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Beta distributions and BNP models

V ∼ Beta(a, b), p(v) =
1

B(a, b)
va−1(1 − v)b−1, v ∈ (0, 1)

• Beta distribution for modeling random probabilities / ratios

• Natural interpretation of parameters, Conjugacy with binomial, negative binomial, . . .

• Key component in many Bayesian nonparametric (BNP) models.
- (Ex) Dirichlet process (DP) mixture model [Ferguson, 1973, Lo, 1984, Sethuraman, 1994],

f (y) =
∞∑

h=1

πhK(y; θh)

πh = Vh

∏
l<h

(1 − Vl), Vh
iid∼ Beta(1, b), θh

iid∼ G0 , h = 1, 2, . . .
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Dependent BNP models

• Common recipe to build dependent BNP models: Replacing independent
components with stochastic processes indexed by covariate x ∈ X

• (Ex) Dependent DP mixture with covariate-dependent weights [MacEachern, 1999]

f (y) =
∞∑

h=1

{
Vh

∏
l<h

(1 − Vl)

}
K(y; θh)

Vh
iid∼ Beta(1, b), h = 1, 2, . . .

=⇒
f (y | x) =

∞∑
h=1

{
Vh(x)

∏
l<h

(1 − Vl(x))

}
K(y; θh)

Vh(x)
iid∼ “beta process”, h = 1, 2, . . .

• Stochastic process extension of beta plays an important role in many BNP models
Examples: dependent Pólya tree [Trippa et al., 2011], dependent IBP [Perrone et al., 2017]

• Dependent DP application example: Bayesian density regression
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Example: Bayesian density regression (1)

• Probabilistic modeling of conditional density f (y | x) with uncertainty quantification

• (Ex) Health outcomes Y (GAD) and exposure X (DDE, metabolite of pesticide DDT)
- Conditional prob. of preterm birth given DDE exposure level P(Y < 37 |X = x)?

29

31

33

35

37

39

41

43

0 50 100 150
DDE (microgram/L)

G
es

ta
tio

na
l a

ge
 a

t d
el

iv
er

y 
(w

ee
ks

)

Motivation Motivation: density regression Logistic-beta process Latent LBP and posterior computation Logistic-beta DDP Simulation and real data analysis



4/47

Example: Bayesian density regression (2)
• Normal linear model assumes f (y | x) follows normal distribution

• Too restrictive & assumptions do not meet in practice

• Bayesian nonparametric models offer highly flexible specifications
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Example: Bayesian density regression (3)

• Fitting DP mixture model for different subsets of data
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Example: Bayesian density regression (4)
• Dependent Dirichlet process (DDP) mixture model [MacEachern, 1999]

• Model conditional density f (y | x), borrowing information across x
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Dependent DP mixture model

• Depenedent DP mixture model with weights & atoms both depend on x

f (y | x) =
∞∑

h=1

{
Vh(x)

∏
l<h

(1 − Vl(x))

}
N(y;µh(x), τ−1

h )

Vh(·)
iid∼ “Beta process” with Beta(1,b) marginal, h = 1, 2, . . .

µh(x) = β0h + β1hx, h = 1, 2, . . .

• Marginally DP at each x is a key for preserve interpretability & properties

• Nontrivial “beta process”, often highly challenging posterior computation
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Logistic-beta process

Three desired properties of “beta process”:

(I) Accommodate broad dependence structure, both discrete and continuous x ∈ X

(II) Allow wide range of strengths of dependence, from perfect to possibly negative

(III) Facilitate efficient posterior inference algorithms

We propose Logistic-beta process, whose logistic transformation x 7→ 1/(1 + e−x)
leads to stochastic process with common beta marginals that satisfies (I) - (III)
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Logistic-beta distribution

• Start from univariate logistic-beta (LB) distribution
- Also called type IV generalized logistic or Fisher’s z distribution (up to location-scale)

• We say η ∼ LB1(a, b) with shape parameters a, b > 0 if

LB1(η; a, b) =
1

B(a, b)

(
1

1 + e−η

)a( e−η

1 + e−η

)b

, η ∈ R

• When a = b = 1, it becomes standard logistic distribution

• Applying logistic transformation σ(x) = 1/(1 + e−x) gives σ(η) ∼ Beta(a, b)

• In other words, if π ∼ Beta(a, b), then logit(π) = log(π/(1 − π)) ∼ LB1(a, b)
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Logistic-beta distribution
• Normal variance-mean mixture representation of LB [Barndorff-Nielsen et al., 1982]

LB1(η; a, b) =
∫ ∞

0
N (η; 0.5λ(a − b), λ)Polya(λ; a, b)dλ

• We say λ ∼ Polya(a, b) if λ d
=
∑∞

k=0 2ϵk/{(k + a)(k + b)}, ϵk
iid∼ Exp(1)

Logistic−beta distribution
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Multivariate Logistic-beta
• Multivariate extension with normal variance-mean mixture.

• We say η = (η1, . . . , ηn)
⊤ ∼ LBn(a, b,R) with correlation matrix Rn×n if

η |λ ∼ Nn (0.5λ(a − b)1n, λR) ,

λ ∼ Polya(a, b)

• Since R has a unit diagonal, each component of η marginally follows LB1(a, b)

• Logistic transformation ηi 7→ σ(ηi) gives multivariate beta with Beta(a, b) marginals.

• Correlation matrix R controls dependence

• Briefly mentioned in [Barndorff-Nielsen et al., 1982], density function (complicated) is studied
by [Grigelionis, 2008], but with no connection to beta distribution
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LB(2, 4, −0.8) LB(2, 4, 0) LB(2, 4, 0.8)
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Figure: (Top) Density of η ∼ LB2(a = 2, b = 4,R) with R12 ∈ {−0.8, 0, 0.8}. (Bottom) Density of σ(η).
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Multivariate logistic-beta
• Covariance (and correlation) is simply a linear function of Rij

cov(ηi, ηj) =

{
2ψ′(a)Rij, if a = b,
ψ′(a) + ψ′(b) + 2(Rij − 1){ψ(a)− ψ(b)}/(a − b), if a ̸= b,

where ψ(x), ψ′(x) are digamma and trigamma functions.

• Rij = Rji = 0 does not imply ηi ⊥ ηj.

• If a = b (symmetric), correlation has a full range [−1, 1].

• If a ̸= b (asymmetric), the range of corr(ηi, ηj) is

Range(corr(ηi, ηj)) =
[

1 − 4(ψ(a)− ψ(b))
(a − b)(ψ′(a) + ψ′(b))︸ ︷︷ ︸

Nontrivial lower bound

, 1
]

• Different from the minimal correlation (> −1) from Fréchet lower bound copula
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Logistic-beta process
• Correlation kernel R : X × X → [−1, 1] with R(x, x) = 1

• We say η(·) follows logistic-beta process, denoted as η ∼ LBP(a, b,R), if
every finite collection η follows logistic-beta with a, b, and Rn×n with Rij = R(xi, xj)

• Logistic transformation σ(η(x)) has Beta(a, b) marginals

• (Example 1) Discrete time indices X = {1, 2, . . . , }: R(x, x′) = ρ|x−x′| with |ρ| < 1.

• (Example 2) Continuous spatial domain X = R2: Matérn correlation kernel with range
and smoothness parameters. Example with (a, b) = (2, 4), ϱ = 0.3, ν = 1.5, X = [0, 3]
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Logistic-beta process with normalized feature map kernel
• Correlation kernel R with normalized feature map (normalized basis)

• ϕ : X → Rq such that ∥ϕ(x)∥2
2 = 1, define R(x, x′) = ⟨ϕ(x),ϕ(x′)⟩

• Example: normalized spline basis functions with q = 6.
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Logistic-beta process with normalized feature map kernel

• Two different representations of η ∼ LBP(a, b,R) with R(x, x′) = ⟨ϕ(x),ϕ(x′)⟩

• Hierarchical representation of n-dimensional realization η:

η = 0.5λ(a − b)1n +
√
λΦγ, λ ∼ Polya(a, b), γ ∼ Nq(0, Iq)

where Φn×q be a basis matrix with ith row ϕ(xi).

• Conditioned on λ, η is parameterized by normal coefficients γ ∼ Nq(0, Iq)

• Clear dimension reduction from n to q, based on q-dimensional feature map
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Logistic-beta process with normalized feature map kernel

• Two different representations of η ∼ LBP(a, b,R) with R(x, x′) = ⟨ϕ(x),ϕ(x′)⟩

• Linear predictor representation of n-dimensional realization η:

η = {ψ(a)− ψ(b)}(1n −Φ1q) +Φβ, β ∼ LBq(a, b, Iq)

• Assume Bernoulli response model z(xi)
ind∼ Ber(σ{η(xi)})

• With logit link, η is a linear predictor with LB coefficients β with fixed varying intercept

• Resembles basis function representation of GP (“weight-space view”)
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Latent LBP model
• Latent LBP model for binary data

z(xi)
ind∼ Ber(σ{η(xi)}), i = 1, . . . , n,

η ∼ LBP(a, b,R)

• Lead to marginally Beta(a, b) prior on success probabilities P(z(x) = 1)

• Goal: Infer η(x∗) at arbitrary x∗, with efficient posterior computation
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Posterior computation strategies
• Posterior: p(η | z) ∝ p(η)

∏n
i=1 p(zi | ηi) = p(η)

∏n
i=1 exp(ziηi)/(1 + exp(ηi))

• Pólya-Gamma(PG) augmentation [Polson et al., 2013] → conditionally normal likelihood

zi
ind∼ Ber(σ(ηi))

L(η) =
n∏

i=1

exp(ziηi)

1 + exp(ηi)
−→

Laug(η,ω) =

n∏
i=1

0.5e(zi−0.5)ηi−ωiη
2
i /2PG(ωi; 1, 0)

ωi | ηi, zi
ind∼ PG(1, ηi), i = 1, . . . , n

ηi |ωi, zi
ind∼ N((zi − 0.5)ω−1

i , ω−1
i ), i = 1, . . . , n

• LBP as a normal variance-mean mixture → conditionally normal prior

η ∼ LBn(a, b,R) −→
η |λ ∼ Nn(0.5λ(a − b)1n, λR)

λ ∼ Polya(a, b)

• Normal-normal conjugacy for full conditional p(η |ω, λ, z) ∝ Laug(η |ω, z)p(η |λ)
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Posterior computation strategies

• One cycle of Gibbs sampler, update ω → λ→ η from full conditionals

Step 1. Update the Pólya-Gamma auxiliary variables from p(ω |η, z),

ωi |η
ind∼ PG(1, η(xi)), i = 1, . . . , n

Step 2. Update the Pólya mixing parameter from p(λ |η,ω, z),

p(λ |ω, z) ∝ Polya(λ; a, b)Nn (η; 0.5λ(a − b)1n, λR)

Step 3. Update the latent LBP parameters from p(η |ω, λ, z),

η |ω, λ, z ∼ Nn

(
(Ω+ λ−1R−1)−1((z − 0.51n) + 0.5(a − b)R−11n), (Ω+ λ−1R−1)−1

)

• Can we do better?
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Posterior computation strategies

• One cycle of blocked Gibbs sampler, update ω → (λ,η)

• Blocking possible due to normal-normal conjugacy

Step 1. Update the Pólya-Gamma auxiliary variables from p(ω |η, z),

ωi |η
ind∼ PG(1, η(xi)), i = 1, . . . , n

Step 2. Update the Pólya mixing parameter from p(λ |ω, z) =
∫

p(λ,η |ω, z)dη,

p(λ |ω, z) ∝ Polya(λ; a, b)Nn

(
Ω−1(z − 0.51n); 0.5λ(a − b)1n, λR +Ω−1

)
Step 3. Update the latent LBP parameters from p(η |ω, λ, z),

η |ω, λ, z ∼ Nn

(
(Ω+ λ−1R−1)−1((z − 0.51n) + 0.5(a − b)R−11n), (Ω+ λ−1R−1)−1

)
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Posterior computation strategies (detail 1)

Step 2. Update the Pólya mixing parameter from p(λ |ω, z) =
∫

p(λ,η |ω, z)dη,

p(λ |ω, z) ∝ Polya(λ; a, b)Nn

(
Ω−1(z − 0.51n); 0.5λ(a − b)1n, λR +Ω−1

)

• The Pólya density more satisfies the following identity for a + b = a′ + b′:

Polya(λ; a′, b′) = B(a, b)B(a′, b′)−1 exp{λ(ab − a′b′)/2}Polya(λ; a, b),

• Adaptive Pólya proposal scheme for Step 2: selecting the proposal (e.g. for
independent M-H) as Polya(a′, b′), where (a′, b′) are adaptively chosen with fixed sum.

• Avoids Pólya density evaluation as they cancel out in the acceptance ratio.
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Posterior computation strategies (detail 2)

Step 2. Update the Pólya mixing parameter from p(λ |ω, z) =
∫

p(λ,η |ω, z)dη,

p(λ |ω, z) ∝ Polya(λ; a, b)Nn

(
Ω−1(z − 0.51n); 0.5λ(a − b)1n, λR +Ω−1

)
Step 3. Update the latent LBP parameters from p(η |ω, λ, z),

η |ω, λ, z ∼ Nn

(
(Ω+ λ−1R−1)−1((z − 0.51n) + 0.5(a − b)R−11n), (Ω+ λ−1R−1)−1

)

• GP computation strategies preserving marginal variances can be seamlessly applied

• (Ex1) Low-rank (normalized feature map), where Step 3 becomes

γ |ω, λ, z ∼ Nq((Iq + λΦ⊤ΩΦ)−1
√
λΦ⊤((z − 0.51n)− 0.5λ(a − b)ω), (Iq + λΦ⊤ΩΦ)−1)

• (Ex2) Modified predictive process [Finley et al., 2009], low-rank + diag, Woodbury formula
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Posterior, copula-based model

• Compare with copula-based models, e.g. Gaussian copula

z(xi)
ind∼ Ber(F−1

B (FZ(ζi))), i = 1, . . . , n,
ζ ∼ Nn(0,R)

where FZ is cdf of standard normal and FB is cdf of Beta(a, b).

• Lead to marginally Beta(a, b) prior on success probabilities P(z(x) = 1), but,

p(ζ | z) ∝ Nn(ζ; 0,R)

n∏
i=1

[F−1
B (FZ(ζi))]

zi [1 − F−1
B (FZ(ζi))]

1−zi

• Posterior computation of ζ is a nightmare, even in this simple Bernoulli model
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Logistic-beta DDP mixture model

• Logistic-beta dependent DP mixture model with weights & atoms both depend on x

f (y | x) =
∞∑

h=1

{
Vh(x)

∏
l<h

(1 − Vl(x))

}
N(y;µh(x), τ−1

h )

Vh(·)
iid∼ “Beta process” with Beta(1,b) marginal, h = 1, 2, . . .

µh(x) = β0h + β1hx, h = 1, 2, . . .

with priors on atom parameters β0h, β1h, τh, independently across h

• Rich dependence structure on any domain x ∈ X through correlation kernel R

• Efficient posterior computation exploiting conditional conjugacy
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Properties of logistic-beta DDP details

• Logistic-beta DDP: collection of dependent random probability measures {Gx : x ∈ X}

Gx(·) =
∞∑

h=1

(
σ{ηh(x)}

∏
l<h

[1 − σ{ηl(x)}]

)
δθh(·), ηh

iid∼ LBP(1, b,R), θh
iid∼ G0

• We study range of corr(Gxi(B),Gxj(B)) for Borel set B, xi ̸= xj with independent atoms

(i) LB−DDP (ii) AR1sq−DDP (iii) tsDDP (inf: indep. beta) (iv) Copula−based DDP (inf: Fréchet lower bound)
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LB-DDP mixture posterior computation

f (y | x) =
∞∑

h=1

πh(x)N(y;µh(x), τ−1
h )

Sample-specific assignment prob. {πh(xi)} is

P(si = h) = Vh(xi)
∏
l<h

(1−Vl(xi)), h ∈ {1, 2, 3, . . . }

Continuation-ratio scheme [Tutz, 1991]

V1(xi) = P(si = 1)
V2(xi) = P(si = 2 | si ≥ 2)
V3(xi) = P(si = 3 | si ≥ 3)

...

Equivalent to a series of latent LBP models

1(si = 1) ind∼ Ber(σ(η1(xi))), i : si ≥ 1

1(si = 2) ind∼ Ber(σ(η2(xi))), i : si ≥ 2

1(si = 3) ind∼ Ber(σ(η3(xi))), i : si ≥ 3
...

ηh
iid∼ LBP(1, b,R), h = 1, 2, . . .
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LB-DDP mixture posterior computation

• One cycle of blocked Gibbs sampler (with truncation level H):

Step 1: For i = 1, . . . , n, update component allocations si ∈ {1, . . . ,H}.

Step 2: for h = 1, . . . ,H − 1 do
2-1. Update Pólya-gamma variables from p(ωh |γ, λ, s), which is Pólya-Gamma,

2.2. Update the Pólya mixing parameter λh from p(λh |ωh, s) =
∫

p(λh,γh |ωh, s)dγh,

2.3. Update γh from p(γh |λh,ωh, s), which is multivariate normal

Step 3: For h = 1, . . . ,H, update component-specific parameters

p(θh | −) ∝ G0(θh)
∏

i:si=h K(yi | θh).

Similar to logit stick-breaking process [Rigon and Durante, 2021], with only step (2.2) added.
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Latent LBP simulation studies

• Latent LBP model for binary data, beta marginal success probabilities

z(xi)
ind∼ Ber(σ{η(xi)}), i = 1, . . . , n,

η ∼ LBP(a, b,R)

• Spatial domain X = [0, 1]2, ntrain = 400, ntest = 100, Matérn correlation, fixed ν = 1.5

• Data generation with (1) Latent LBP, (2) Gaussian copula, range ϱ ∈ {0.1, 0.2, 0.4}

• Aim 1: Assess benefits of posterior inference strategies involved in LBP

• Aim 2: Compare predictive performance and computational advantages of LBP.
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Latent LBP simulation studies
• Aim 1: Assess benefits of posterior inference strategies involved in LBP

Data generation Latent LBP algorithm ESS ESS/sec Acc. rate (%)

Latent LBP
ϱ = 0.1

Blocked Adapted 245.08 (12.86) 3.35 (0.18) 54.28 (1.03)
Non-adapted 196.35 (11.28) 2.69 (0.15) 49.39 (1.39)

Non-blocked Adapted 7.89 (0.35) 0.14 (0.01) 13.60 (0.26)
Non-adapted 7.13 (0.37) 0.13 (0.01) 12.44 (0.31)

Latent LBP
ϱ = 0.2

Blocked Adapted 257.01 (16.32) 2.89 (0.18) 62.26 (1.12)
Non-Adapted 247.83 (16.53) 2.82 (0.19) 57.60 (1.47)

Non-blocked Adapted 7.31 (0.32) 0.11 (0.00) 13.42 (0.22)
Non-adapted 6.58 (0.32) 0.10 (0.00) 12.48 (0.31)

Latent LBP
ϱ = 0.4

Blocked Adapted 368.26 (17.54) 4.12 (0.20) 66.12 (0.98)
Non-adapted 328.72 (19.00) 3.67 (0.21) 61.45 (1.32)

Non-blocked Adapted 6.40 (0.29) 0.09 (0.00) 13.01 (0.22)
Non-adapted 6.56 (0.32) 0.10 (0.00) 12.88 (0.31)

ESS: effective sample size, ESS/sec: effective sampling rate, higher the better
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Latent LBP simulation studies

• Aim 2: Compare predictive performance and computational advantages of LBP.

Data generation Model RMSE ×100 mean CRPS ×100 mESS/sec
training test training test

Gauss. copula
ϱ = 0.1

Latent LBP 11.93 (0.14) 12.32 (0.17) 6.59 (0.10) 6.80 (0.11) 21.11 (0.21)
Gauss. copula 11.82 (0.13) 12.24 (0.16) 6.48 (0.09) 6.71 (0.11) 0.48 (0.01)

Gauss. copula
ϱ = 0.2

Latent LBP 8.67 (0.15) 8.80 (0.16) 4.78 (0.10) 4.85 (0.10) 17.58 (0.16)
Gauss. copula 8.61 (0.16) 8.75 (0.17) 4.74 (0.10) 4.82 (0.11) 0.40 (0.01)

Gauss. copula
ϱ = 0.4

Latent LBP 6.11 (0.16) 6.14 (0.16) 3.39 (0.10) 3.41 (0.10) 17.41 (0.17)
Gauss. copula 6.10 (0.16) 6.13 (0.16) 3.38 (0.10) 3.40 (0.10) 0.47 (0.01)

RMSE, CRPS: lower the better, mESS/sec: higher the better
Note: LBP results are based on a misspecified model. (see more )
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Real data analysis
• No publicly available software for DDP with x-dependent weights, continuous x.

• Compare with logit stick-breaking process (LSBP) [Ren et al., 2011, Rigon and Durante, 2021]

under similar settings. more LSBP is not DDP but computation is fast & tractable.

• Analyze preterm birth probabilities based on two subgroups of data (smoking Y/N).

• MCMC with 35, 000 iterations run in < 10 mins in personal laptop (Apple M1), n ≈ 1000
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LB−DDP, setting 1, smoking LB−DDP, setting 2, smoking LB−DDP, setting 3, smoking
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LSBP, setting 1, smoking LSBP, setting 2, smoking LSBP, setting 3, smoking
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Figure: Estimated probability of preterm birth with 95% credible intervals for the smoking group,
under three different hyperparameter settings for LB-DDP b ∈ {0.2, 1, 2} and LSBP mixture models.

Motivation Motivation: density regression Logistic-beta process Latent LBP and posterior computation Logistic-beta DDP Simulation and real data analysis
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LB−DDP, setting 1, nonsmoking LB−DDP, setting 2, nonsmoking LB−DDP, setting 3, nonsmoking
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LSBP, setting 1, nonsmoking LSBP, setting 2, nonsmoking LSBP, setting 3, nonsmoking
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Figure: Estimated probability of preterm birth with 95% credible intervals for the nonsmoking group,
under three different hyperparameter settings for LB-DDP b ∈ {0.2, 1, 2} and LSBP mixture models.
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Conclusion

• Logistic-beta process (LBP) for modeling dependent beta random probabilities

(I) Accommodate broad dependence structure, both discrete and continuous ✓

(II) Allow a wide range of dependence strengths, perfect correlation to possibly negative ✓

(III) Facilitate efficient posterior inference algorithm ✓

• We apply LBP to DDP mixture models, where dependent beta plays crucial role

• LB-DDP has full flexibility & clear interpretation & hyperparameter robustness &
computational tractability, a rare feature with x-dependent weights [Wade et al., 2023]

• Application to x-dependent clustering & other dependent BNP models and beyond
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Journal of the American Statistical Association, 108(504):1339–1349.

Ren, L., Du, L., Carin, L., and Dunson, D. B. (2011).
Logistic stick-breaking process.
Journal of Machine Learning Research, 12(1):203–239.

Rigon, T. and Durante, D. (2021).
Tractable Bayesian density regression via logit stick-breaking priors.
Journal of Statistical Planning and Inference, 211:131–142.

References Appendix



42/47

References IV

Sethuraman, J. (1994).
A constructive definition of Dirichlet priors.
Statistica Sinica, 4(2):639–650.

Trippa, L., Müller, P., and Johnson, W. (2011).
The multivariate beta process and an extension of the Polya tree model.
Biometrika, 98(1):17–34.

Tutz, G. (1991).
Sequential models in categorical regression.
Computational Statistics & Data Analysis, 11(3):275–295.

Wade, S., Inacio, V., and Petrone, S. (2023).
Bayesian dependent mixture models: A predictive comparison and survey.
arXiv preprint arXiv:2307.16298.

References Appendix



43/47

Properties of LB-DDP back

Theorem (correlation range)
Consider a single-atoms LB-DDP {Gx : x ∈ X} with concentration parameter b and
correlation kernel R, where its atoms are i.i.d. from a nonatomic base measure. Let
µ(xi, xj) = E[σ{η(xi)}σ{η(xj)}] with η ∼ LBP(1, b,R). Then, for any Borel set B,

corr(Gxi(B),Gxj(B)) =
(1 + b)2

2/µ(xi, xj)− (1 + b)
.

Theorem (full weak support, [Barrientos et al., 2012])
Consider an LB-DDP with an atom process {θ(x) : x ∈ X} with support Θ that can be
represented with a collection of copulas with positive density w.r.t. Lebesgue measure.
Then, LB-DDP has full weak support, i.e. the topological support of LB-DDP coincides
with the space of collections of all probability measures with support Θ indexed by X .

References Appendix



44/47

Properties of LB-DDP back

• AR1sq-DDP [DeYoreo and Kottas, 2018]: smallest range, due to shared component

• tsDDP [Nieto-Barajas et al., 2012]: infimum attained at independent stick-breaking ratios

• Copula-based DDP [MacEachern, 2000]: infimum attained at Fréchet lower bound
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Pólya density back

• Density function of Polya(a, b):

Polya(λ; a, b) =
∞∑

k=0

(
−(a + b)

k

)
k + (a + b)/2

B(a, b)
exp

{
− (k + a)(k + b)

2
λ

}
, (1)

where
(x

k

)
= x(x−1)···(x−k+1)

k(k−1)···1 for any x ∈ R and k ∈ {1, 2, . . . , }, with provision
(x

0

)
= 1.

• Alternating series, evaluation becomes unstable, especially near the origin
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Latent LBP simulation studies back

Assessing the predictive performance of latent LBP under the correctly specified model

Data generation Model RMSE ×100 mean CRPS ×100 mESS/sec
training test training test

Latent LBP
ϱ = 0.1

Latent LBP 11.59 (0.15) 12.17 (0.20) 6.31 (0.10) 6.62 (0.12) 21.27 (0.24)
Gauss. copula 11.66 (0.15) 12.19 (0.20) 6.35 (0.09) 6.65 (0.12) 0.48 (0.01)

Latent LBP
ϱ = 0.2

Latent LBP 8.54 (0.18) 8.73 (0.19) 4.67 (0.11) 4.77 (0.11) 17.87 (0.16)
Gauss. copula 8.59 (0.17) 8.76 (0.18) 4.70 (0.10) 4.79 (0.11) 0.44 (0.01)

Latent LBP
ϱ = 0.4

Latent LBP 6.12 (0.19) 6.16 (0.19) 3.41 (0.11) 3.43 (0.11) 17.48 (0.16)
Gauss. copula 6.15 (0.17) 6.19 (0.18) 3.43 (0.10) 3.44 (0.11) 0.47 (0.01)
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Real data analysis settings back

• Collaborative perinatal project data, publicly available [Longnecker et al., 2001]

• Collected between 1959-1966, smoking group n = 1023, non-smoking n = 1290.

• Data are standardized, β0h, β1h
iid∼ N(0, 1), τh

iid∼ Gamma(1, 1)

• Both LB-DDP, LSBP used normalized natural spline basis with 6 degrees of freedom

• 35,000 MCMC iteration took 7 mins for LB-DDP, 5 mins for LSBP

▶ Setting 1: b = 0.2 (LB-DDP), σ2
α = 100 (LSBP), co-clustering prob. ≈ 0.84

▶ Setting 2: b = 1 (LB-DDP), σ2
α = π2/3 (LSBP), co-clustering prob. ≈ 0.5

▶ Setting 3: b = 2 (LB-DDP), σ2
α = 0.22 (LSBP), co-clustering prob. ≈ 0.33
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