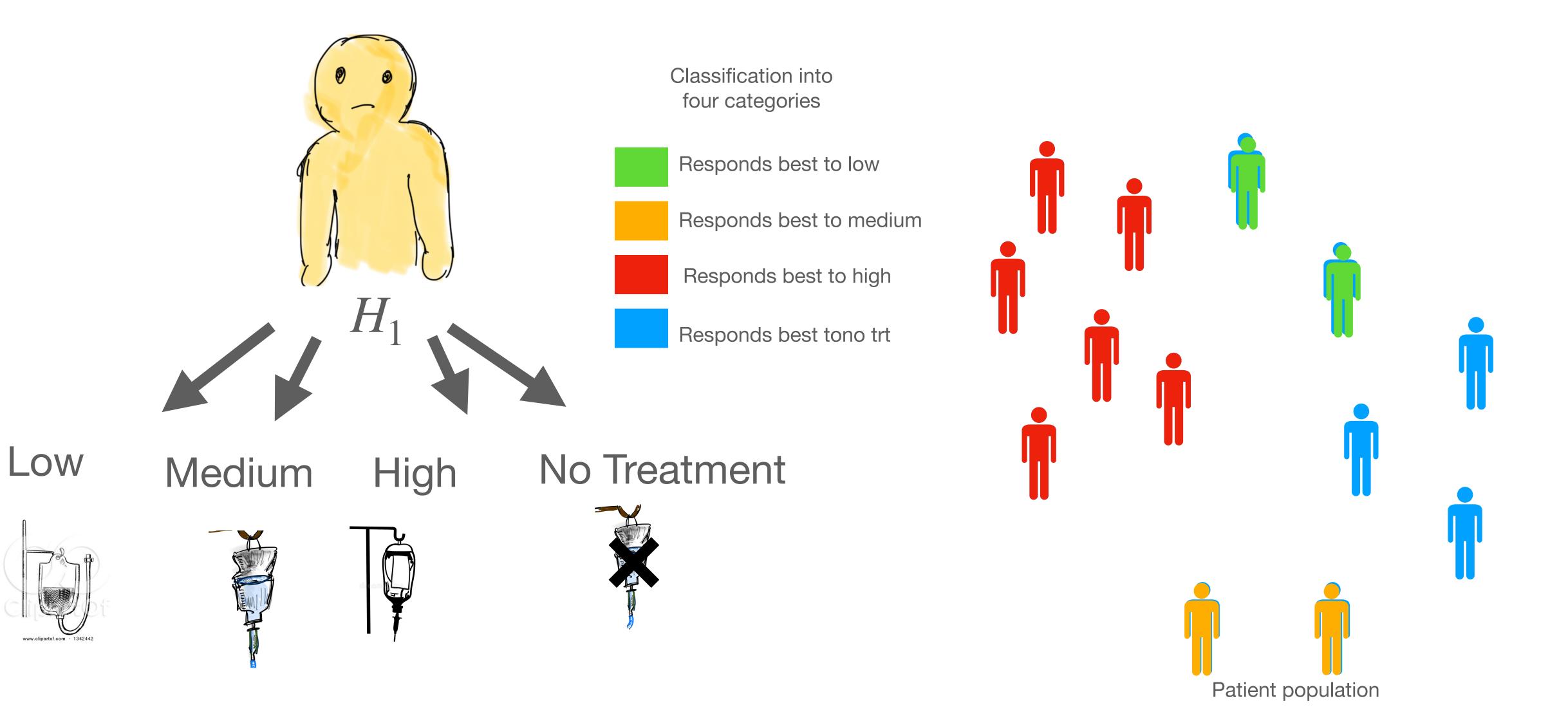


More than two treatment option

More than two treatment option

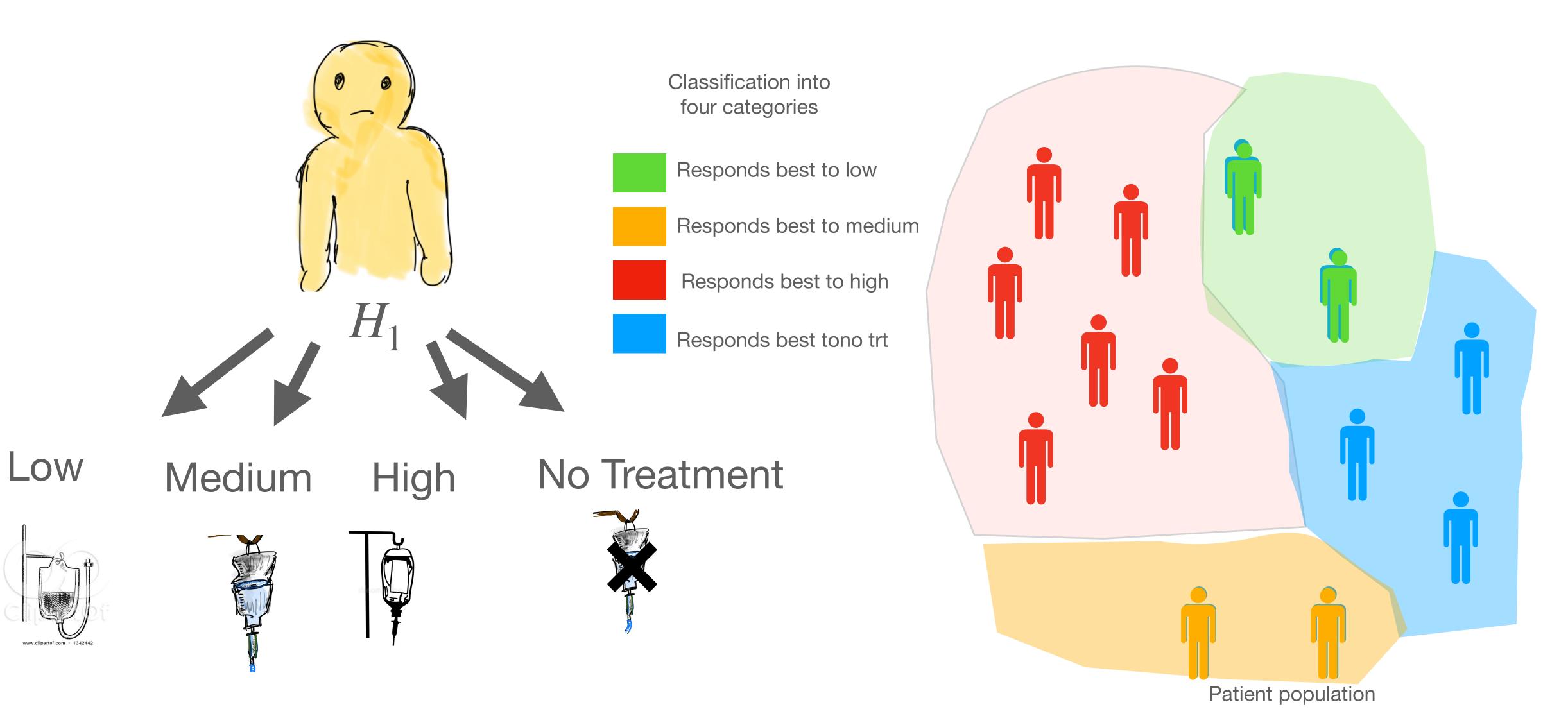


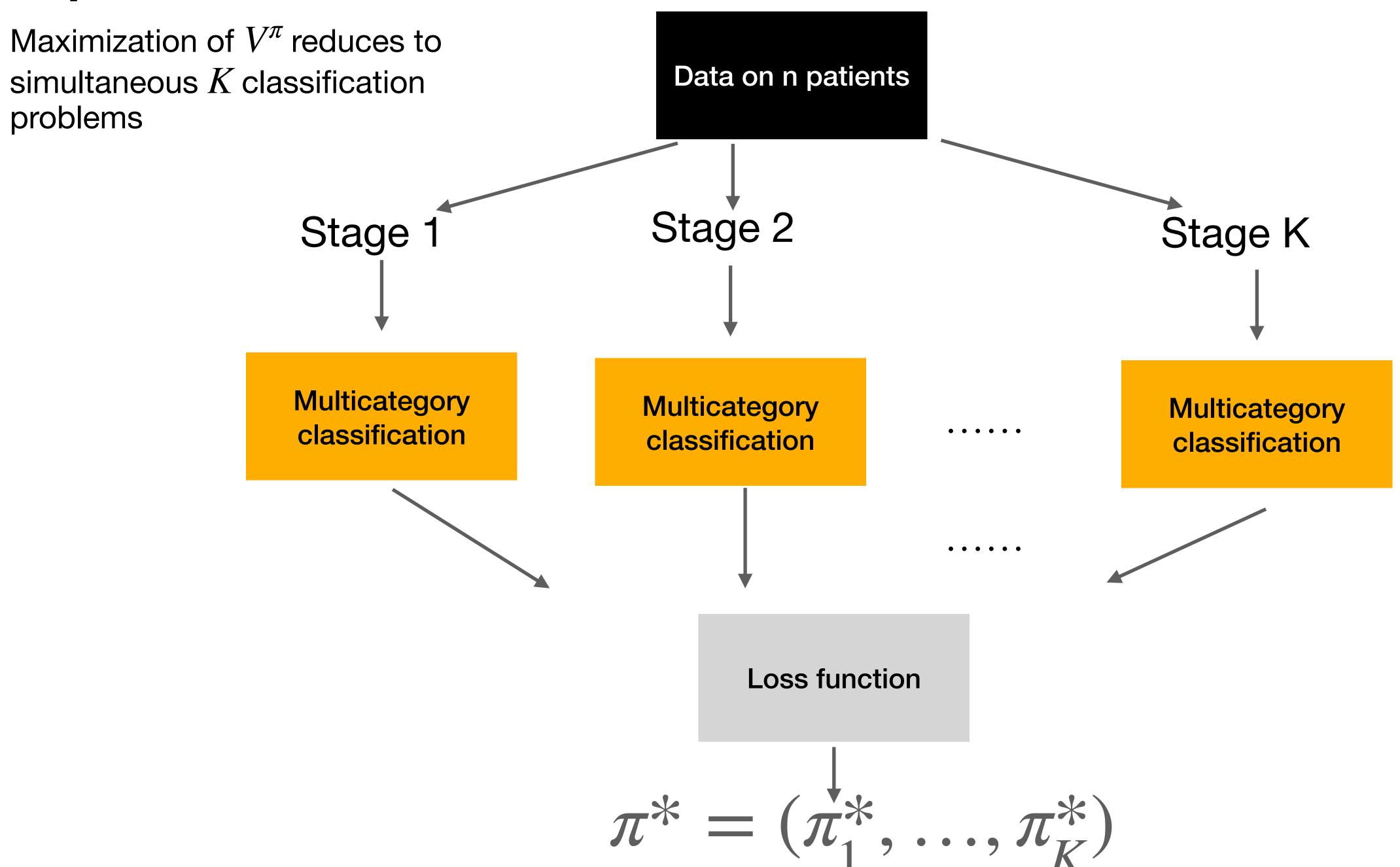
More than two treatment option

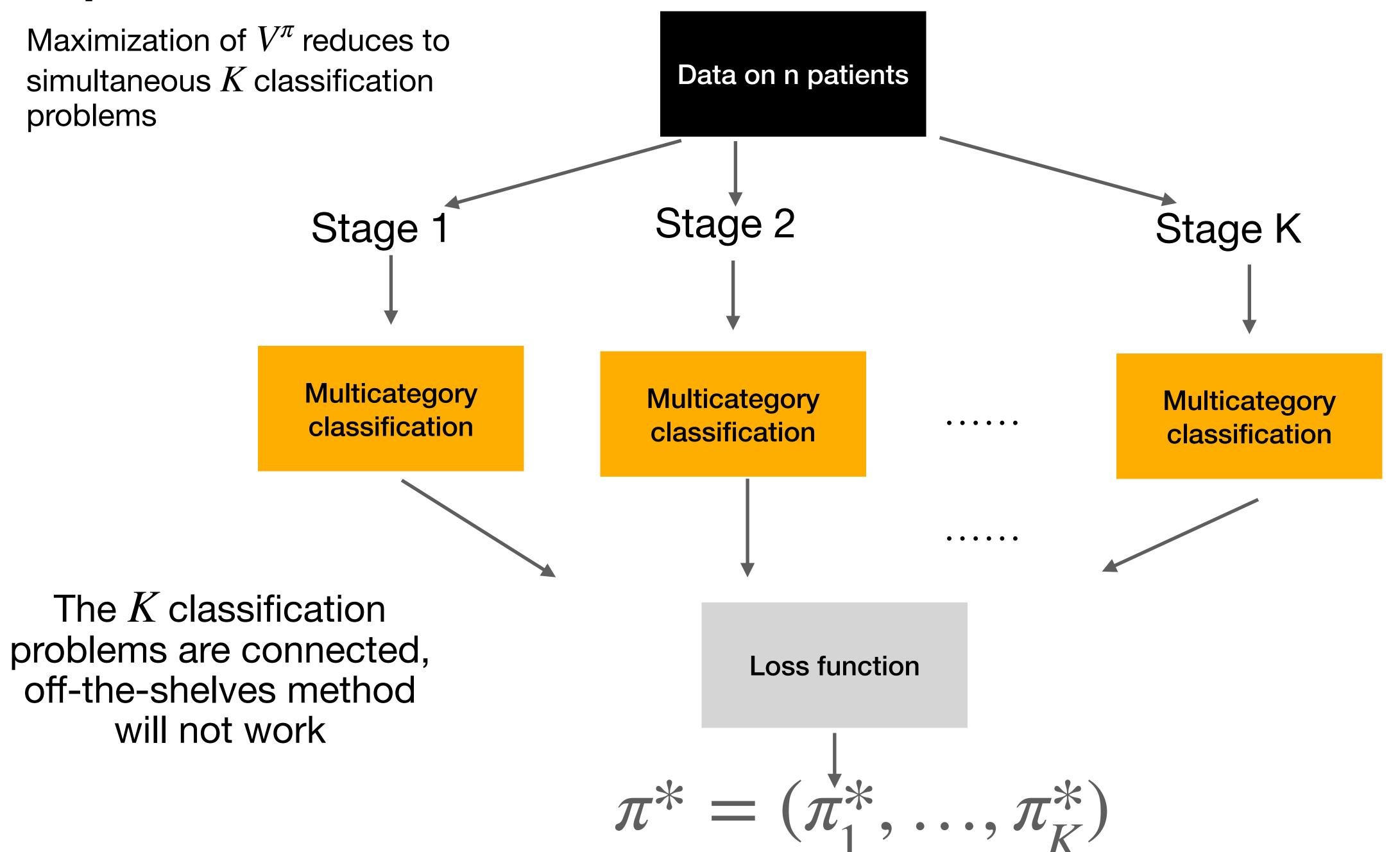


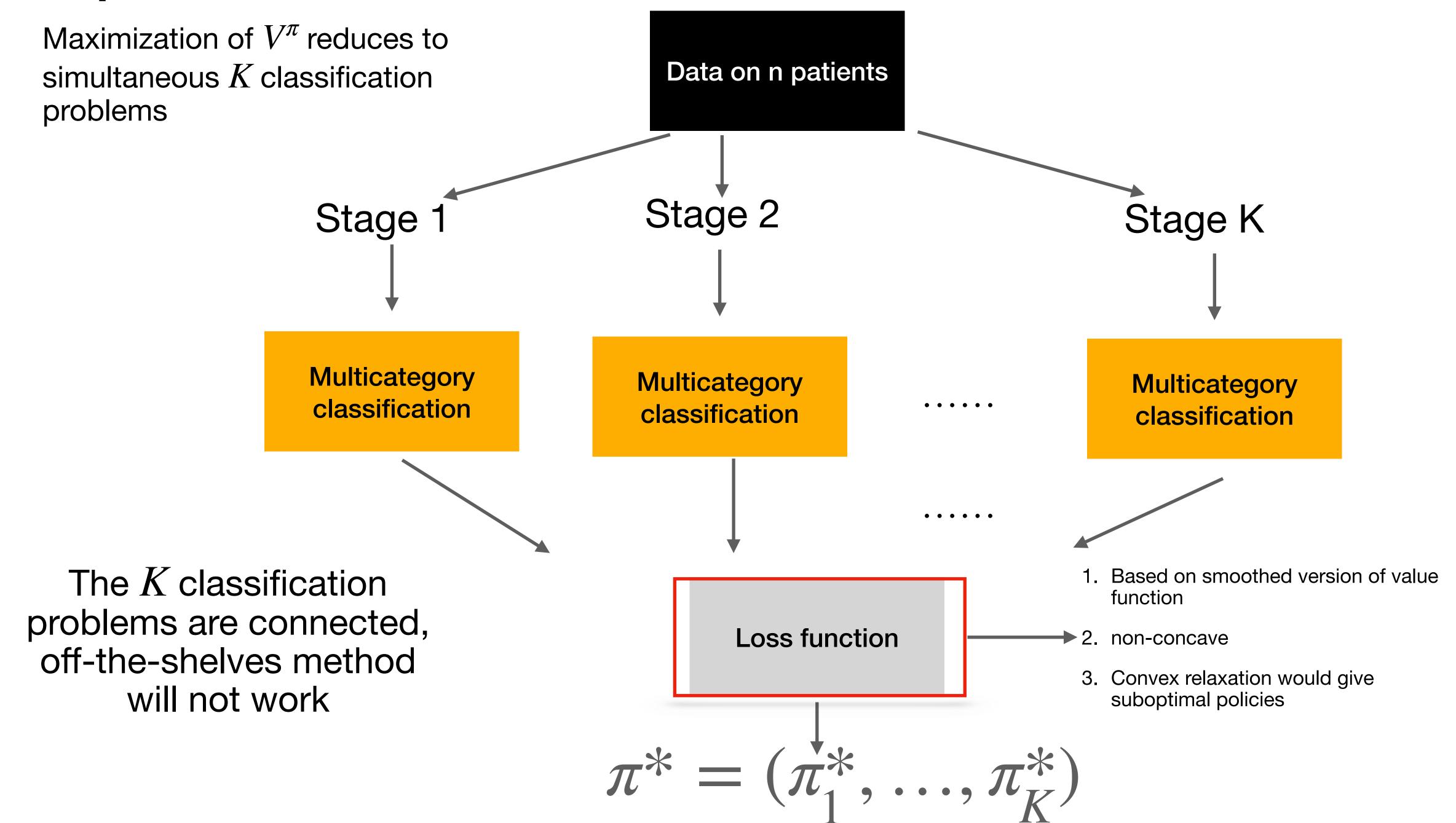
More than two treatment option

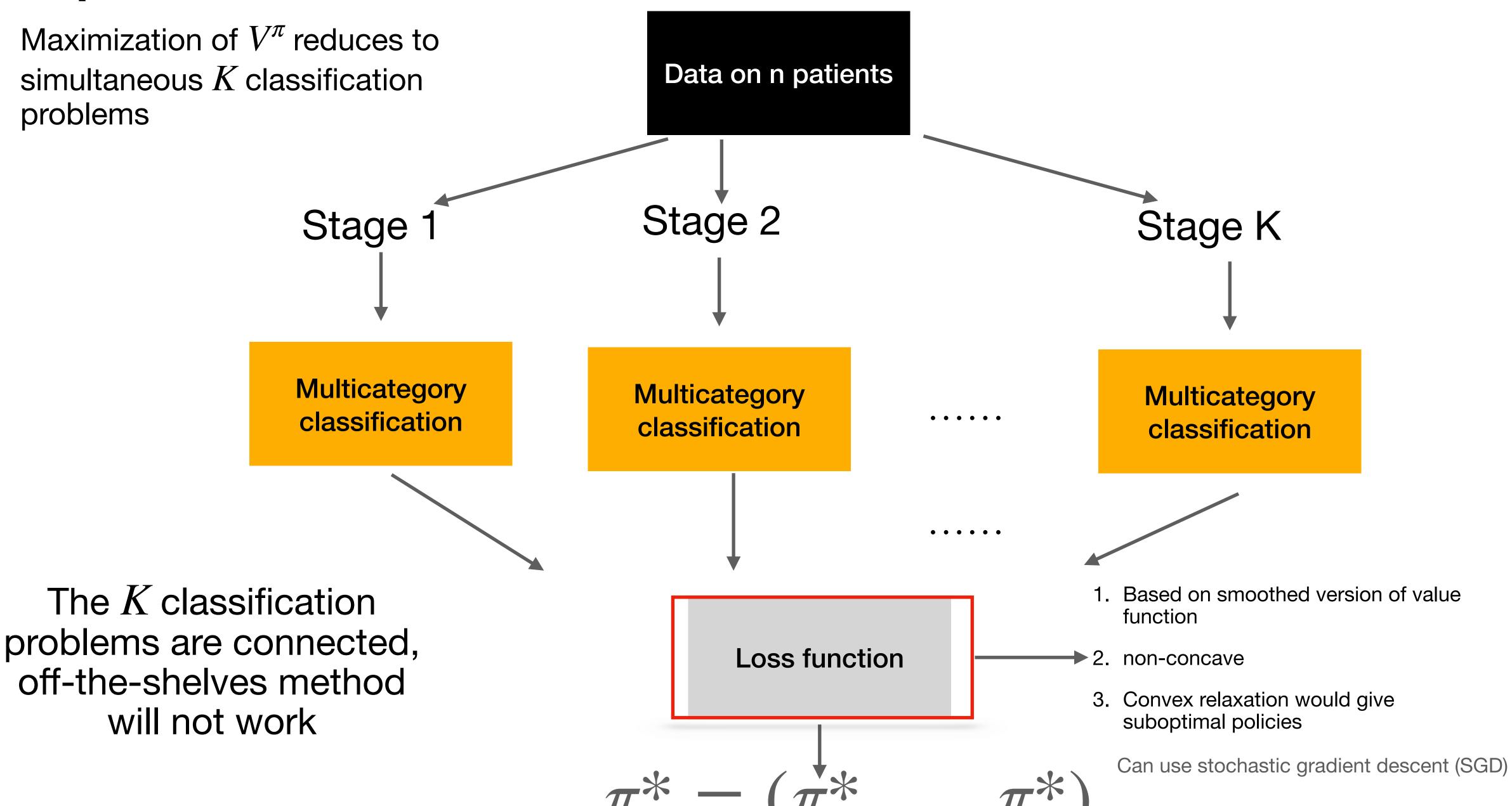
Treatment assignment at each stage: multicategory classification problem











Maximization of V^{π} reduces to simultaneous K classification problems

> Multicategory classification

Stage

The K classification problems are connected, off-the-shelves method will not work

Data on n patients

Stage 2

Multicategory classification

Loss function

Population level solution $\pi^* = (\pi_1^*, \dots, \pi_K^*)$

Estimated policy will be consistent if we use nonparametric methods, e.g., neural networks, for the classification

Stage K

Multicategory classification

Based on smoothed version of value function

2. non-concave

3. Convex relaxation would give suboptimal policies

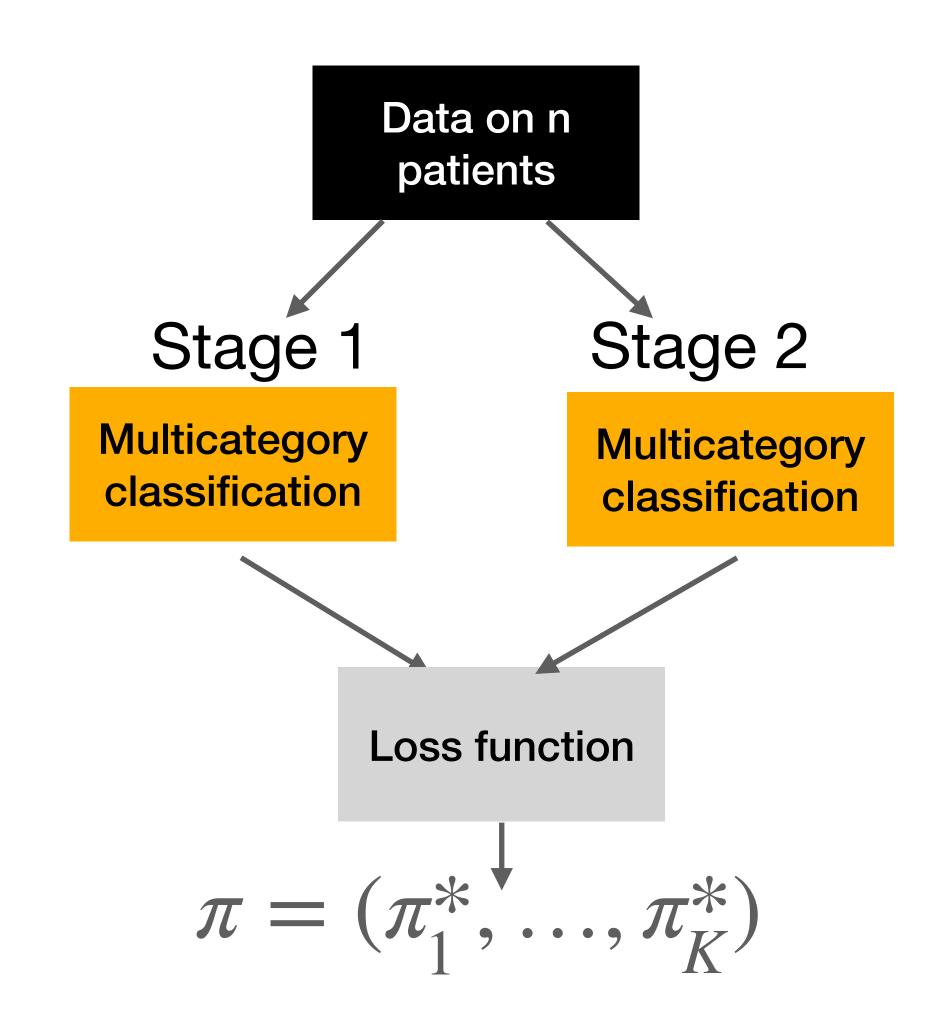
Can use stochastic gradient descent (SGD)

Outline

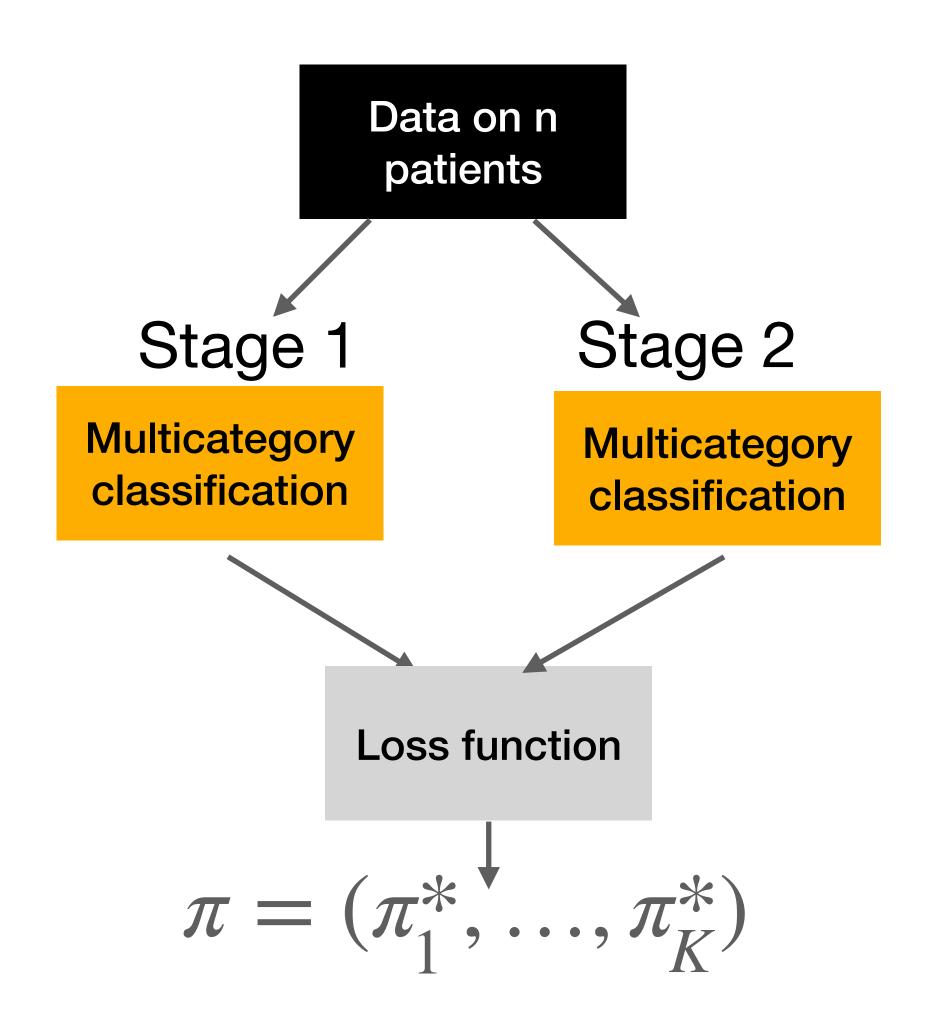
- Example: sepsis
- Problem formulation
- Proposed method
 - A. Methodology
 - B. Example on a toy data
- Open questions

Example with toy data

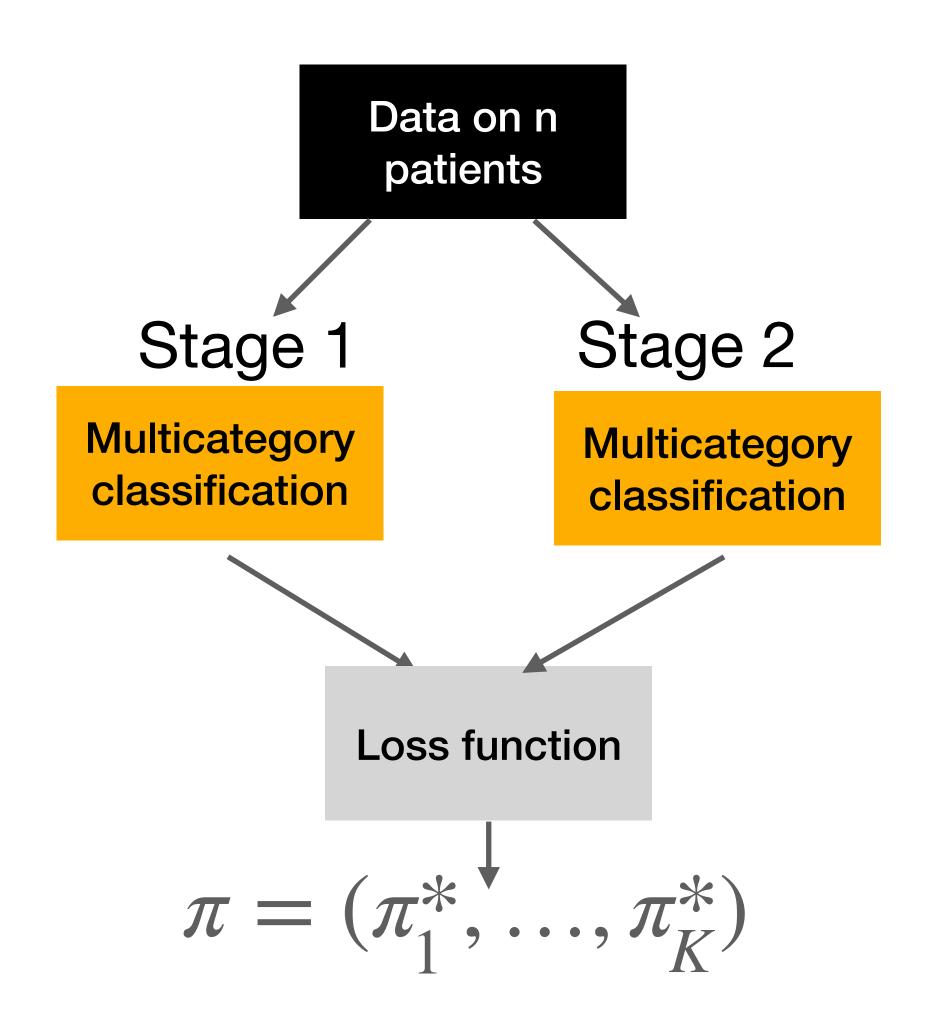
*This work is by Sneha Mishra, my former summer RA



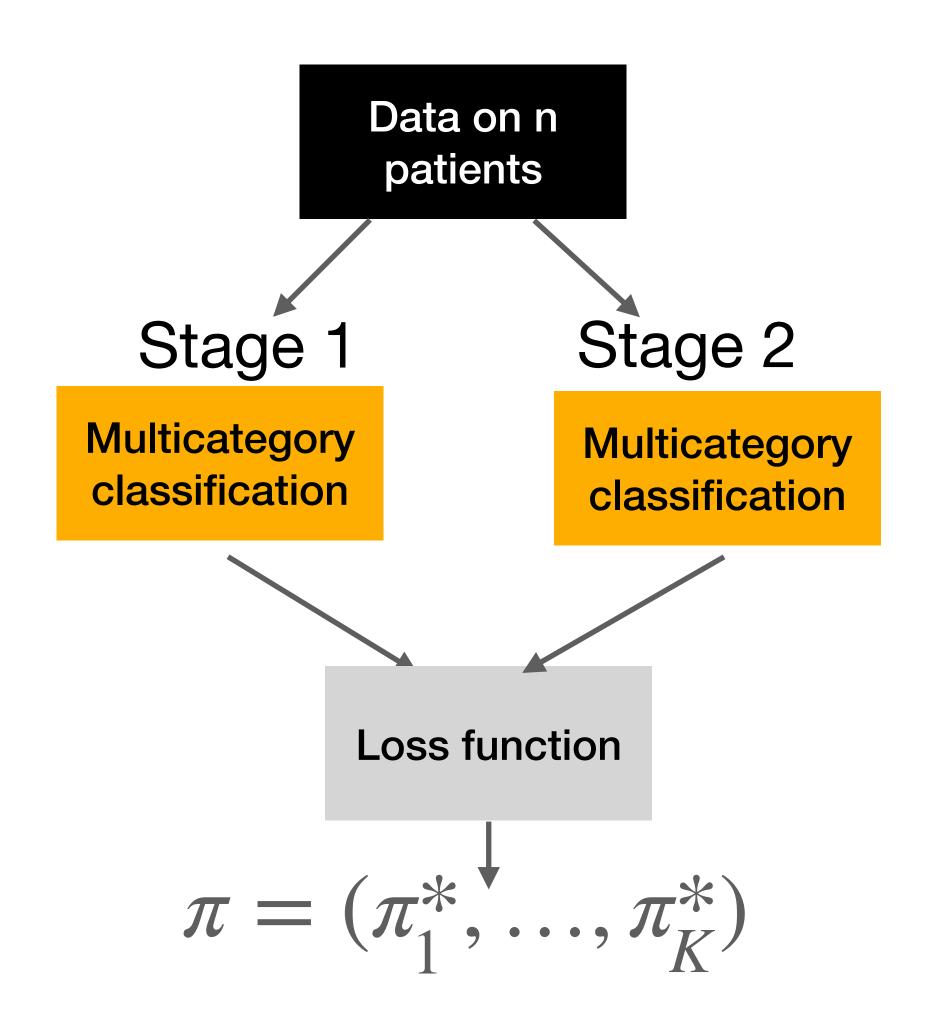
• Suppose number of stages, i.e., K=2



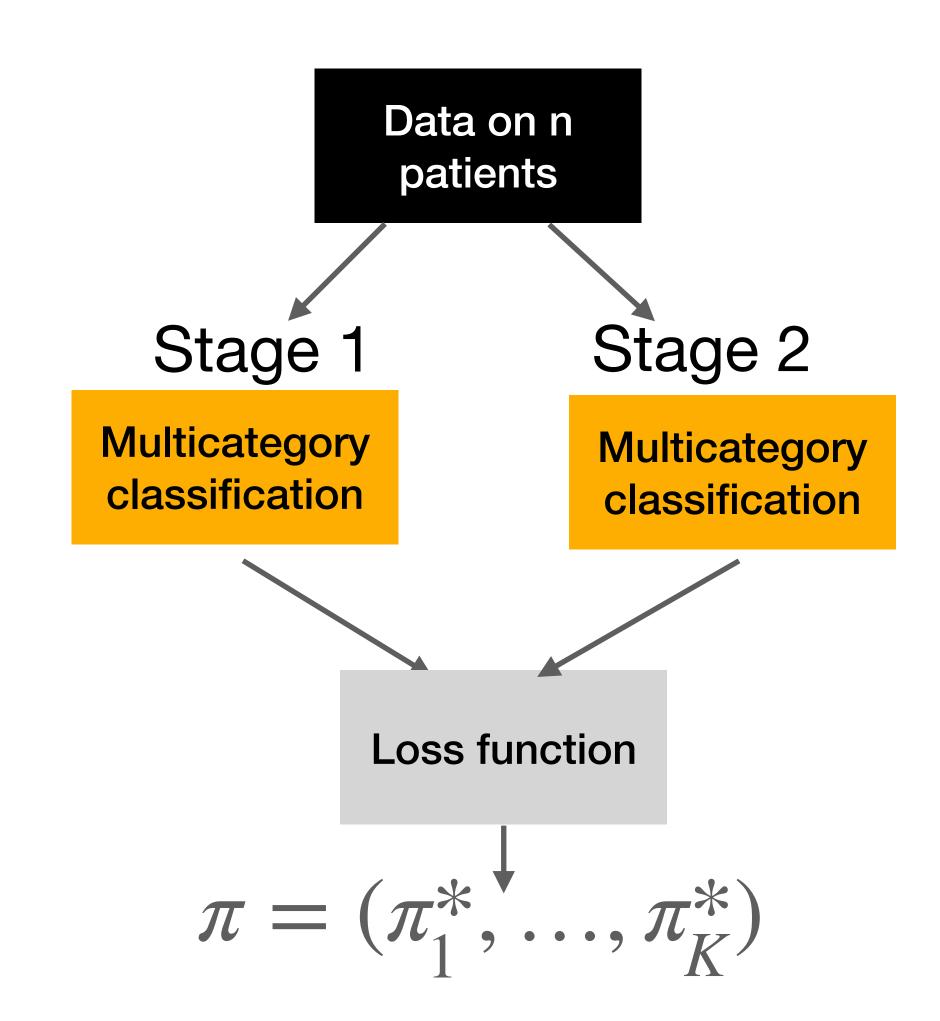
- Suppose number of stages, i.e., K = 2
- Number of treatments at each stage: 3.



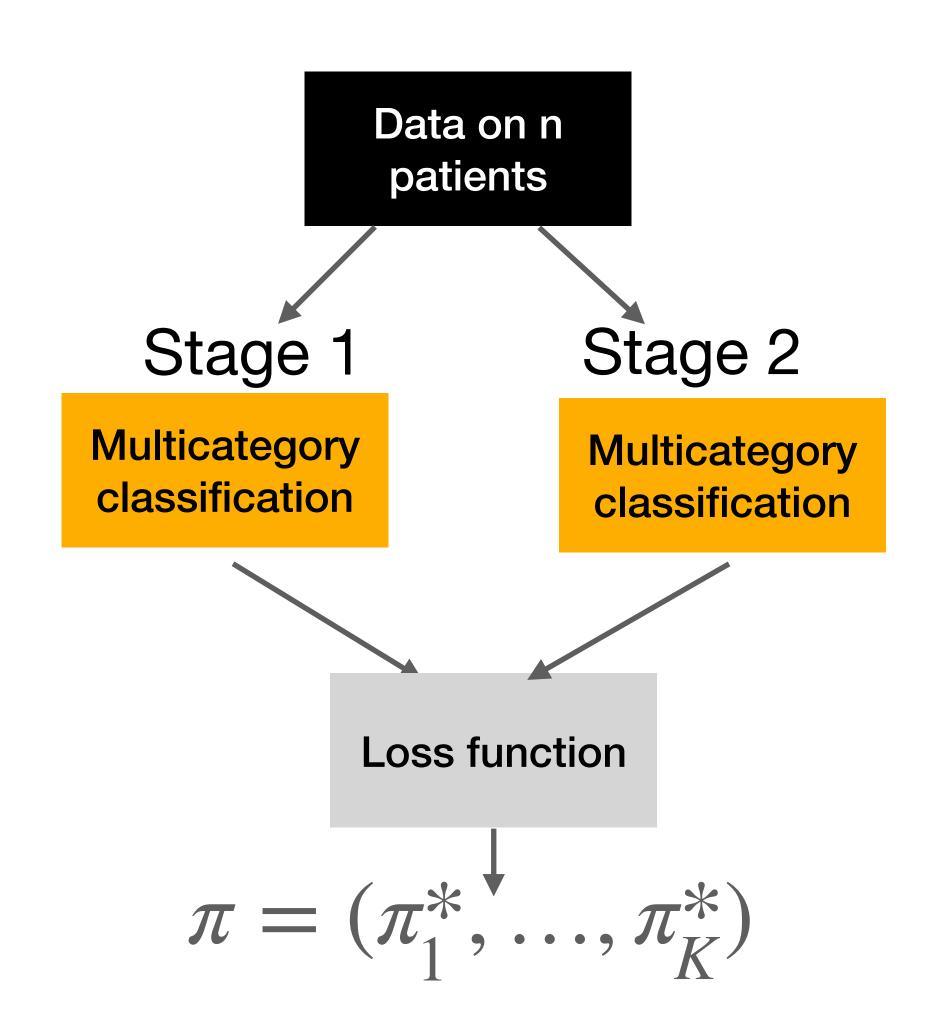
- Suppose number of stages, i.e., K = 2
- Number of treatments at each stage: 3.
- Use neural network classifiers



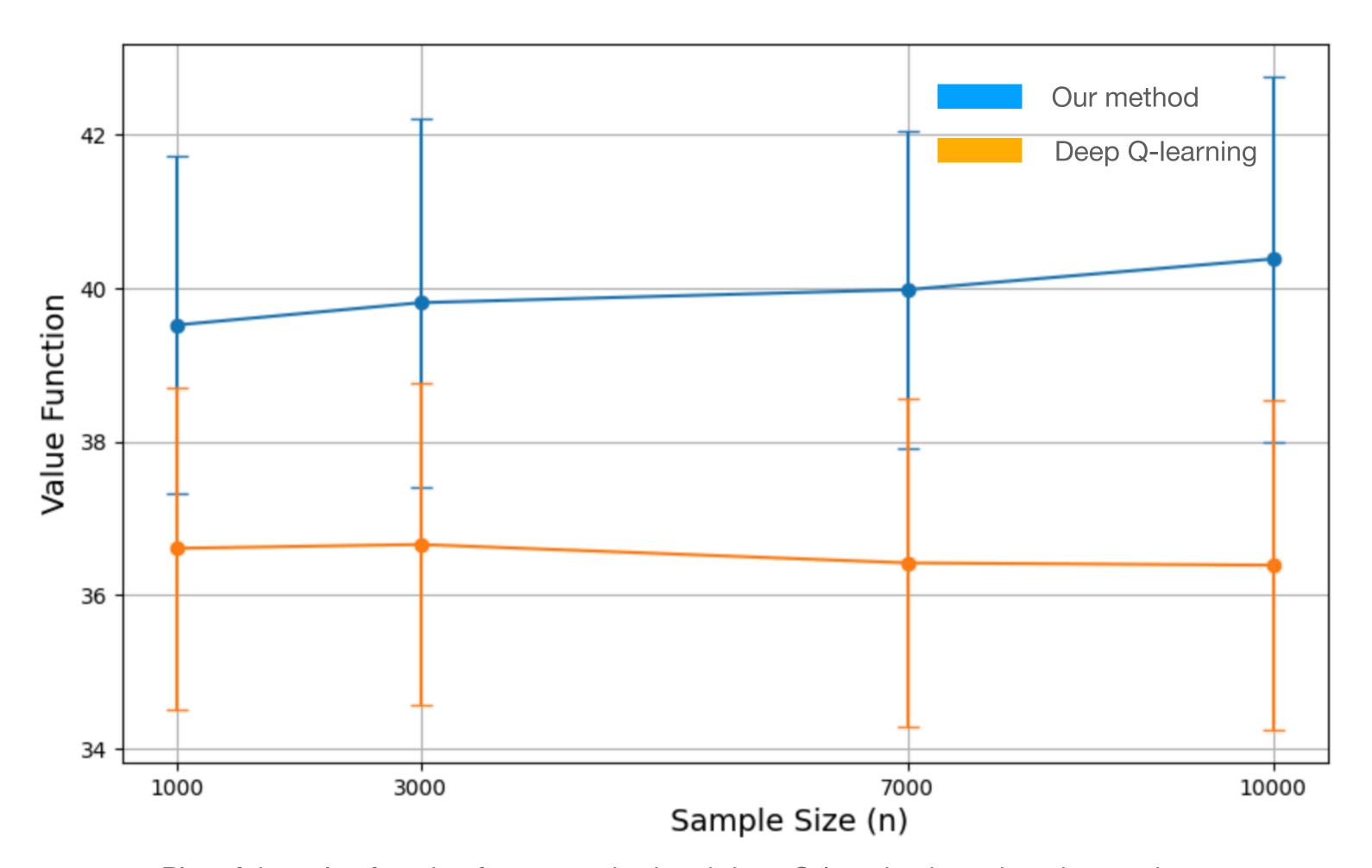
- Suppose number of stages, i.e., K = 2
- Number of treatments at each stage: 3.
- Use neural network classifiers
- No. Of covariates: 3



- Suppose number of stages, i.e., K = 2
- Number of treatments at each stage: 3.
- Use neural network classifiers
- No. Of covariates: 3
- The covariates and rewards were Gaussian, and the rewards were generated by a linear model.



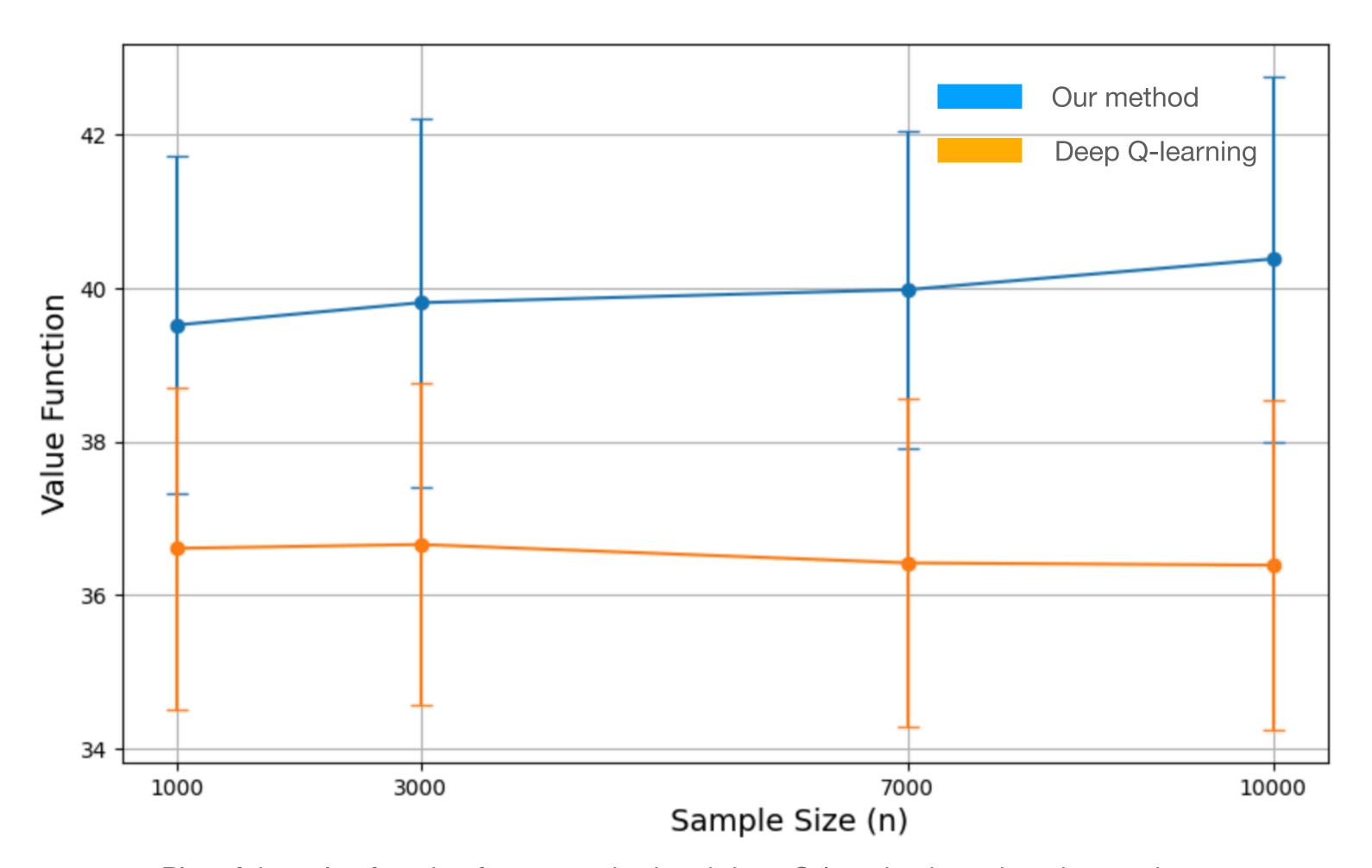
Plot of the population-level value functions



The deep Q-learning line represents the optimal policy generated by deep Q-learning method for DTR — that is current gold standard

Plot of the value function for our method and deep Q-learning based on the toy data

Plot of the population-level value functions



The deep Q-learning line represents the optimal policy generated by deep Q-learning method for DTR — that is current gold standard

Plot of the value function for our method and deep Q-learning based on the toy data

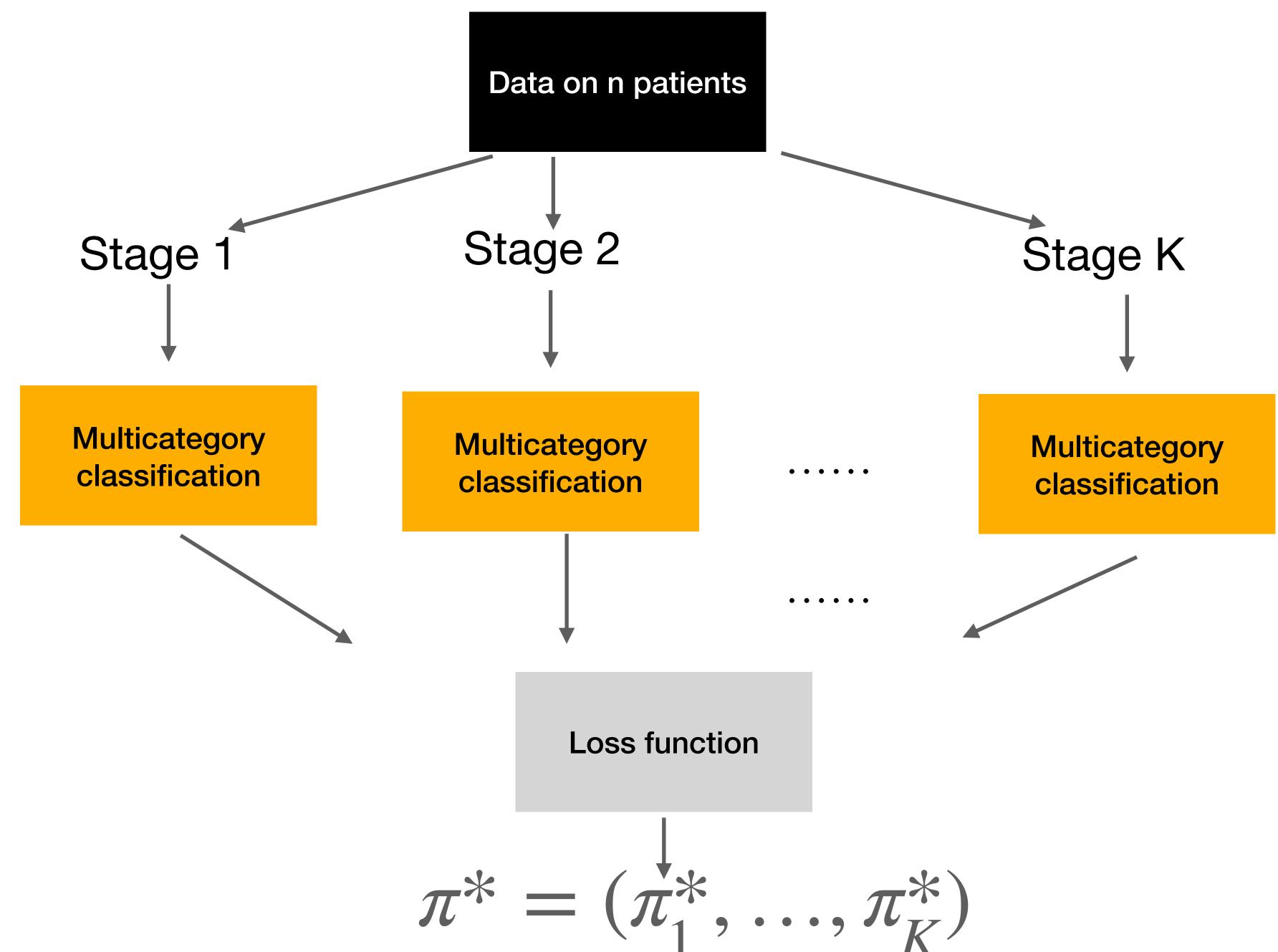
Outline

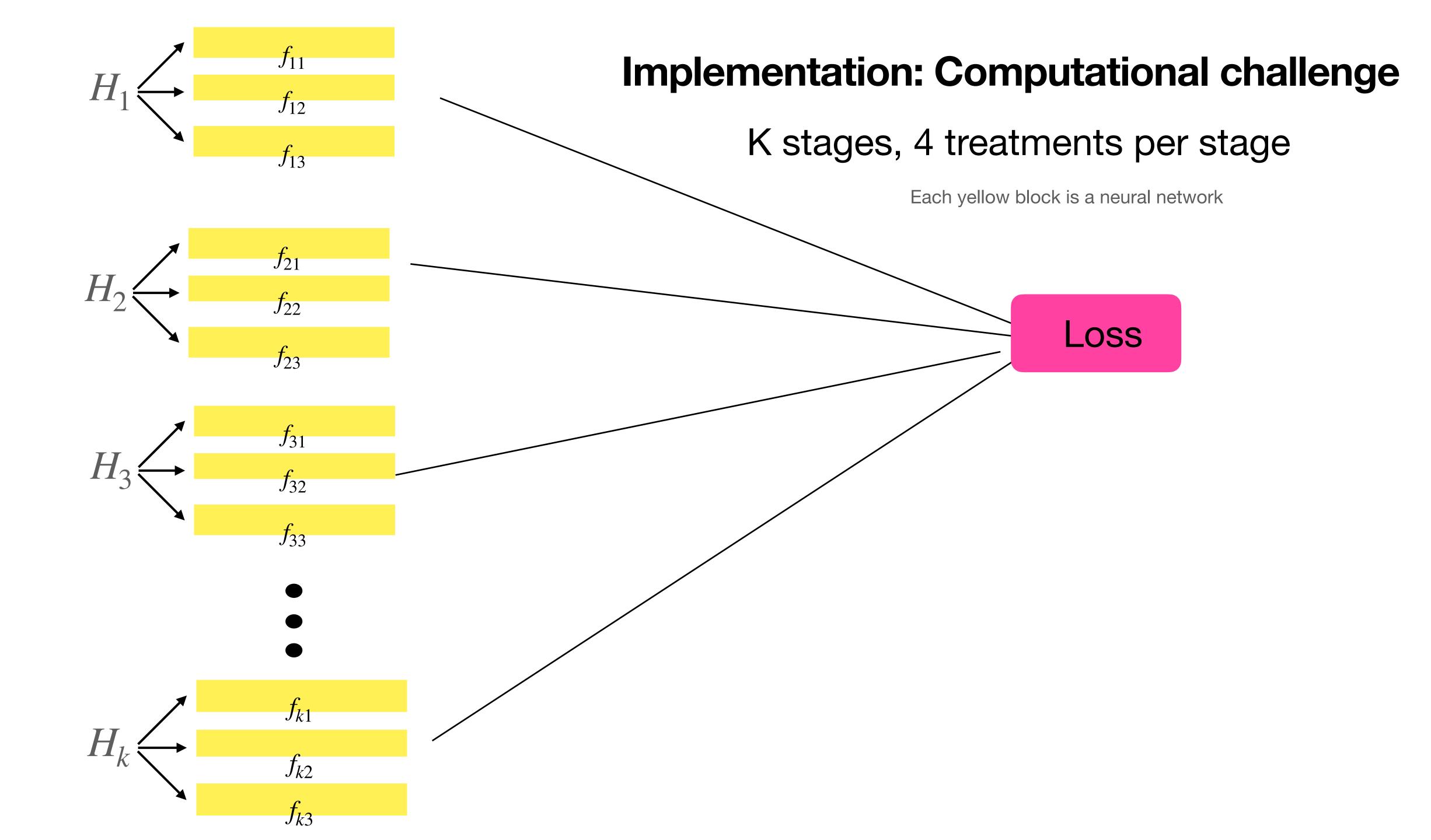
- Example: sepsis
- Problem formulation
- Proposed method
- Open questions
- A. Implementation and optimization
- B. Regret decay rate
- C. Doubly robust learning

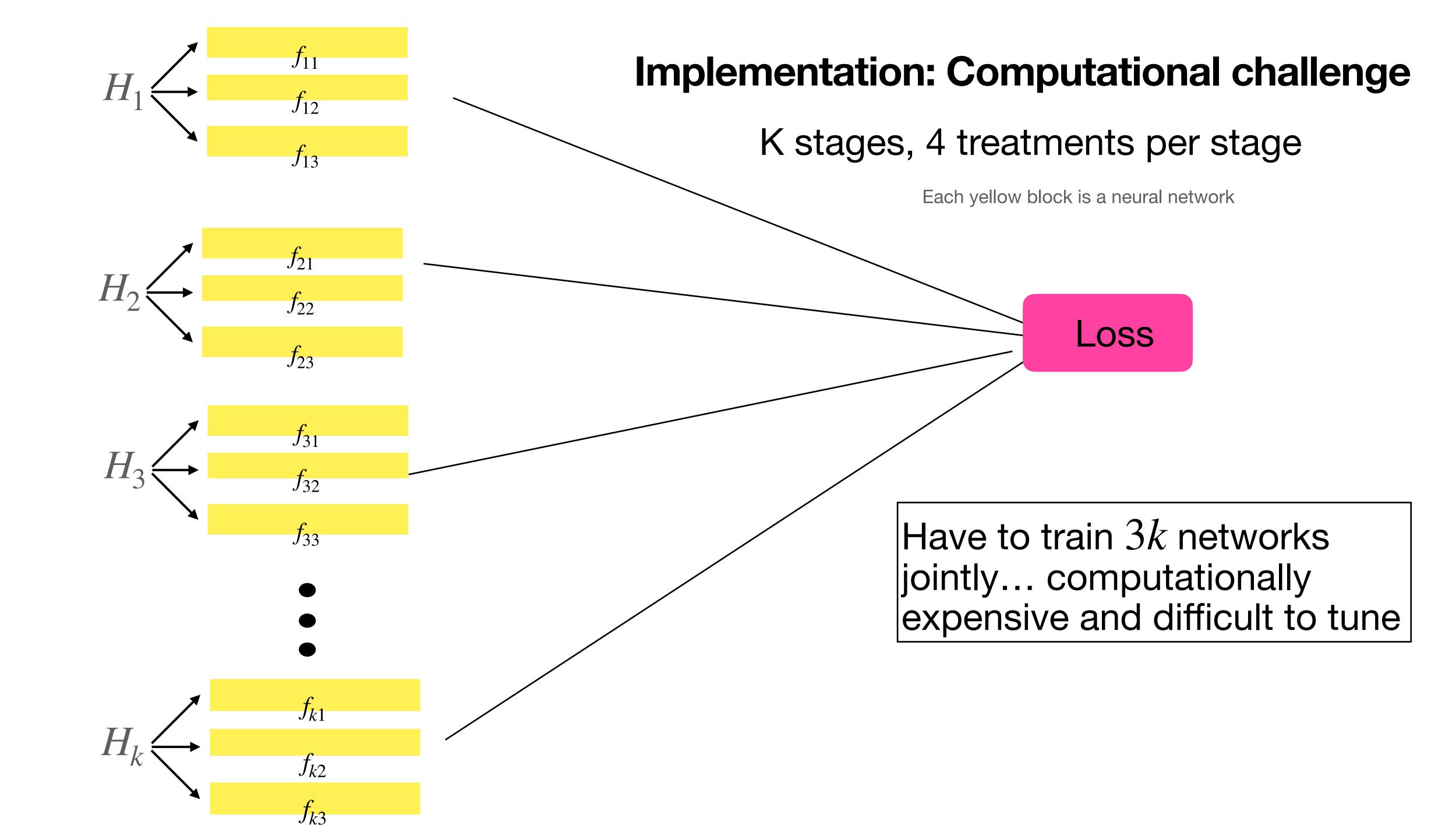
Outline

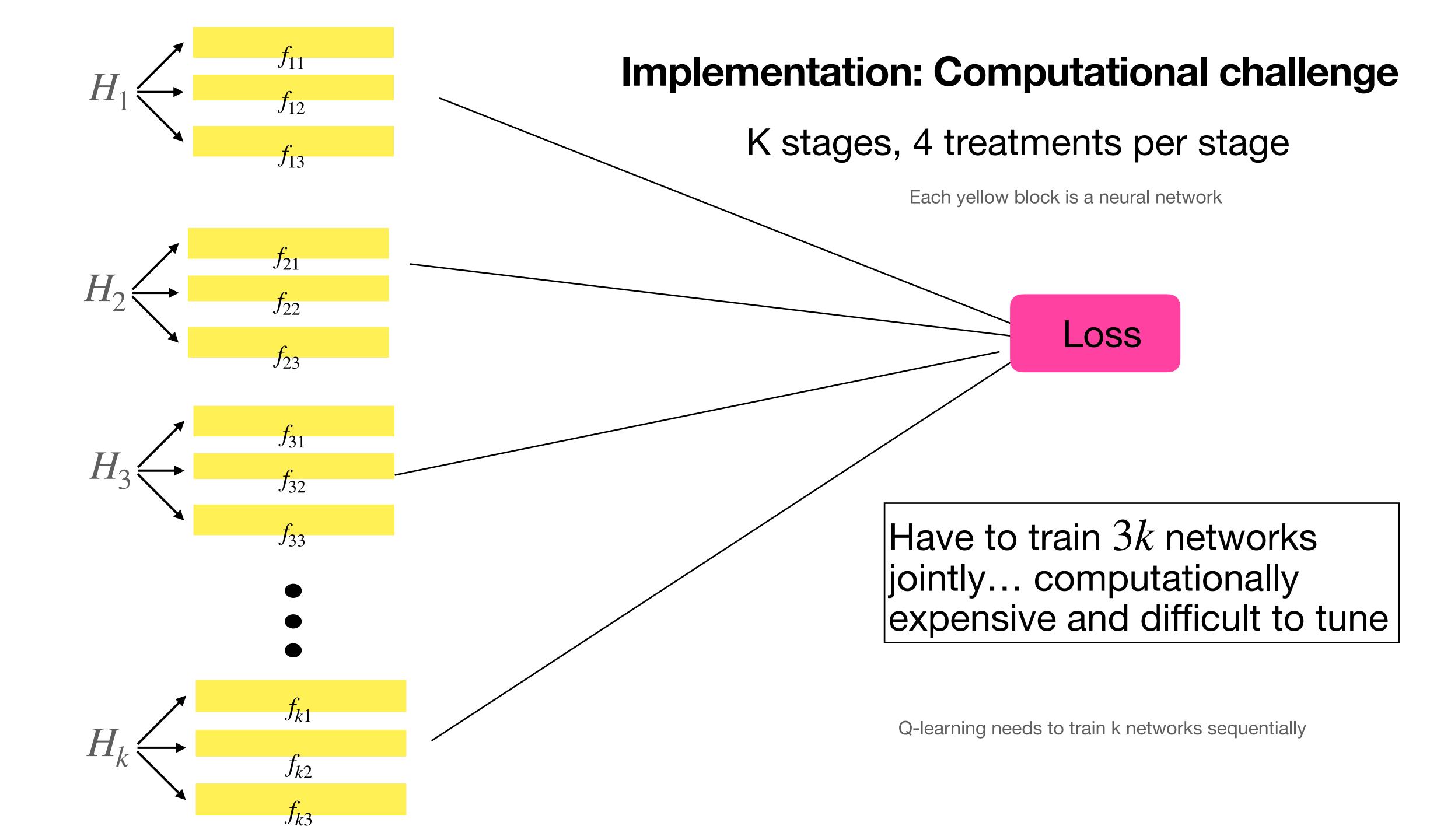
- Example: sepsis
- Problem formulation
- Proposed method
- Open questions
 - A. Implementation and optimization
 - B. Regret decay rate
 - C. Doubly robust learning

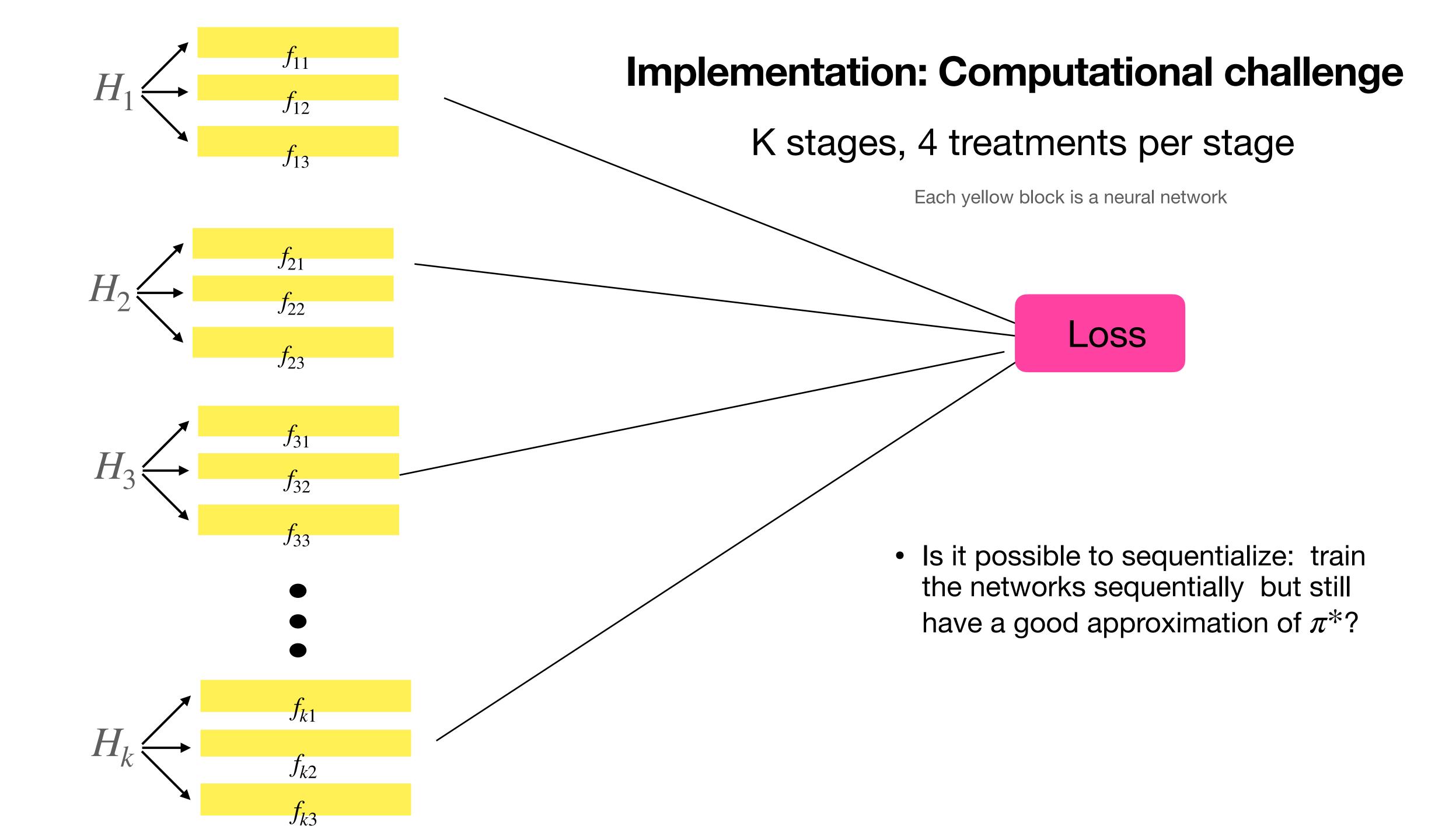
Implementation

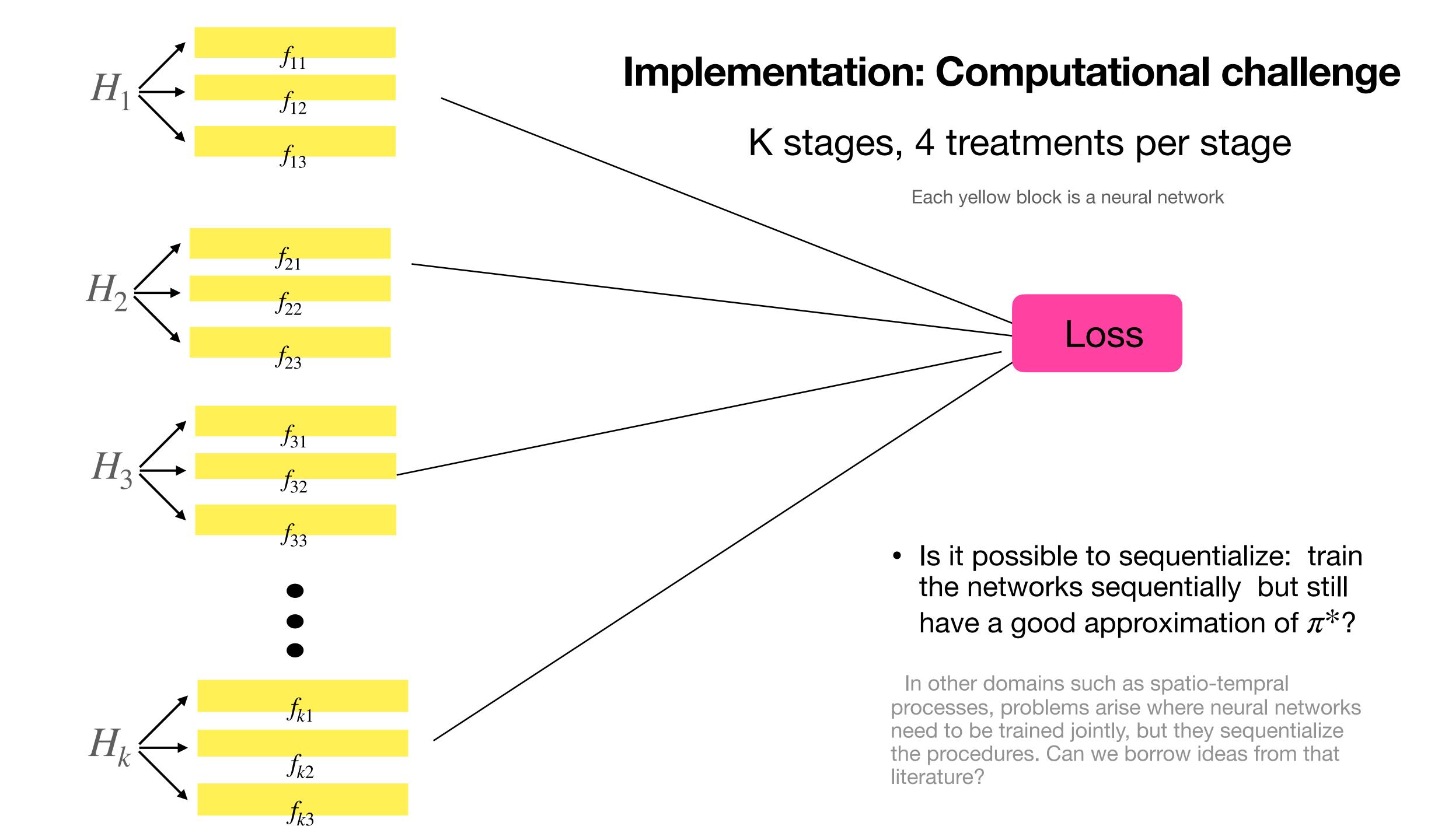












• Currently using stochastic gradient descent (SGD) for optimization — too general. We have a specific problem — can we tailor an optimization method?

- Currently using stochastic gradient descent (SGD) for optimization too general. We have a specific problem can we tailor an optimization method?
- Feng et al. (2022) used similar loss function for another machine learning problem called 'maximum score estimation", and tailored an optimization method for their problem. Can we do something similar?

- Currently using stochastic gradient descent (SGD) for optimization too general. We have a specific problem can we tailor an optimization method?
- Feng et al. (2022) used similar loss function for another machine learning problem called 'maximum score estimation", and tailored an optimization method for their problem. Can we do something similar?

Will require analysis of the optimization landscape

^{1.} Nguyen et al., 2017 and 2019

^{2.} Laha et al., 2022

^{1.} Nguyen et al., 2017 and 2019

^{2.} Laha et al., 2022

Neural network classifiers:

^{1.} Nguyen et al., 2017 and 2019

^{2.} Laha et al., 2022

Neural network classifiers:

Existing deep learning results: can be used¹.

^{2.} Laha et al., 2022

Neural network classifiers:

Existing deep learning results: can be used¹.

Challenges: loss non-standard, existing results not directly applicable

^{2.} Laha et al., 2022

Optimization landscape

K=1, 3 treatments, one covariate ($S_1 \in \mathbb{R}$), linear classifier

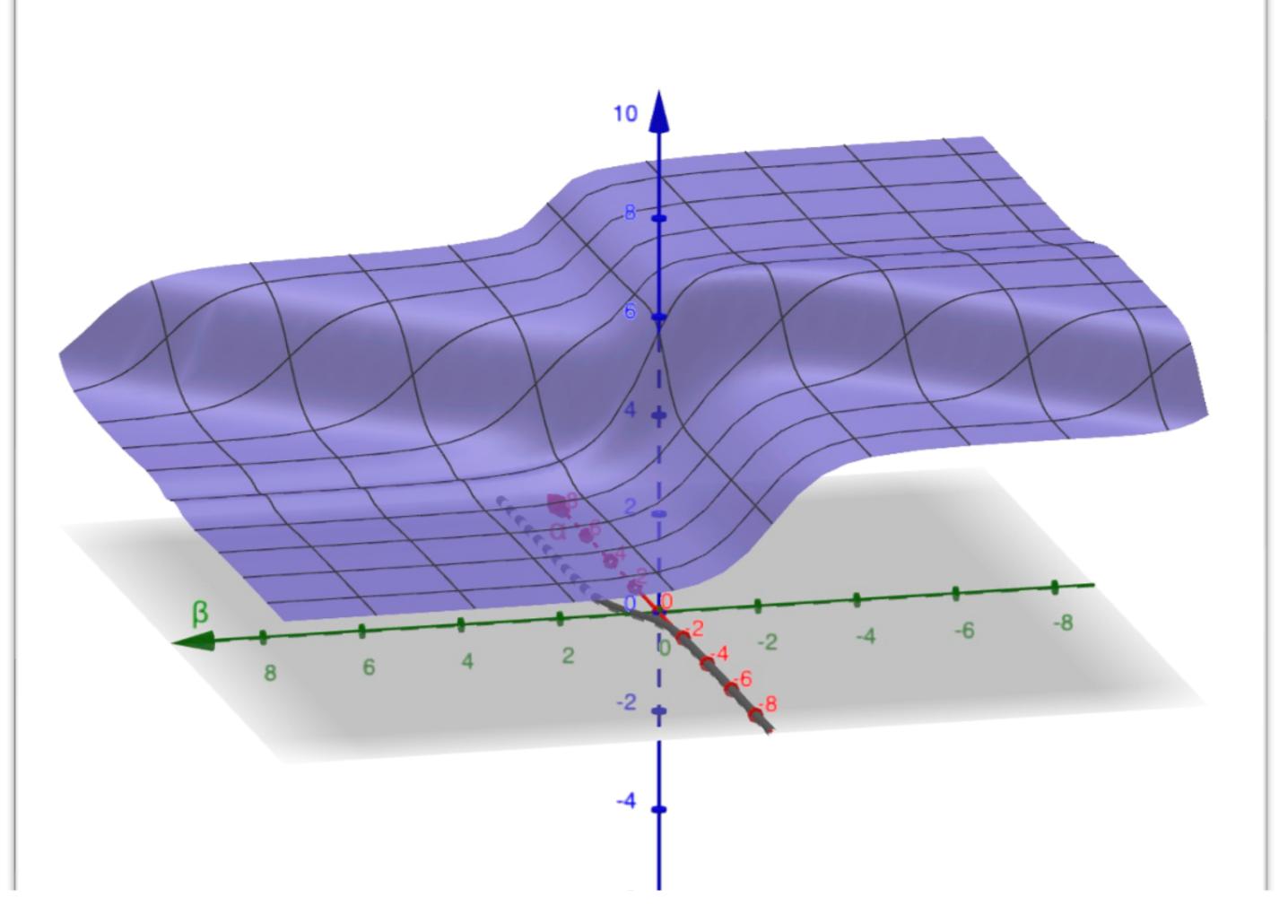
Neural network classifiers:

Existing deep learning results: can be used¹.

Challenges: loss non-standard, existing results not directly applicable

• Linear classifiers:

optimization surface — specific properties: No local minima + regions with small gradient²



- 1. Nguyen et al., 2017 and 2019
- 2. Laha et al., 2022

DTR

DTR
PyTorch

DTR

PyTorch

Working with deep neural nets

DTR

PyTorch

Working with deep neural nets

Convergence of optimization-methods for non-convex problems¹

DTR

PyTorch

Working with deep neural nets

Convergence of optimization-methods for non-convex problems¹

Outline

- Example: sepsis
- Problem formulation
- Proposed method
- Open questions
 - A. Implementation and optimization
 - B. Regret decay rate
 - C. Doubly robust learning

Regret decay

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

What is the rate of decay of regret?

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

What is the rate of decay of regret?

Probably won't be very different from the 2-treatments case (Laha et al., 2022).

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

What is the rate of decay of regret?

Probably won't be very different from the 2-treatments case (Laha et al., 2022).

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

What is the rate of decay of regret?

Probably won't be very different from the 2-treatments case (Laha et al., 2022).

Skills you will learn:

1. DTR

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

What is the rate of decay of regret?

Probably won't be very different from the 2-treatments case (Laha et al., 2022).

- 1. DTR
- 2. Empirical risk minimization theory

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

What is the rate of decay of regret?

Probably won't be very different from the 2-treatments case (Laha et al., 2022).

- 1. DTR
- 2. Empirical risk minimization theory
- 3. Some theory on multicategory classification

Regret decay

• Regret: $V^{\pi^*} - V^{\widehat{\pi}}$ measures how well we approximated π^* using $\widehat{\pi}$.

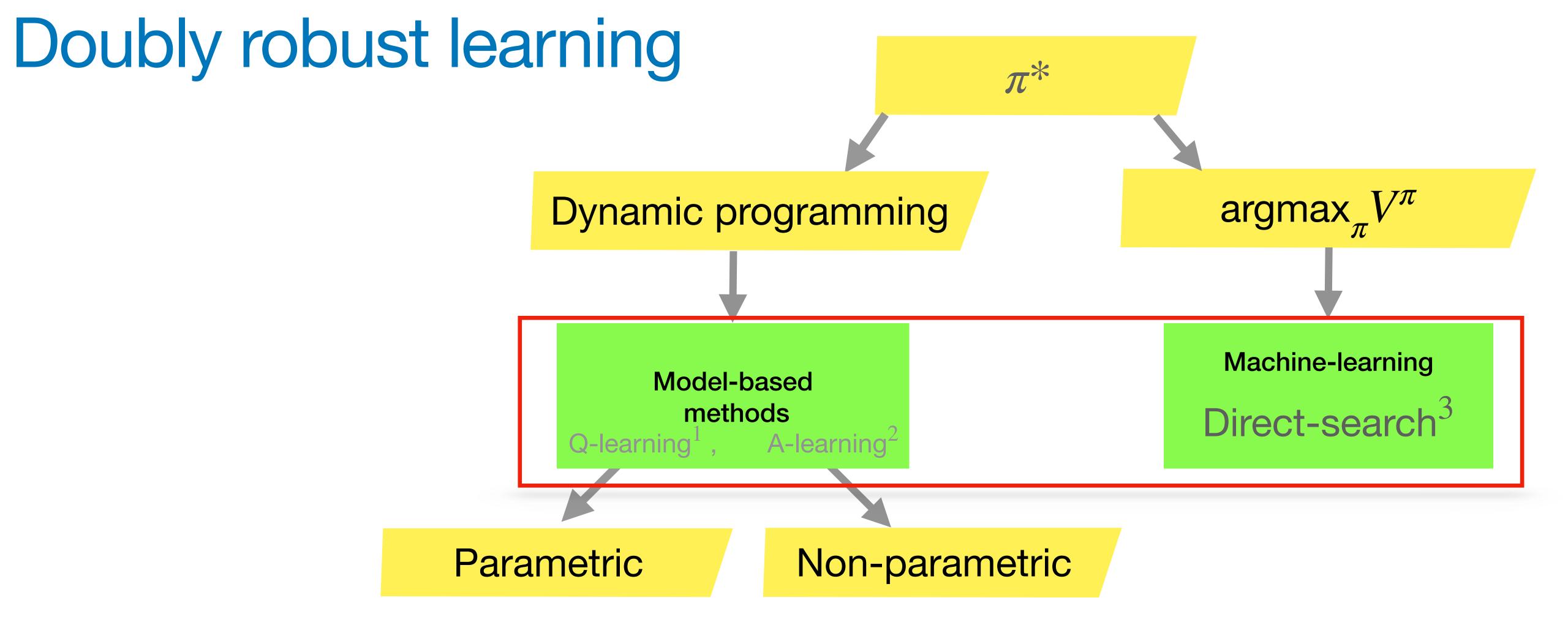
What is the rate of decay of regret?

Probably won't be very different from the 2-treatments case (Laha et al., 2022).

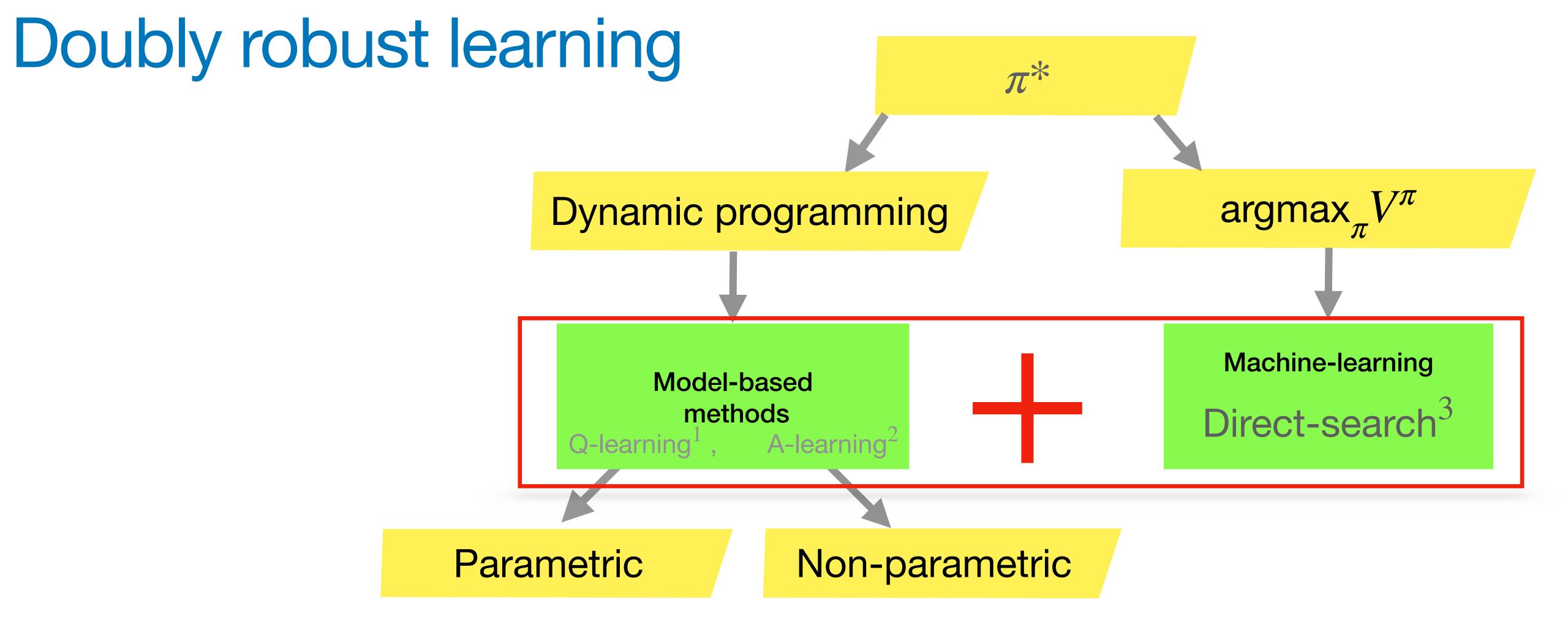
- 1. DTR
- 2. Empirical risk minimization theory
- 3. Some theory on multicategory classification
- 4. Some theory on policy learning in offline RL

Outline

- Example: sepsis
- Problem formulation
- Proposed method
- Open questions
 - A. Implementation and optimization
 - B. Regret decay rate
 - C. Doubly robust learning



- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2023



Hybrid method (idea taken from offline RL)

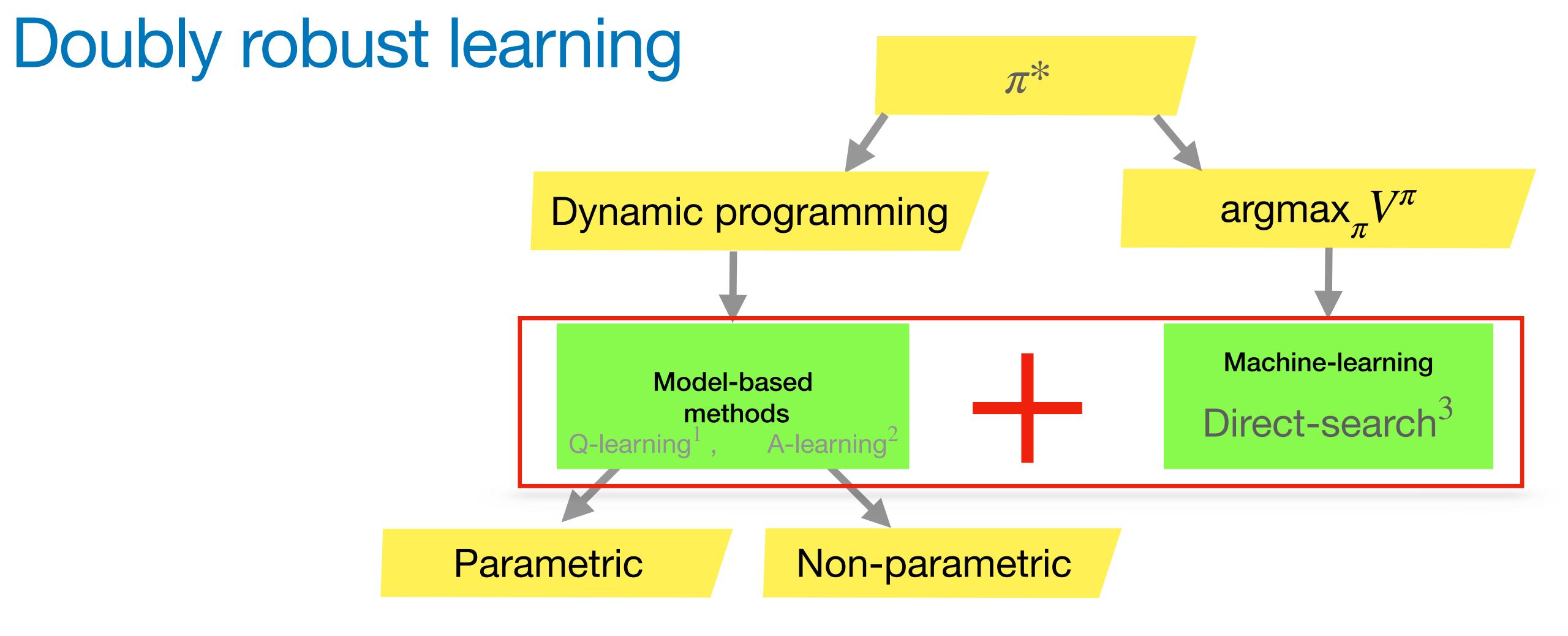
- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2023

Doubly robust learning $\operatorname{argmax}_{\pi}V^{\pi}$ Dynamic programming Machine-learning Model-based Direct-search³ methods Q-learning¹, A-learning² Parametric Non-parametric

Hybrid method (idea taken from offline RL)

If either the Q-learning model assumptions or the estimation of treatment assignment probabilities correct, then π^* consistently estimated

- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2023



Hybrid method (idea taken from offline RL)

If either the Q-learning model assumptions or the estimation of treatment assignment probabilities correct, then π^* consistently estimated

- 1. Watkins, 1989; Schulte et al. 2014
- 2. Murphy, 2003; Robins, 2004
- 3. Zhao et al. 2012; 2015, Laha et al. 2023

Doubly robust learning

1. I already have the method, but same questions on implementation

- 1. I already have the method, but same questions on implementation
- 2. regret decay: \sqrt{n} consistent

- 1. I already have the method, but same questions on implementation
- 2. regret decay: \sqrt{n} consistent

- 1. I already have the method, but same questions on implementation
- 2. regret decay: \sqrt{n} —consistent

Skills you will learn:

1. DTR

- 1. I already have the method, but same questions on implementation
- 2. regret decay: \sqrt{n} consistent

- 1. DTR
- 2. Q-learning

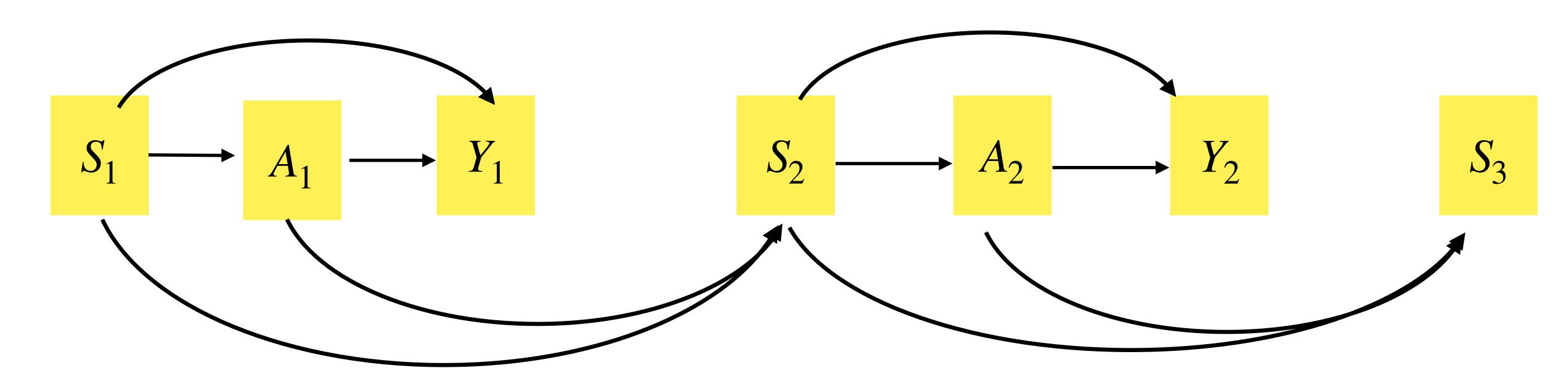
- 1. I already have the method, but same questions on implementation
- 2. regret decay: \sqrt{n} —consistent

- 1. DTR
- 2. Q-learning
- 3. doubly robust offline RL

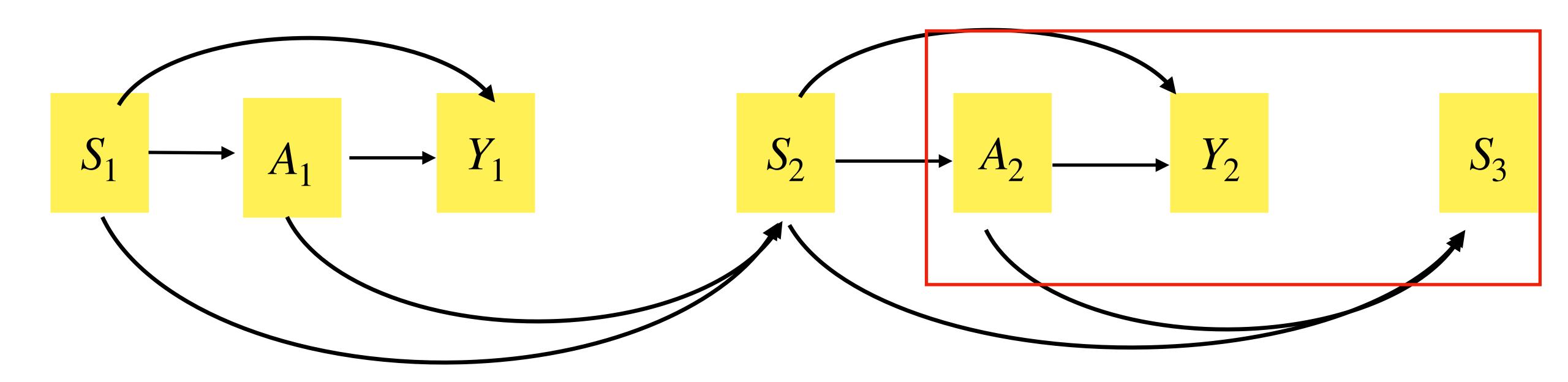
- 1. I already have the method, but same questions on implementation
- 2. regret decay: \sqrt{n} —consistent

- 1. DTR
- 2. Q-learning
- 3. doubly robust offline RL
- 4. Some doubly robust literature in causal inference

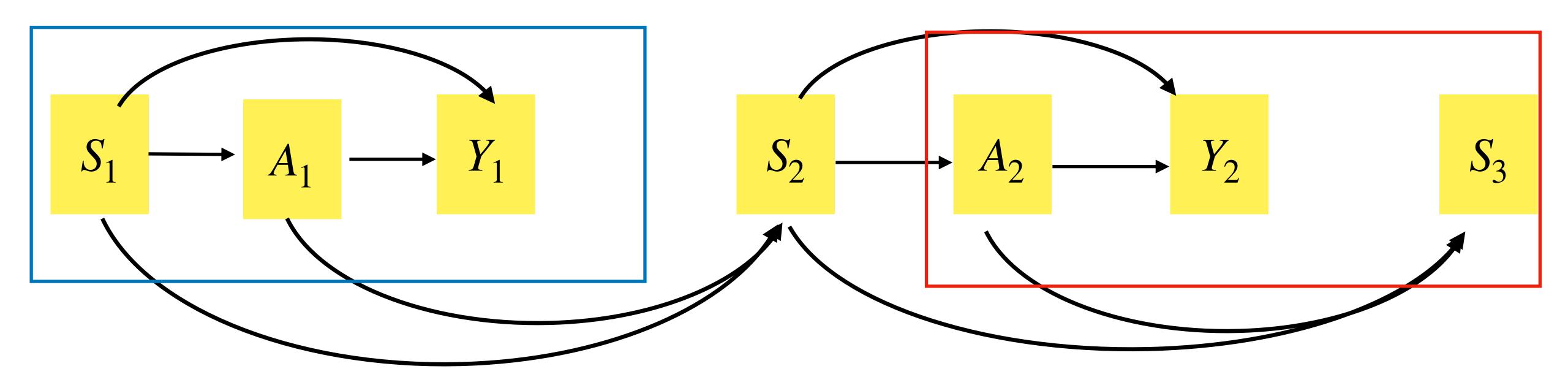
We do not make Markov decision process (MDP) assumption

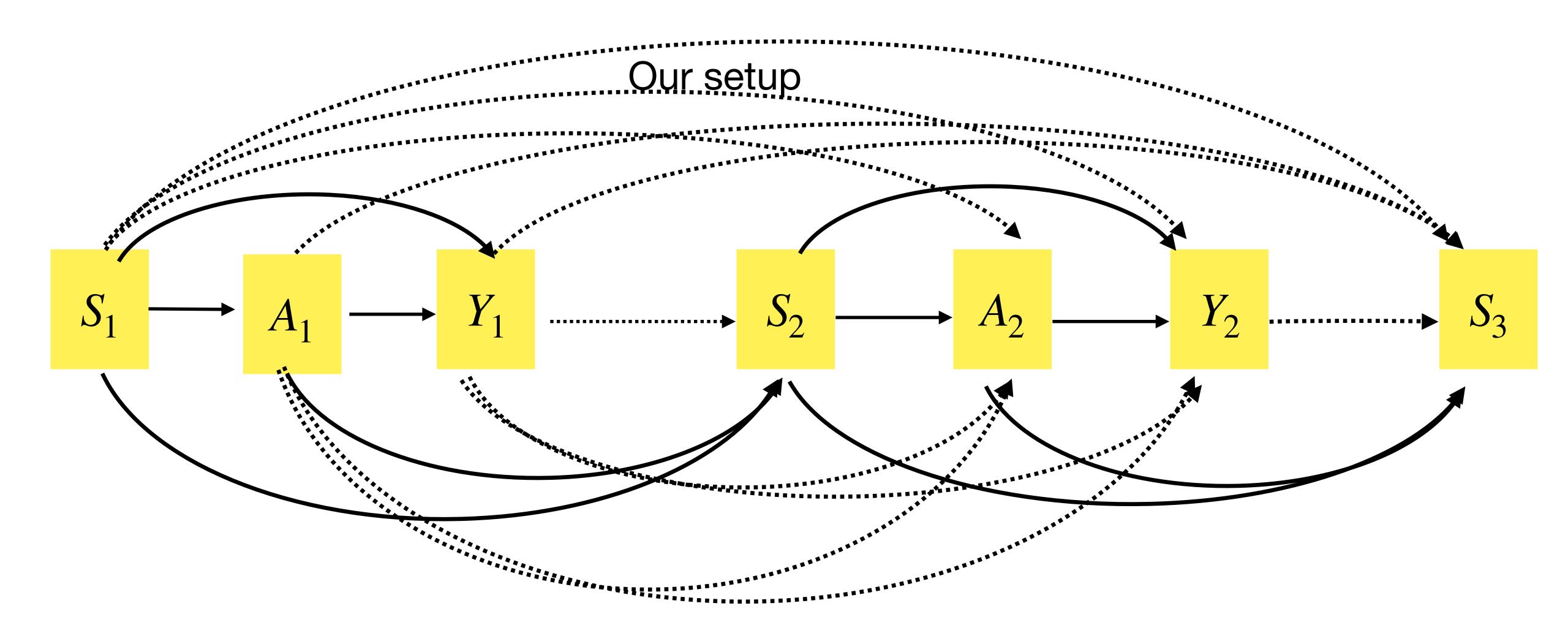


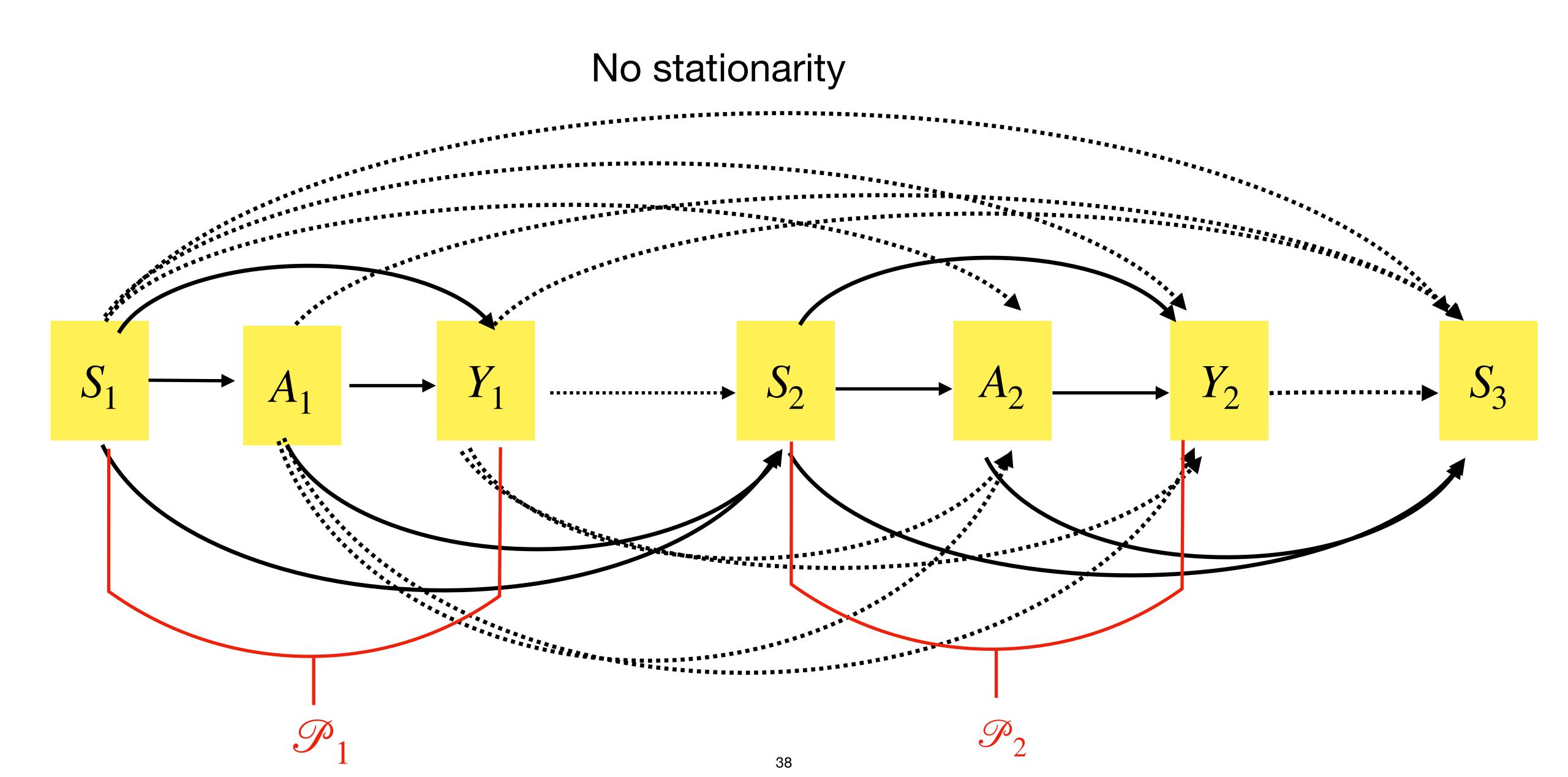
We do not make Markov decision process (MDP) assumption



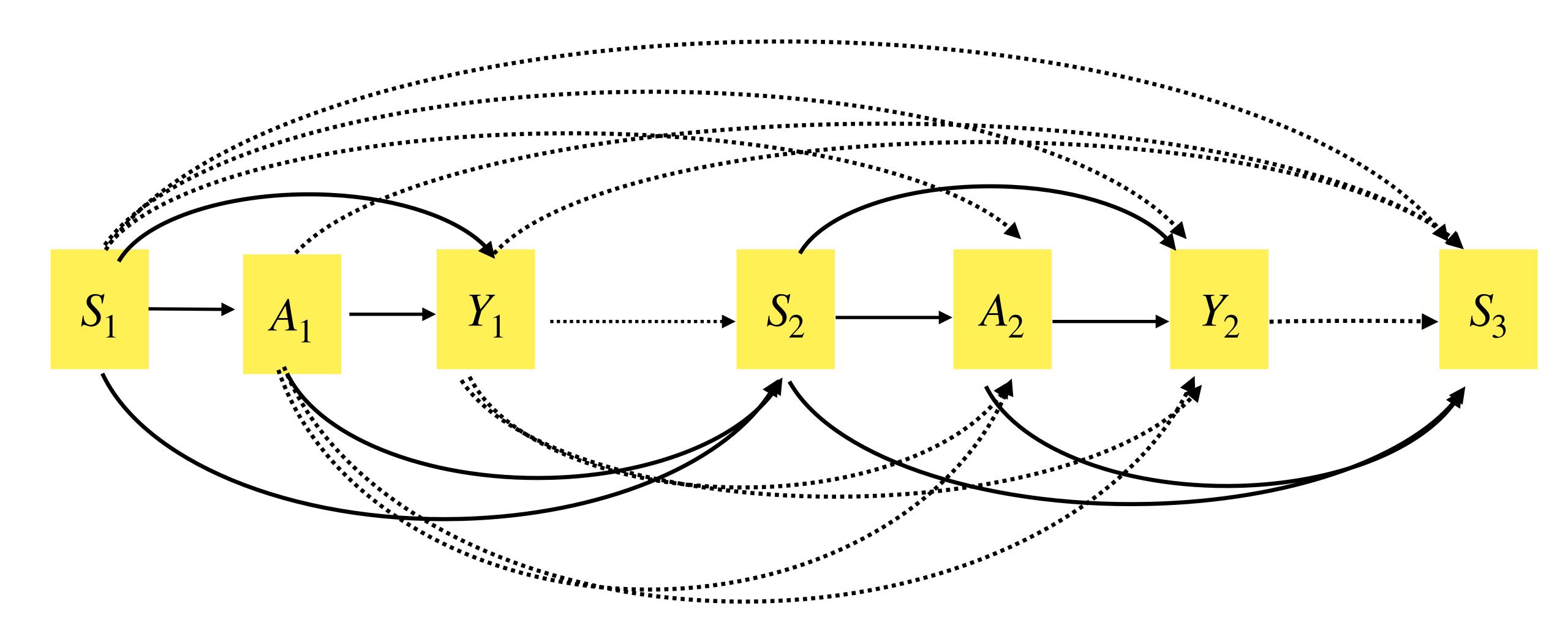
We do not make Markov decision process (MDP) assumption







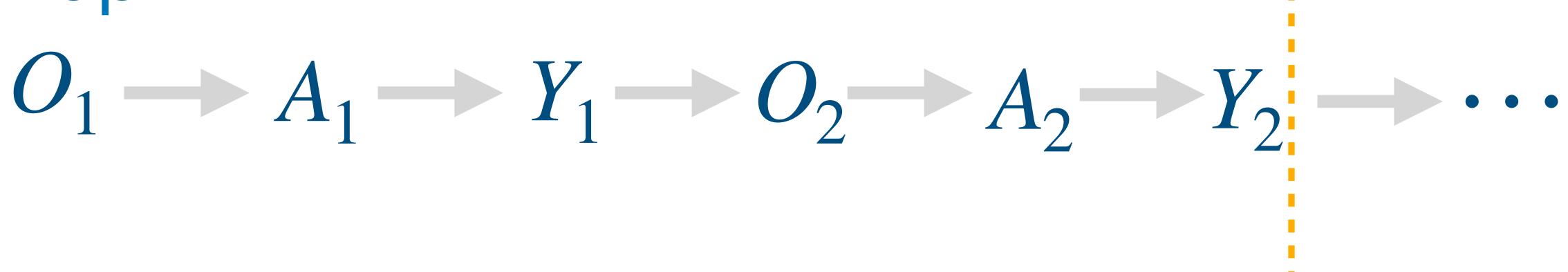
Full reinforcement learning



Set-up

$$O_1 \longrightarrow A_1 \longrightarrow Y_1 \longrightarrow O_2 \longrightarrow A_2 \longrightarrow Y_2 \longrightarrow \cdots$$

Set-up

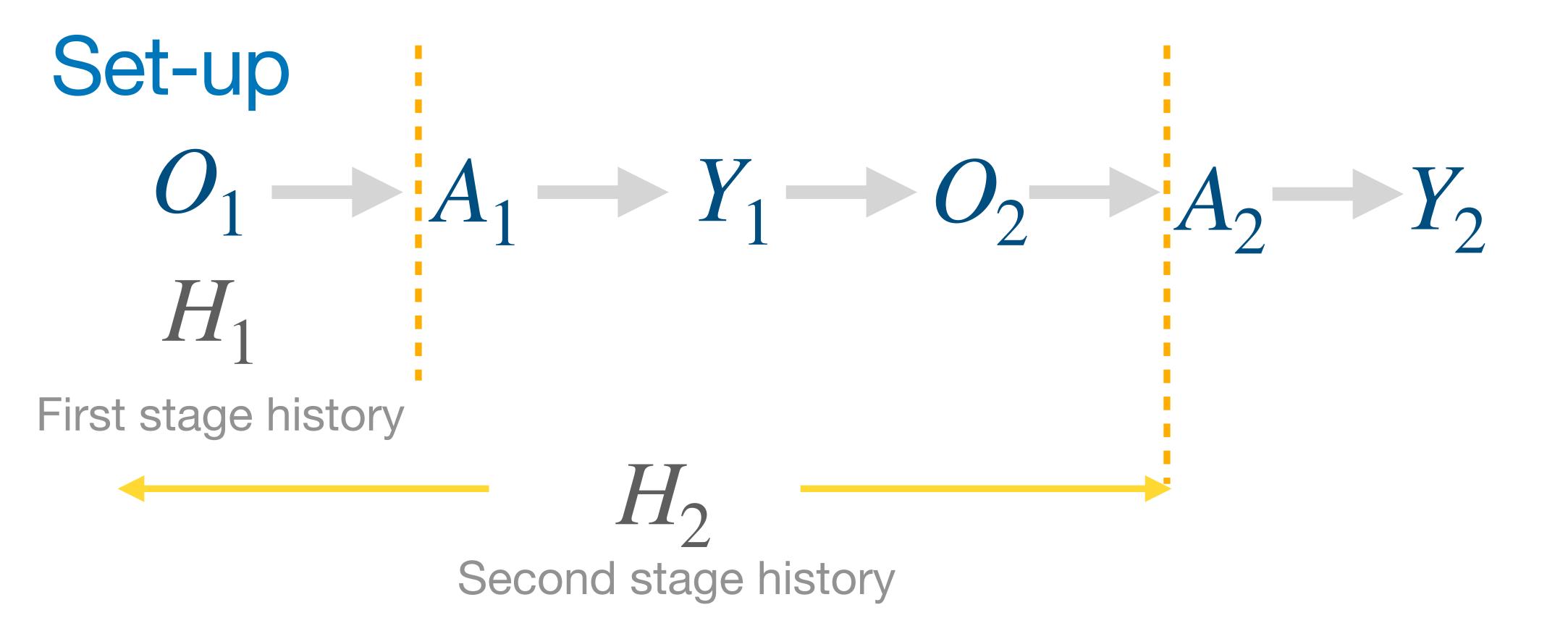


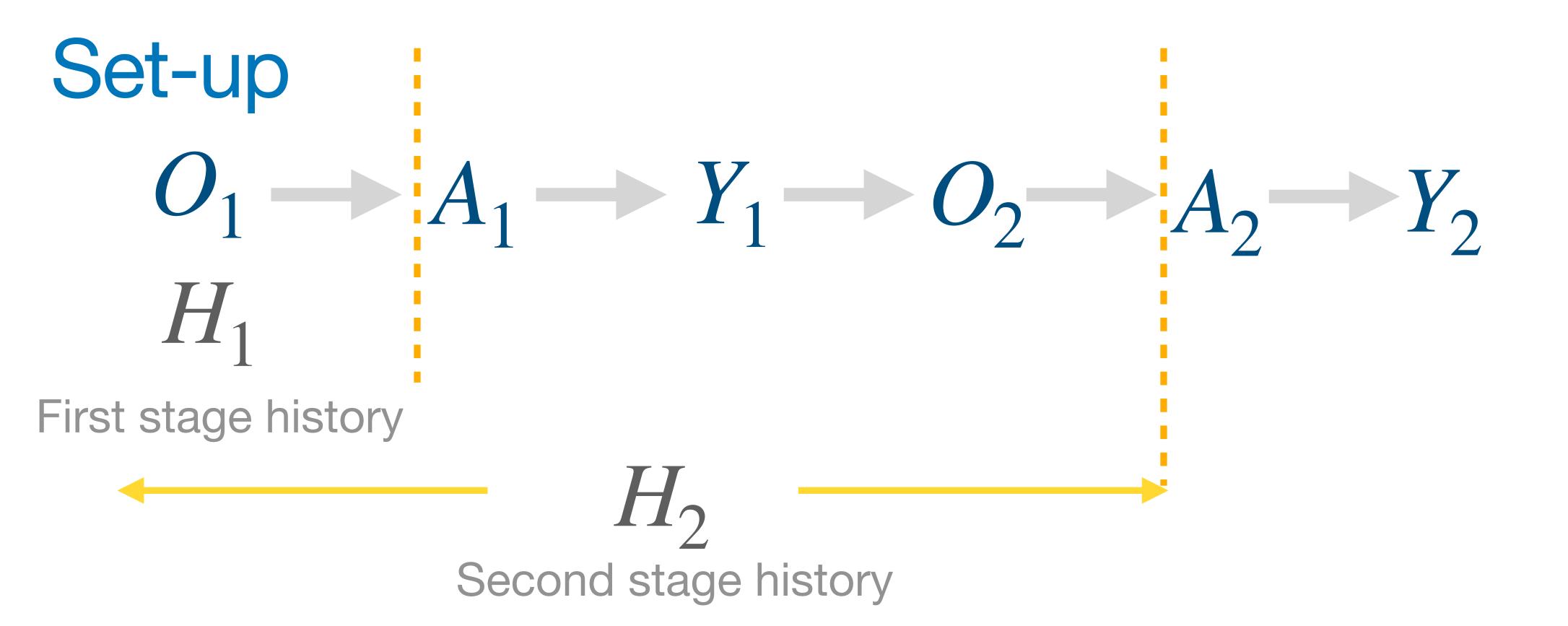
K=2

Set-up

$$O_1 \longrightarrow A_1 \longrightarrow Y_1 \longrightarrow O_2 \longrightarrow A_2 \longrightarrow Y_2$$

K=2





Treatment policy
$$\pi = (\pi_1, \pi_2)$$

$$V^{\pi} = \mathbb{E}[Y_1(\pi) + ... + Y_K(\pi)]$$

$$V^{\pi} = \mathbb{E}[Y_1(\pi) + \dots + Y_K(\pi)]$$

Potential outcomes

Under standard identifiability assumptions*,

$$V^{\pi} = \mathbb{E}\left[(Y_1 + \dots + Y_K) \frac{\pi_1(A_1 \mid H_1) \dots \pi_K(A_K \mid H_K)}{\pi_{b,1}(A_1 \mid H_1) \dots \pi_{b,K}(A_K \mid H_K)} \right]$$

 $\pi_{b,k}$'s behavior policy: ratio called inverse probability weights

Under standard identifiability assumptions*,

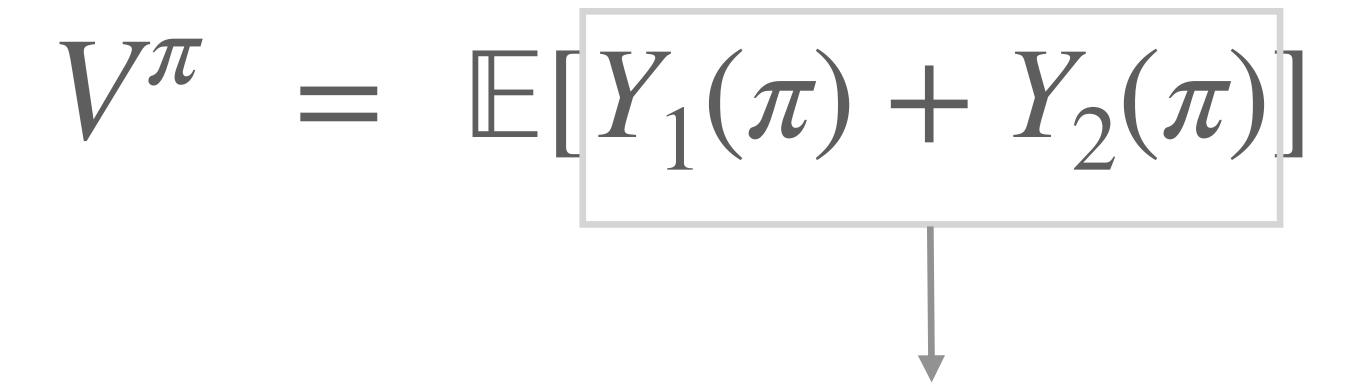
$$V^{\pi} \approx \mathbb{P}_n \left[(Y_1 + \ldots + Y_K) \frac{\pi_1(A_1 \mid H_1) \ldots \pi_K(A_K \mid H_K)}{\pi_{b,1}(A_1 \mid H_1) \ldots \pi_{b,K}(A_K \mid H_K)} \right]$$

 \mathbb{P}_n : empirical distribution function

Optimal treatment policy
$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$

$$V^{\pi} = \mathbb{E}[Y_1(\pi) + Y_2(\pi)]$$

Optimal treatment policy $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$



Potential outcomes

Optimal treatment policy $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$

Under standard identifiability assumptions*,

$$V^{\pi} = \mathbb{E}\left[(Y_1 + Y_2) \frac{1\{\pi_1(H_1) = A_1\} \ 1\{\pi_2(H_2) = A_2\}}{P(A_1 \mid H_1) \ P(A_2 \mid H_2)} \right]$$
observed random variables

Optimal treatment policy $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$

Under standard identifiability assumptions*,

$$V^{\pi} \approx \frac{1}{n} \sum_{i=1}^{n} \left((Y_{1i} + Y_{2i}) \frac{1\{\pi_1(H_{1i}) = A_{1i}\} \ 1\{\pi_2(H_{2i}) = A_{2i}\}}{P(A_{1i} \mid H_{1i}) \ P(A_{2i} \mid H_{2i})} \right)$$

Optimal treatment policy $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$

Under standard identifiability assumptions*,

$$V^{\pi} \approx \frac{1}{n} \sum_{i=1}^{n} \left((Y_{1i} + Y_{2i}) \frac{1\{\pi_1(H_{1i}) = A_{1i}\} \ 1\{\pi_2(H_{2i}) = A_{2i}\}}{P(A_{1i} \mid H_{1i}) \ P(A_{2i} \mid H_{2i})} \right)$$

Maximize V^{π} over a. Class of policies

Optimal treatment policy $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$

Under standard identifiability assumptions*,

$$V^{\pi} \approx \frac{1}{n} \sum_{i=1}^{n} \left((Y_{1i} + Y_{2i}) \frac{1\{\pi_1(H_{1i}) = A_{1i}\} \ 1\{\pi_2(H_{2i}) = A_{2i}\}}{P(A_{1i} \mid H_{1i}) \ P(A_{2i} \mid H_{2i})} \right)$$

Discontinuous + non, convex

Direct optimization not computationally feasible

$$\min_{f:H\mapsto\mathbb{R}^4} E\left[C(H_1,Y_1)\times 1[\operatorname{argmax}(f(H_1))\neq A_1]\right]$$

•
$$\min_{f:H\mapsto\mathbb{R}^4} E\left[C(H_1,Y_1)\times 1[\operatorname{argmax}(f(H_1))\neq A_1]\right]$$

$$C(H_1,Y_1)=\frac{Y_1}{P(A_1\mid H_1)}$$

•
$$\min_{f:H\mapsto\mathbb{R}^4} E\left[C(H_1,Y_1)\times 1[\operatorname{argmax}(f(H_1))\neq A_1]\right]$$

$$C(H_1,Y_1)=\frac{Y_1}{P(A_1\mid H_1)}$$

If I don't know what doctors were thinking, need to model the probabilities

$$\min_{f: H \mapsto \mathbb{R}^4} E\left[C(H_1, Y_1) \times 1[\operatorname{argmax}(f(H_1)) \neq A_1]\right]$$

$$C(H_1, Y_1) = \frac{Y_1}{P(A_1 \mid H_1)}$$

If I don't know what doctors were thinking, need to model the probabilities

Bad estimation

 $\hat{\pi}$ bad estimator of π^*

$$\min_{f: H \mapsto \mathbb{R}^4} E\left[C(H_1, Y_1) \times 1[\operatorname{argmax}(f(H_1)) \neq A_1]\right]$$

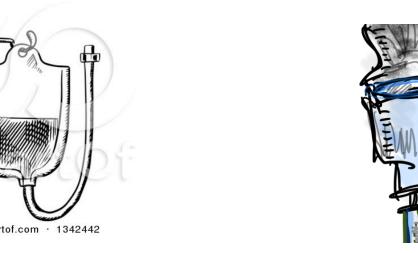
$$C(H_1, Y_1) = \frac{Y_1}{P(A_1 \mid H_1)}$$

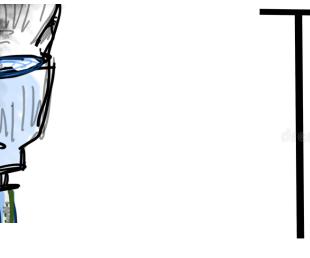
If I don't know what doctors were thinking, need to model the probabilities

 $P(A_1 | H_1)$ is small \Longrightarrow the estimator of $C(H_1, A_1)$ can be highly variable

Loss function when stage K=1

Possible categories

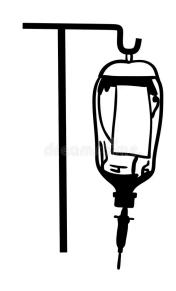




Classifier:

$$f = (f_1, ..., f_4)$$

 $f_i: H_1 \mapsto \mathbb{R} \quad i = 1, ..., 4$



Possible categories

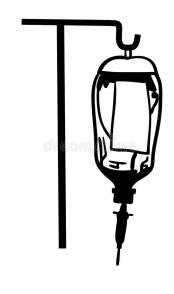
$$f_4(H_1)$$

Classifier:

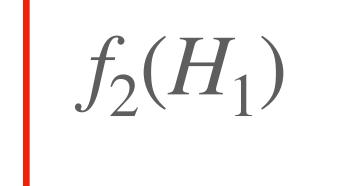
$$f = (f_1, ..., f_4)$$

$$f_i: H_1 \mapsto \mathbb{R} \quad i = 1, \dots, 4$$

Possible categories



$$f_1(H_1)$$



Maximum

$$f_3(H_1)$$

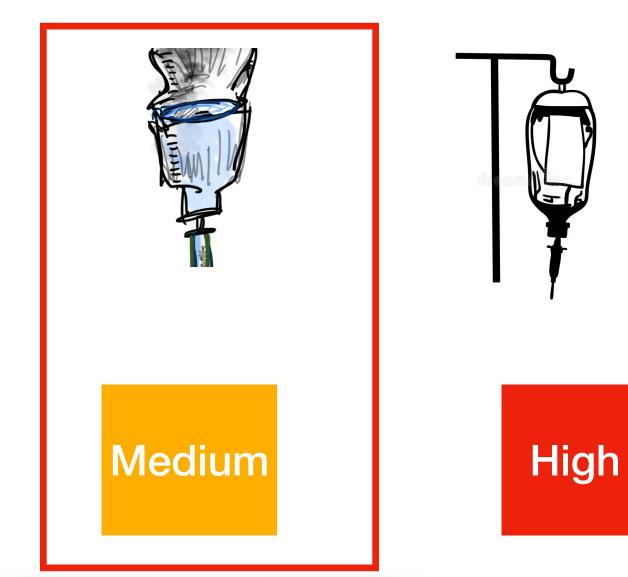
$$f_4(H_1)$$

Classifier:

$$f = (f_1, ..., f_4)$$

 $f_i: H_1 \mapsto \mathbb{R} \quad i = 1,...,4$

Possible categories



$$H_1$$
) $f_2(H_1)$

$$f_3(H_1)$$

$$f_4(H_1)$$

No IV

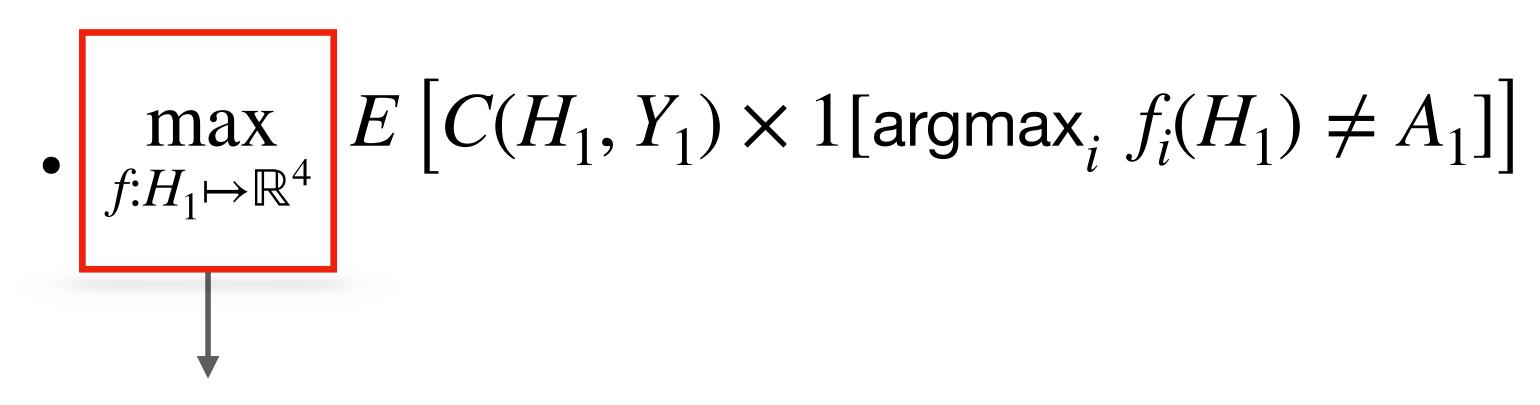
Maximum

$$\pi_1(H_1) = \operatorname{argmax}_i f_i(H_1)$$

Case T=1

$$\max_{f:H_1\mapsto\mathbb{R}^4} E\left[C(H_1,Y_1)\times 1\left[\operatorname{argmax}_i f_i(H_1)\neq A_1\right]\right]$$

Case T=1

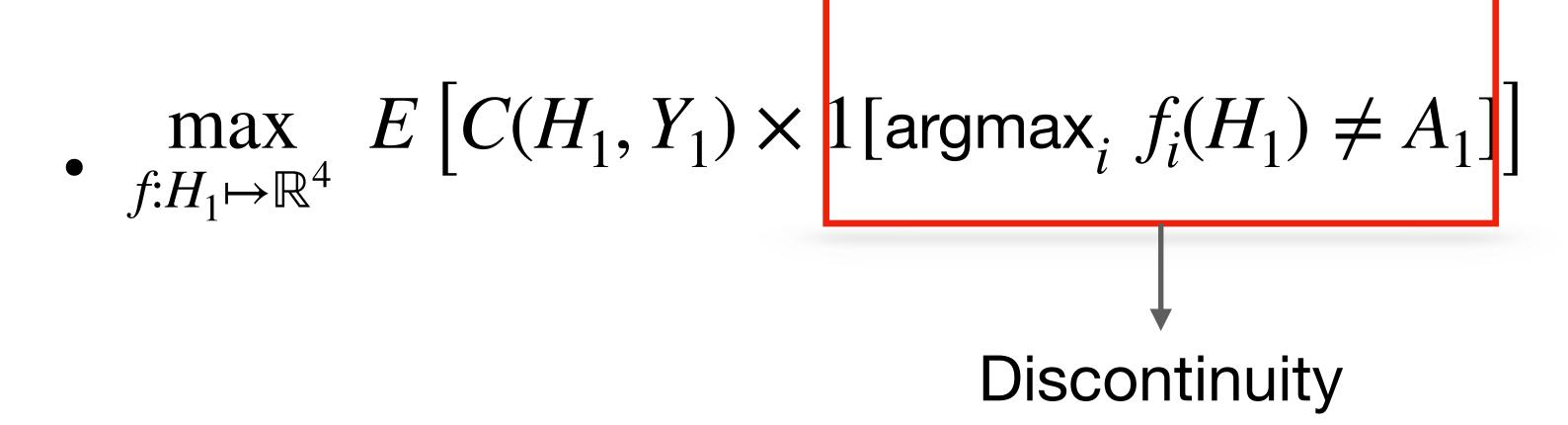


In practice search over a smaller class, currently we consider neural network classes

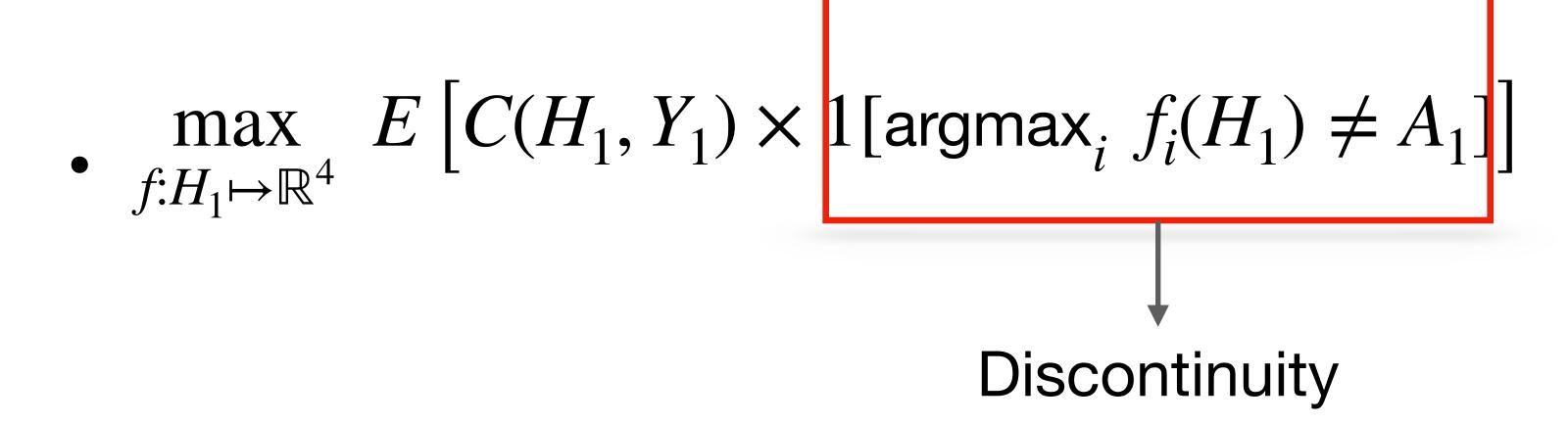
Case T=1

$$\max_{f:H_1\mapsto\mathbb{R}^4}\ E\left[C(H_1,Y_1)\times 1[\operatorname{argmax}_i\ f_i(H_1)\neq A_1]\right]$$

Case T=1

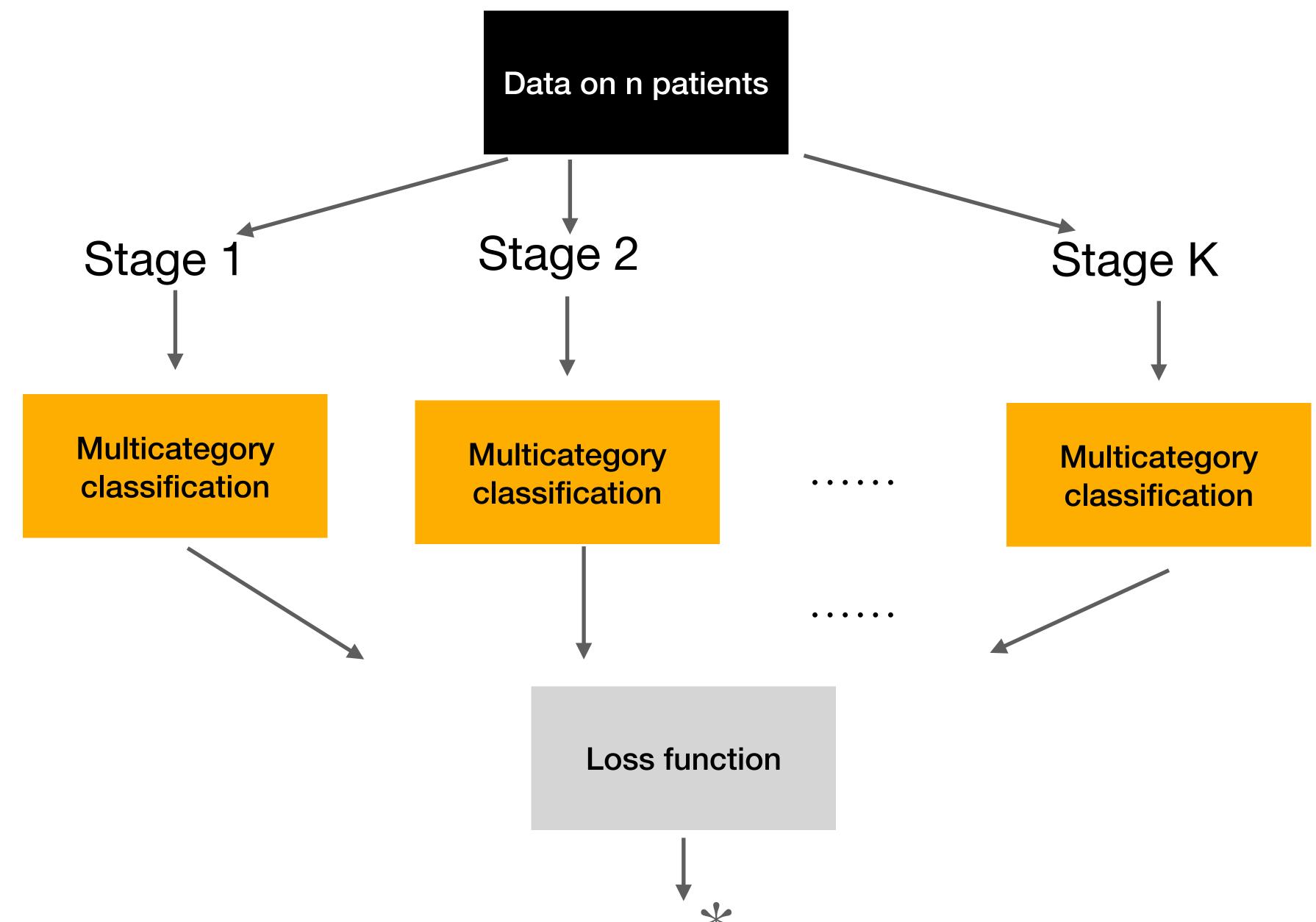


Case T=1



Our proposal: smooth out the sources for discontinuity at each step

Smoothed loss function



Smoothed loss function Data on n patients Stage 2 Stage K Stage 1 Multicategory Multicategory Multicategory classification classification classification • • • • • **Smoothing:** Loss function

Smoothed loss function Data on n patients Stage 2 Stage K Stage 1 Multicategory Multicategory Multicategory classification classification classification **Smoothing:** Loss function The smoothed method will still lead to the optimal DTR at the population-level

Smoothed loss function Data on n patients Stage 2 Stage K Stage Multicategory Multicategory Multicategory classification classification classification **Smoothing:** Meaning: rich class of classifiers, Loss function e.g. neural network \Longrightarrow The smoothed method will still lead to the estimated policy consistent. optimal DTR at the population-level