Logistic-Beta Processes for Modeling Dependent Random Probabilities with Beta Marginals

Presenter: Changwoo Lee (Texas A&M)

joint work with Alessandro Zito (Harvard), Huiyan Sang (Texas A&M), and David Dunson (Duke) https://arxiv.org/abs/2402.07048

Stat café, Department of Statistics, Texas A&M University March 25, 2024

Beta distributions and BNP models

$$V \sim \text{Beta}(a,b), \quad p(v) = \frac{1}{B(a,b)} v^{a-1} (1-v)^{b-1}, \ v \in (0,1)$$

- Beta distribution for modeling random probabilities / ratios
- Natural interpretation of parameters, Conjugacy with binomial, negative binomial, . . .
- Key component in many Bayesian nonparametric (BNP) models.
 - (Ex) Dirichlet process (DP) mixture model [Ferguson, 1973, Lo, 1984, Sethuraman, 1994],

$$f(y) = \sum_{h=1}^{\infty} \pi_h \mathcal{K}(y; \theta_h)$$

$$\pi_h = V_h \prod_{l \in L} (1 - V_l), \quad V_h \stackrel{\text{iid}}{\sim} \text{Beta}(1, b), \quad \theta_h \stackrel{\text{iid}}{\sim} G_0 \quad , h = 1, 2, \dots$$

1/47

Dependent BNP models

- Common recipe to build dependent BNP models: Replacing independent components with **stochastic processes** indexed by covariate $x \in \mathcal{X}$
- (Ex) Dependent DP mixture with covariate-dependent weights [MacEachern, 1999]

$$f(y) = \sum_{h=1}^{\infty} \left\{ V_h \prod_{l < h} (1 - V_l) \right\} \mathcal{K}(y; \theta_h) \qquad \Longrightarrow \qquad f(y \mid x) = \sum_{h=1}^{\infty} \left\{ V_h(x) \prod_{l < h} (1 - V_l(x)) \right\} \mathcal{K}(y; \theta_h)$$

$$V_h \stackrel{\text{iid}}{\sim} \text{Beta}(1, b), \quad h = 1, 2, \dots$$

$$V_h(x) \stackrel{\text{iid}}{\sim} \text{"beta process"}, \quad h = 1, 2, \dots$$

- Stochastic process extension of beta plays an important role in many BNP models Examples: dependent Pólya tree [Trippa et al., 2011], dependent IBP [Perrone et al., 2017]
- Dependent DP application example: Bayesian density regression

Example: Bayesian density regression (1)

- Probabilistic modeling of conditional density f(y|x) with uncertainty quantification
- (Ex) Health outcomes Y (GAD) and exposure X (DDE, metabolite of pesticide DDT)
 - Conditional prob. of preterm birth given DDE exposure level $\mathbb{P}(Y < 37 \mid X = x)$?

Example: Bayesian density regression (2)

- Normal linear model assumes f(y | x) follows normal distribution
- Too restrictive & assumptions do not meet in practice
- Bayesian nonparametric models offer highly flexible specifications

Example: Bayesian density regression (3)

Fitting DP mixture model for different subsets of data

Example: Bayesian density regression (3)

Fitting DP mixture model for different subsets of data

Example: Bayesian density regression (3)

Fitting DP mixture model for different subsets of data

Example: Bayesian density regression (4)

- Dependent Dirichlet process (DDP) mixture model [MacEachern, 1999]
- Model conditional density f(y|x), borrowing information across x

Dependent DP mixture model

Dependent DP mixture model with weights & atoms both depend on x

$$f(y \mid x) = \sum_{h=1}^{\infty} \left\{ V_h(x) \prod_{l < h} (1 - V_l(x)) \right\} N(y; \mu_h(x), \tau_h^{-1})$$

$$V_h(\cdot) \stackrel{\text{iid}}{\sim} \text{"Beta process" with Beta(1,b) marginal}, \quad h = 1, 2, \dots$$

$$\mu_h(x) = \beta_{0h} + \beta_{1h}x, \quad h = 1, 2, \dots$$

- Marginally DP at each x is a key for preserve interpretability & properties
- Nontrivial "beta process", often highly challenging posterior computation

Three desired properties of "beta process":

- (I) Accommodate **broad dependence structure**, both discrete and continuous $x \in \mathcal{X}$
- (II) Allow wide range of strengths of dependence, from perfect to possibly negative
- (III) Facilitate efficient posterior inference algorithms

Three desired properties of "beta process":

- (I) Accommodate **broad dependence structure**, both discrete and continuous $x \in \mathcal{X}$
- (II) Allow wide range of strengths of dependence, from perfect to possibly negative
- (III) Facilitate efficient posterior inference algorithms

Three desired properties of "beta process":

- (I) Accommodate **broad dependence structure**, both discrete and continuous $x \in \mathcal{X}$
- (II) Allow wide range of strengths of dependence, from perfect to possibly negative
- (III) Facilitate efficient posterior inference algorithms

Three desired properties of "beta process":

- (I) Accommodate **broad dependence structure**, both discrete and continuous $x \in \mathcal{X}$
- (II) Allow wide range of strengths of dependence, from perfect to possibly negative
- (III) Facilitate efficient posterior inference algorithms

Logistic-beta distribution

- Start from univariate logistic-beta (LB) distribution
 - Also called type IV generalized logistic or Fisher's z distribution (up to location-scale)
- We say $\eta \sim LB_1(a,b)$ with shape parameters a,b>0 if

$$\mathrm{LB}_1(\eta;a,b) = \frac{1}{B(a,b)} \left(\frac{1}{1+e^{-\eta}} \right)^a \left(\frac{e^{-\eta}}{1+e^{-\eta}} \right)^b, \quad \eta \in \mathbb{R}$$

- When a = b = 1, it becomes standard logistic distribution
- Applying logistic transformation $\sigma(x) = 1/(1 + e^{-x})$ gives $\sigma(\eta) \sim \text{Beta}(a, b)$
- In other words, if $\pi \sim \text{Beta}(a,b)$, then $\text{logit}(\pi) = \log(\pi/(1-\pi)) \sim \text{LB}_1(a,b)$

Logistic-beta distribution

• Normal variance-mean mixture representation of LB [Barndorff-Nielsen et al., 1982]

$$\mathrm{LB}_1(\eta;a,b) = \int_0^\infty \mathrm{N}\left(\eta;0.5\lambda(a-b),\lambda\right)\mathrm{Polya}(\lambda;a,b)\mathrm{d}\lambda$$

• We say $\lambda \sim \operatorname{Polya}(a,b)$ if $\lambda \stackrel{\mathrm{d}}{=} \sum_{k=0}^{\infty} 2\epsilon_k / \{(k+a)(k+b)\}, \quad \epsilon_k \stackrel{\mathrm{iid}}{\sim} \operatorname{Exp}(1)$

Multivariate Logistic-beta

- Multivariate extension with normal variance-mean mixture.
- We say $\eta = (\eta_1, \dots, \eta_n)^{\top} \sim LB_n(a, b, \mathbf{R})$ with correlation matrix $\mathbf{R}_{n \times n}$ if

$$\eta \mid \lambda \sim N_n (0.5\lambda(a-b)\mathbf{1}_n, \lambda \mathbf{R}),$$

 $\lambda \sim \text{Polya}(a,b)$

- Since **R** has a unit diagonal, each component of η marginally follows LB₁(a,b)
- Logistic transformation $\eta_i \mapsto \sigma(\eta_i)$ gives **multivariate beta** with Beta(a,b) marginals.
- Correlation matrix R controls dependence
- Briefly mentioned in [Barndorff-Nielsen et al., 1982], density function (complicated) is studied by [Grigelionis, 2008], but with no connection to beta distribution

Figure: (Top) Density of $\eta \sim LB_2(a=2,b=4,\mathbf{R})$ with $R_{12} \in \{-0.8,0,0.8\}$. (Bottom) Density of $\sigma(\eta)$.

Multivariate logistic-beta

Covariance (and correlation) is simply a linear function of R_{ij}

$$cov(\eta_i, \eta_j) = \begin{cases} 2\psi'(a)R_{ij}, & \text{if } a = b, \\ \psi'(a) + \psi'(b) + 2(R_{ij} - 1)\{\psi(a) - \psi(b)\}/(a - b), & \text{if } a \neq b, \end{cases}$$

where $\psi(x), \psi'(x)$ are digamma and trigamma functions.

- $R_{ij} = R_{ji} = 0$ does <u>not</u> imply $\eta_i \perp \eta_j$.
- If a = b (symmetric), correlation has a full range [-1, 1].
- If $a \neq b$ (asymmetric), the range of $corr(\eta_i, \eta_j)$ is

Range(corr(
$$\eta_i, \eta_j$$
)) = $\left[\underbrace{1 - \frac{4(\psi(a) - \psi(b))}{(a - b)(\psi'(a) + \psi'(b))}}_{\text{Nontrivial lower bound}}, 1\right]$

• Different from the minimal correlation (>-1) from Fréchet lower bound copula

- Correlation kernel $R: \mathcal{X} \times \mathcal{X} \rightarrow [-1, 1]$ with R(x, x) = 1
- We say $\eta(\cdot)$ follows **logistic-beta process**, denoted as $\eta \sim \text{LBP}(a, b, R)$, if every finite collection η follows logistic-beta with a, b, and $\mathbf{R}_{n \times n}$ with $R_{ij} = R(x_i, x_j)$
- Logistic transformation $\sigma(\eta(x))$ has Beta(a, b) marginals
- (Example 1) Discrete time indices $\mathcal{X} = \{1, 2, \dots, \}$: $R(x, x') = \rho^{|x-x'|}$ with $|\rho| < 1$.
- (Example 2) Continuous spatial domain $\mathcal{X} = \mathbb{R}^2$: Matérn correlation kernel with range and smoothness parameters. Example with $(a,b)=(2,4), \varrho=0.3, \nu=1.5, \mathcal{X}=[0,3]$

- Correlation kernel $R: \mathcal{X} \times \mathcal{X} \rightarrow [-1, 1]$ with R(x, x) = 1
- We say $\eta(\cdot)$ follows **logistic-beta process**, denoted as $\eta \sim \text{LBP}(a, b, R)$, if every finite collection η follows logistic-beta with a, b, and $\mathbf{R}_{n \times n}$ with $R_{ij} = R(x_i, x_j)$
- Logistic transformation $\sigma(\eta(x))$ has Beta(a,b) marginals
- (Example 1) Discrete time indices $\mathcal{X} = \{1, 2, \dots, \}$: $R(x, x') = \rho^{|x-x'|}$ with $|\rho| < 1$.
- (Example 2) Continuous spatial domain $\mathcal{X}=\mathbb{R}^2$: Matérn correlation kernel with range and smoothness parameters. Example with $(a,b)=(2,4),\ \varrho=0.3,\ \nu=1.5,\ \mathcal{X}=[0,3]$

Logistic-beta process with normalized feature map kernel

- Correlation kernel *R* with normalized feature map (normalized basis)
- $\phi: \mathcal{X} \to \mathbb{R}^q$ such that $\|\phi(x)\|_2^2 = 1$, define $R(x, x') = \langle \phi(x), \phi(x') \rangle$
- Example: normalized spline basis functions with q = 6.

Logistic-beta process with normalized feature map kernel

- Two different representations of $\eta \sim \text{LBP}(a,b,R)$ with $R(x,x') = \langle \phi(x),\phi(x') \rangle$
- **Hierarchical representation** of *n*-dimensional realization η :

$$\boldsymbol{\eta} = 0.5\lambda(a-b)\mathbf{1}_n + \sqrt{\lambda}\boldsymbol{\Phi}\boldsymbol{\gamma}, \quad \lambda \sim \mathrm{Polya}(a,b), \quad \boldsymbol{\gamma} \sim \mathrm{N}_q(\mathbf{0},\mathbf{I}_q)$$

where $\Phi_{n\times q}$ be a basis matrix with *i*th row $\phi(x_i)$.

- Conditioned on $\lambda,\,m{\eta}$ is parameterized by normal coefficients $m{\gamma}\sim N_q(m{0},m{I}_q)$
- Clear dimension reduction from n to q, based on q-dimensional feature map

Logistic-beta process with normalized feature map kernel

- Two different representations of $\eta \sim \text{LBP}(a, b, R)$ with $R(x, x') = \langle \phi(x), \phi(x') \rangle$
- Linear predictor representation of *n*-dimensional realization η :

$$\boldsymbol{\eta} = \{\psi(a) - \psi(b)\}(\mathbf{1}_n - \mathbf{\Phi}\mathbf{1}_q) + \mathbf{\Phi}\boldsymbol{\beta}, \quad \boldsymbol{\beta} \sim \mathrm{LB}_q(a, b, \mathbf{I}_q)$$

- Assume Bernoulli response model $z(x_i) \stackrel{\text{ind}}{\sim} \text{Ber}(\sigma\{\eta(x_i)\})$
- ullet With logit link, η is a linear predictor with LB coefficients eta with fixed varying intercept
- Resembles basis function representation of GP ("weight-space view")

Latent LBP model

Latent LBP model for binary data

$$z(x_i) \stackrel{\text{ind}}{\sim} \text{Ber}(\sigma\{\eta(x_i)\}), \quad i = 1, \dots, n,$$

 $\eta \sim \text{LBP}(a, b, R)$

- Lead to marginally Beta(a,b) prior on success probabilities $\mathbb{P}(z(x)=1)$
- Goal: Infer $\eta(x^*)$ at arbitrary x^* , with efficient posterior computation

- Posterior: $p(\boldsymbol{\eta} \mid \mathbf{z}) \propto p(\boldsymbol{\eta}) \prod_{i=1}^n p(z_i \mid \eta_i) = p(\boldsymbol{\eta}) \prod_{i=1}^n \exp(z_i \eta_i) / (1 + \exp(\eta_i))$
- Pólya-Gamma(PG) augmentation [Polson et al., 2013] → conditionally normal likelihood

$$z_{i} \stackrel{\text{ind}}{\sim} \operatorname{Ber}(\sigma(\eta_{i}))$$

$$\mathcal{L}_{\operatorname{aug}}(\boldsymbol{\eta}, \boldsymbol{\omega}) = \prod_{i=1}^{n} 0.5 e^{(z_{i}-0.5)\eta_{i}-\omega_{i}\eta_{i}^{2}/2} \operatorname{PG}(\omega_{i}; 1, 0)$$

$$\omega_{i} \mid \eta_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{PG}(1, \eta_{i}), \quad i = 1, \dots, n$$

$$\eta_{i} \mid \omega_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{N}((z_{i}-0.5)\omega_{i}^{-1}, \omega_{i}^{-1}), \quad i = 1, \dots, n$$

LBP as a normal variance-mean mixture → conditionally normal prior

$$oldsymbol{\eta} \sim \mathrm{LB}_n(a,b,\mathbf{R}) \qquad \qquad \longrightarrow \qquad \qquad egin{array}{c} oldsymbol{\eta} \mid \lambda \sim \mathrm{N}_n(0.5\lambda(a-b)\mathbf{1}_n,\lambda\mathbf{R}) \\ \lambda \sim \mathrm{Polya}(a,b) \end{array}$$

- Posterior: $p(\boldsymbol{\eta} \mid \mathbf{z}) \propto p(\boldsymbol{\eta}) \prod_{i=1}^n p(z_i \mid \eta_i) = p(\boldsymbol{\eta}) \prod_{i=1}^n \exp(z_i \eta_i) / (1 + \exp(\eta_i))$
- Pólya-Gamma(PG) augmentation [Polson et al., 2013] → conditionally normal likelihood

$$z_{i} \stackrel{\text{ind}}{\sim} \operatorname{Ber}(\sigma(\eta_{i}))$$

$$\mathcal{L}_{\operatorname{aug}}(\boldsymbol{\eta}, \boldsymbol{\omega}) = \prod_{i=1}^{n} 0.5e^{(z_{i}-0.5)\eta_{i}-\omega_{i}\eta_{i}^{2}/2}\operatorname{PG}(\omega_{i}; 1, 0)$$

$$\omega_{i} \mid \eta_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{PG}(1, \eta_{i}), \quad i = 1, \dots, n$$

$$\eta_{i} \mid \omega_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{N}((z_{i}-0.5)\omega_{i}^{-1}, \omega_{i}^{-1}), \quad i = 1, \dots, n$$

LBP as a normal variance-mean mixture → conditionally normal prior

$$oldsymbol{\eta} \sim \mathrm{LB}_n(a,b,\mathbf{R}) \qquad \longrightarrow \qquad \qquad egin{array}{c} oldsymbol{\eta} \mid \lambda \sim \mathrm{N}_n(0.5\lambda(a-b)\mathbf{1}_n,\lambda\mathbf{R}) \\ \lambda \sim \mathrm{Polya}(a,b) \end{array}$$

- Posterior: $p(\boldsymbol{\eta} \mid \mathbf{z}) \propto p(\boldsymbol{\eta}) \prod_{i=1}^n p(z_i \mid \eta_i) = p(\boldsymbol{\eta}) \prod_{i=1}^n \exp(z_i \eta_i) / (1 + \exp(\eta_i))$
- Pólya-Gamma(PG) augmentation [Polson et al., 2013] → conditionally normal likelihood

$$z_{i} \stackrel{\text{ind}}{\sim} \operatorname{Ber}(\sigma(\eta_{i}))$$

$$\mathcal{L}_{\operatorname{aug}}(\boldsymbol{\eta}, \boldsymbol{\omega}) = \prod_{i=1}^{n} 0.5e^{(z_{i}-0.5)\eta_{i}-\omega_{i}\eta_{i}^{2}/2}\operatorname{PG}(\omega_{i}; 1, 0)$$

$$\omega_{i} \mid \eta_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{PG}(1, \eta_{i}), \quad i = 1, \dots, n$$

$$\eta_{i} \mid \omega_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{N}((z_{i}-0.5)\omega_{i}^{-1}, \omega_{i}^{-1}), \quad i = 1, \dots, n$$

LBP as a normal variance-mean mixture → conditionally normal prior

$$oldsymbol{\eta} \sim \mathrm{LB}_n(a,b,\mathbf{R}) \qquad \longrightarrow \qquad \qquad \begin{split} oldsymbol{\eta} &| \ \lambda \sim \mathrm{N}_n(0.5\lambda(a-b)\mathbf{1}_n,\lambda\mathbf{R}) \\ &\lambda \sim \mathrm{Polya}(a,b) \end{split}$$

- Posterior: $p(\boldsymbol{\eta} \mid \mathbf{z}) \propto p(\boldsymbol{\eta}) \prod_{i=1}^n p(z_i \mid \eta_i) = p(\boldsymbol{\eta}) \prod_{i=1}^n \exp(z_i \eta_i) / (1 + \exp(\eta_i))$
- Pólya-Gamma(PG) augmentation [Polson et al., 2013] → conditionally normal likelihood

$$z_{i} \stackrel{\text{ind}}{\sim} \operatorname{Ber}(\sigma(\eta_{i}))$$

$$\mathcal{L}_{\operatorname{aug}}(\boldsymbol{\eta}, \boldsymbol{\omega}) = \prod_{i=1}^{n} 0.5e^{(z_{i}-0.5)\eta_{i}-\omega_{i}\eta_{i}^{2}/2}\operatorname{PG}(\omega_{i}; 1, 0)$$

$$\omega_{i} \mid \eta_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{PG}(1, \eta_{i}), \quad i = 1, \dots, n$$

$$\eta_{i} \mid \omega_{i}, z_{i} \stackrel{\text{ind}}{\sim} \operatorname{N}((z_{i}-0.5)\omega_{i}^{-1}, \omega_{i}^{-1}), \quad i = 1, \dots, n$$

ullet LBP as a normal variance-mean mixture o conditionally normal prior

$$oldsymbol{\eta} \sim \mathrm{LB}_n(a,b,\mathbf{R}) \qquad \longrightarrow \qquad \qquad \begin{split} oldsymbol{\eta} &| \ \lambda \sim \mathrm{N}_n(0.5\lambda(a-b)\mathbf{1}_n,\lambda\mathbf{R}) \\ &\lambda \sim \mathrm{Polya}(a,b) \end{split}$$

• One cycle of Gibbs sampler, update $\omega \to \lambda \to \eta$ from full conditionals

Step 1. Update the Pólya-Gamma auxiliary variables from $p(\omega \mid \eta, \mathbf{z})$,

$$\omega_i \mid \boldsymbol{\eta} \stackrel{\text{ind}}{\sim} PG(1, \eta(x_i)), \quad i = 1, \ldots, n$$

Step 2. Update the Pólya mixing parameter from $p(\lambda \mid \eta, \omega, \mathbf{z})$,

$$p(\lambda \mid \boldsymbol{\omega}, \mathbf{z}) \propto \text{Polya}(\lambda; a, b) N_n(\boldsymbol{\eta}; 0.5\lambda(a-b)\mathbf{1}_n, \lambda \mathbf{R})$$

Step 3. Update the latent LBP parameters from $p(\eta \mid \omega, \lambda, \mathbf{z})$,

$$\eta \mid \omega, \lambda, \mathbf{z} \sim N_n \left((\Omega + \lambda^{-1} \mathbf{R}^{-1})^{-1} ((\mathbf{z} - 0.5\mathbf{1}_n) + 0.5(a - b) \mathbf{R}^{-1} \mathbf{1}_n), (\Omega + \lambda^{-1} \mathbf{R}^{-1})^{-1} \right)$$

Can we do better?

- One cycle of **blocked Gibbs sampler**, update $\omega \to (\lambda, \eta)$
- Blocking possible due to normal-normal conjugacy

Step 1. Update the Pólya-Gamma auxiliary variables from $p(\omega \mid \eta, \mathbf{z})$,

$$\omega_i \mid \boldsymbol{\eta} \stackrel{\text{ind}}{\sim} \mathrm{PG}(1, \eta(x_i)), \quad i = 1, \ldots, n$$

Step 2. Update the Pólya mixing parameter from $p(\lambda \mid \omega, \mathbf{z}) = \int p(\lambda, \eta \mid \omega, \mathbf{z}) d\eta$,

$$p(\lambda \mid \boldsymbol{\omega}, \mathbf{z}) \propto \text{Polya}(\lambda; a, b) N_n \left(\mathbf{\Omega}^{-1} (\mathbf{z} - 0.5 \mathbf{1}_n); 0.5 \lambda (a - b) \mathbf{1}_n, \lambda \mathbf{R} + \mathbf{\Omega}^{-1} \right)$$

Step 3. Update the latent LBP parameters from $p(\eta | \omega, \lambda, \mathbf{z})$,

$$\eta \mid \omega, \lambda, \mathbf{z} \sim N_n \left((\Omega + \lambda^{-1} \mathbf{R}^{-1})^{-1} ((\mathbf{z} - 0.5\mathbf{1}_n) + 0.5(a - b)\mathbf{R}^{-1}\mathbf{1}_n), (\Omega + \lambda^{-1}\mathbf{R}^{-1})^{-1} \right)$$

Posterior computation strategies (detail 1)

Step 2. Update the Pólya mixing parameter from $p(\lambda \mid \omega, \mathbf{z}) = \int p(\lambda, \eta \mid \omega, \mathbf{z}) d\eta$,

$$p(\lambda \mid \boldsymbol{\omega}, \mathbf{z}) \propto \frac{\mathsf{Polya}(\boldsymbol{\lambda}; \boldsymbol{a}, \boldsymbol{b})}{\mathsf{N}_n} \left(\boldsymbol{\Omega}^{-1} (\mathbf{z} - 0.5\mathbf{1}_n); 0.5\lambda(\boldsymbol{a} - \boldsymbol{b})\mathbf{1}_n, \lambda \mathbf{R} + \boldsymbol{\Omega}^{-1} \right)$$

• The Pólya density lacktriangle satisfies the following identity for a+b=a'+b':

$$\operatorname{Polya}(\lambda;a',b') = B(a,b)B(a',b')^{-1} \exp\{\lambda(ab-a'b')/2\} \operatorname{Polya}(\lambda;a,b),$$

- Adaptive Pólya proposal scheme for Step 2: selecting the proposal (e.g. for independent M-H) as Polya(a', b'), where (a', b') are adaptively chosen with fixed sum.
- Avoids Pólya density evaluation as they cancel out in the acceptance ratio.

Posterior computation strategies (detail 2)

Step 2. Update the Pólya mixing parameter from $p(\lambda \mid \omega, \mathbf{z}) = \int p(\lambda, \boldsymbol{\eta} \mid \omega, \mathbf{z}) d\boldsymbol{\eta}$,

$$p(\lambda \mid \boldsymbol{\omega}, \mathbf{z}) \propto \text{Polya}(\lambda; a, b) \mathbf{N}_n \left(\mathbf{\Omega}^{-1} (\mathbf{z} - 0.5 \mathbf{1}_n); 0.5 \lambda (a - b) \mathbf{1}_n, \lambda \mathbf{R} + \mathbf{\Omega}^{-1} \right)$$

Step 3. Update the latent LBP parameters from $p(\eta \mid \omega, \lambda, \mathbf{z})$,

$$\eta \mid \omega, \lambda, \mathbf{z} \sim \mathbf{N_n} \left((\mathbf{\Omega} + \lambda^{-1} \mathbf{R}^{-1})^{-1} ((\mathbf{z} - 0.5\mathbf{1}_n) + 0.5(a - b) \mathbf{R}^{-1} \mathbf{1}_n), (\mathbf{\Omega} + \lambda^{-1} \mathbf{R}^{-1})^{-1} \right)$$

- GP computation strategies preserving marginal variances can be seamlessly applied
- (Ex1) Low-rank (normalized feature map), where Step 3 becomes

$$\boldsymbol{\gamma} \mid \boldsymbol{\omega}, \lambda, \mathbf{z} \sim \mathbf{N}_q((\mathbf{I}_q + \lambda \boldsymbol{\Phi}^\top \boldsymbol{\Omega} \boldsymbol{\Phi})^{-1} \sqrt{\lambda} \boldsymbol{\Phi}^\top ((\mathbf{z} - 0.5\mathbf{1}_n) - 0.5\lambda(a - b)\boldsymbol{\omega}), (\mathbf{I}_q + \lambda \boldsymbol{\Phi}^\top \boldsymbol{\Omega} \boldsymbol{\Phi})^{-1})$$

• (Ex2) Modified predictive process [Finley et al., 2009], low-rank + diag, Woodbury formula

Posterior, copula-based model

Compare with copula-based models, e.g. Gaussian copula

$$z(x_i) \stackrel{\text{ind}}{\sim} \operatorname{Ber}(F_B^{-1}(F_Z(\zeta_i))), \quad i = 1, \dots, n,$$

$$\boldsymbol{\zeta} \sim \operatorname{N}_n(0, R)$$

where F_Z is cdf of standard normal and F_B is cdf of Beta(a,b).

• Lead to marginally Beta(a,b) prior on success probabilities $\mathbb{P}(z(x)=1)$, but,

$$p(\zeta \mid \mathbf{z}) \propto N_n(\zeta; 0, \mathbf{R}) \prod_{i=1}^n [F_B^{-1}(F_Z(\zeta_i))]^{z_i} [1 - F_B^{-1}(F_Z(\zeta_i))]^{1-z_i}$$

ullet Posterior computation of ζ is a nightmare, even in this simple Bernoulli model

Logistic-beta DDP mixture model

• Logistic-beta dependent DP mixture model with weights & atoms both depend on x

$$f(y \mid x) = \sum_{h=1}^{\infty} \left\{ V_h(x) \prod_{l < h} (1 - V_l(x)) \right\} N(y; \mu_h(x), \tau_h^{-1})$$

 $V_h(\cdot) \stackrel{\text{iid}}{\sim}$ "Beta process" with Beta(1,b) marginal, $h = 1, 2, \dots$

$$\mu_h(x) = \beta_{0h} + \beta_{1h}x, \quad h = 1, 2, \dots$$

with priors on atom parameters β_{0h} , β_{1h} , τ_h , independently across h

- Rich dependence structure on any domain $x \in \mathcal{X}$ through correlation kernel R
- Efficient posterior computation exploiting conditional conjugacy

Logistic-beta DDP mixture model

Logistic-beta dependent DP mixture model with weights & atoms both depend on x

$$f(y|x) = \sum_{h=1}^{\infty} \left\{ V_h(x) \prod_{l < h} (1 - V_l(x)) \right\} N(y; \mu_h(x), \tau_h^{-1})$$
$$\operatorname{logit}(V_h(\cdot)) \stackrel{\text{iid}}{\sim} LBP(1, b, R), \quad h = 1, 2, \dots$$
$$\mu_h(x) = \beta_{0h} + \beta_{1h}x, \quad h = 1, 2, \dots$$

with priors on atom parameters β_{0h} , β_{1h} , τ_h , independently across h

- Rich dependence structure on any domain $x \in \mathcal{X}$ through correlation kernel R
- Efficient posterior computation exploiting conditional conjugacy

Properties of logistic-beta DDP details

• Logistic-beta DDP: collection of dependent random probability measures $\{G_x : x \in \mathcal{X}\}$

$$G_x(\cdot) = \sum_{h=1}^{\infty} \left(\sigma\{\eta_h(x)\} \prod_{l < h} \left[1 - \sigma\{\eta_l(x)\}\right] \right) \delta_{\theta_h}(\cdot), \quad \eta_h \stackrel{\text{iid}}{\sim} \text{LBP}(1, b, R), \theta_h \stackrel{\text{iid}}{\sim} G_0$$

• We study **range** of $corr(G_{x_i}(B), G_{x_j}(B))$ for Borel set $B, x_i \neq x_j$ with independent atoms

LB-DDP mixture posterior computation

$$f(y \mid x) = \sum_{h=1}^{\infty} \pi_h(x) \mathbf{N}(y; \mu_h(x), \tau_h^{-1})$$

Sample-specific assignment prob. $\{\pi_h(x_i)\}$ is

$$\mathbb{P}(s_i = h) = V_h(x_i) \prod_{l < h} (1 - V_l(x_i)), h \in \{1, 2, 3, \dots\}$$

Continuation-ratio scheme [Tutz, 1991]

$$V_1(x_i) = \mathbb{P}(s_i = 1)$$

 $V_2(x_i) = \mathbb{P}(s_i = 2 \mid s_i \ge 2)$
 $V_3(x_i) = \mathbb{P}(s_i = 3 \mid s_i \ge 3)$
 \vdots

Equivalent to a series of latent LBP models

$$1(s_i = 1) \stackrel{\text{ind}}{\sim} \operatorname{Ber}(\sigma(\eta_1(x_i))), \ i : s_i \ge 1$$
 $1(s_i = 2) \stackrel{\text{ind}}{\sim} \operatorname{Ber}(\sigma(\eta_2(x_i))), \ i : s_i \ge 2$
 $1(s_i = 3) \stackrel{\text{ind}}{\sim} \operatorname{Ber}(\sigma(\eta_3(x_i))), \ i : s_i \ge 3$
 \vdots
 $\eta_h \stackrel{\text{iid}}{\sim} \operatorname{LBP}(1, b, R), \ h = 1, 2, \dots$

LB-DDP mixture posterior computation

One cycle of blocked Gibbs sampler (with truncation level H):

Step 1: For i = 1, ..., n, update component allocations $s_i \in \{1, ..., H\}$.

Step 2: for h = 1, ..., H - 1 do

- 2-1. Update Pólya-gamma variables from $p(\omega_h | \gamma, \lambda, \mathbf{s})$, which is Pólya-Gamma,
- 2.2. Update the Pólya mixing parameter λ_h from $p(\lambda_h | \omega_h, \mathbf{s}) = \int p(\lambda_h, \gamma_h | \omega_h, \mathbf{s}) d\gamma_h$,
- 2.3. Update γ_h from $p(\gamma_h | \lambda_h, \omega_h, \mathbf{s})$, which is multivariate normal

Step 3: For h = 1, ..., H, update component-specific parameters

$$p(\theta_h \mid -) \propto G^0(\theta_h) \prod_{i:s_i=h} \mathcal{K}(y_i \mid \theta_h).$$

Similar to logit stick-breaking process [Rigon and Durante, 2021], with only step (2.2) added.

Latent LBP model for binary data, beta marginal success probabilities

$$z(x_i) \stackrel{\text{ind}}{\sim} \text{Ber}(\sigma\{\eta(x_i)\}), \quad i = 1, \dots, n,$$

 $\eta \sim \text{LBP}(a, b, R)$

- Spatial domain $\mathcal{X} = [0, 1]^2$, $n_{\text{train}} = 400$, $n_{\text{test}} = 100$, Matérn correlation, fixed $\nu = 1.5$
- Data generation with (1) Latent LBP, (2) Gaussian copula, range $\varrho \in \{0.1, 0.2, 0.4\}$
- Aim 1: Assess benefits of posterior inference strategies involved in LBP
- Aim 2: Compare predictive performance and computational advantages of LBP.

Aim 1: Assess benefits of posterior inference strategies involved in LBP

Data generation	Latent LBP algorithm		ESS	ESS/sec	Acc. rate (%)
Latent LBP $\varrho = 0.1$	Blocked	Adapted Non-adapted	245.08 (12.86) 196.35 (11.28)	3.35 (0.18) 2.69 (0.15)	54.28 (1.03) 49.39 (1.39)
	Non-blocked	Adapted Non-adapted	7.89 (0.35) 7.13 (0.37)	0.14 (0.01) 0.13 (0.01)	13.60 (0.26) 12.44 (0.31)
Latent LBP $\varrho = 0.2$	Blocked	Adapted Non-Adapted	257.01 (16.32) 247.83 (16.53)	2.89 (0.18) 2.82 (0.19)	62.26 (1.12) 57.60 (1.47)
	Non-blocked	Adapted Non-adapted	7.31 (0.32) 6.58 (0.32)	0.11 (0.00) 0.10 (0.00)	13.42 (0.22) 12.48 (0.31)
Latent LBP $\varrho=0.4$	Blocked	Adapted Non-adapted	368.26 (17.54) 328.72 (19.00)	4.12 (0.20) 3.67 (0.21)	66.12 (0.98) 61.45 (1.32)
	Non-blocked	Adapted Non-adapted	6.40 (0.29) 6.56 (0.32)	0.09 (0.00) 0.10 (0.00)	13.01 (0.22) 12.88 (0.31)

ESS: effective sample size, ESS/sec: effective sampling rate, higher the better

Aim 2: Compare predictive performance and computational advantages of LBP.

Data generation	Model	$RMSE \times \! 100$		mean CRPS $\times 100$		mESS/sec
		training	test	training	test	
Gauss. copula $\varrho=0.1$	Latent LBP Gauss. copula	11.93 (0.14) 11.82 (0.13)	12.32 (0.17) 12.24 (0.16)	6.59 (0.10) 6.48 (0.09)	6.80 (0.11) 6.71 (0.11)	21.11 (0.21) 0.48 (0.01)
Gauss. copula $\varrho=0.2$	Latent LBP Gauss. copula	8.67 (0.15) 8.61 (0.16)	8.80 (0.16) 8.75 (0.17)	4.78 (0.10) 4.74 (0.10)	4.85 (0.10) 4.82 (0.11)	17.58 (0.16) 0.40 (0.01)
Gauss. copula $\varrho=0.4$	Latent LBP Gauss. copula	6.11 (0.16) 6.10 (0.16)	6.14 (0.16) 6.13 (0.16)	3.39 (0.10) 3.38 (0.10)	3.41 (0.10) 3.40 (0.10)	17.41 (0.17) 0.47 (0.01)

RMSE, CRPS: lower the better, mESS/sec: higher the better

Note: LBP results are based on a misspecified model. (see Property)

Real data analysis

- No publicly available software for DDP with *x*-dependent weights, continuous *x*.
- Compare with logit stick-breaking process (LSBP) [Ren et al., 2011, Rigon and Durante, 2021] under similar settings. More LSBP is not DDP but computation is fast & tractable.
- Analyze preterm birth probabilities based on two subgroups of data (smoking Y/N).
- MCMC with 35,000 iterations run in < 10 mins in personal laptop (Apple M1), $n \approx 1000$

Figure: Estimated probability of preterm birth with 95% credible intervals for the smoking group, under three different hyperparameter settings for LB-DDP $b \in \{0.2, 1, 2\}$ and LSBP mixture models.

Figure: Estimated probability of preterm birth with 95% credible intervals for the nonsmoking group, under three different hyperparameter settings for LB-DDP $b \in \{0.2, 1, 2\}$ and LSBP mixture models.

Conclusion

- Logistic-beta process (LBP) for modeling dependent beta random probabilities
 - Accommodate broad dependence structure, both discrete and continuous √
 - (II) Allow a wide range of dependence strengths, perfect correlation to possibly negative \checkmark
 - (III) Facilitate efficient posterior inference algorithm \checkmark
- We apply LBP to DDP mixture models, where dependent beta plays crucial role
- LB-DDP has full flexibility & clear interpretation & hyperparameter robustness & computational tractability, a rare feature with x-dependent weights [Wade et al., 2023]
- Application to x-dependent clustering & other dependent BNP models and beyond

Thank you!

References L

Barndorff-Nielsen, O., Kent, J., and Sørensen, M. (1982).

Normal variance-mean mixtures and z distributions. *International Statistical Review*, 50(2):145–159.

Barrientos, A. F., Jara, A., and Quintana, F. A. (2012).

On the support of MacEachern's dependent Dirichlet processes and extensions. Bayesian Analysis, 7(2):277–310.

DeYoreo, M. and Kottas, A. (2018).

Modeling for dynamic ordinal regression relationships: An application to estimating maturity of rockfish in California. Journal of the American Statistical Association, 113(521):68–80.

Ferguson, T. S. (1973).

A Bayesian analysis of some nonparametric problems.

The Annals of Statistics, 1(2):209-230.

Finley, A. O., Sang, H., Banerjee, S., and Gelfand, A. E. (2009).

Improving the performance of predictive process modeling for large datasets.

Computational Statistics & Data Analysis, 53(8):2873–2884.

References II

Grigelionis, B. (2008).

On Pólya mixtures of multivariate Gaussian distributions.

Statistics & Probability Letters, 78(12):1459-1465.

Lo, A. Y. (1984).

On a class of Bayesian nonparametric estimates: I. density estimates.

The Annals of Statistics, 12(1):351–357.

Longnecker, M. P., Klebanoff, M. A., Zhou, H., and Brock, J. W. (2001).

Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth.

The Lancet, 358(9276):110-114.

MacEachern, S. N. (1999).

Dependent nonparametric processes.

In ASA Proceedings of the Section on Bayesian Statistical Science, volume 1, pages 50-55.

MacEachern, S. N. (2000).

Dependent Drichlet processes.

Technical report, Department of Statistics, The Ohio State University.

References III

Nieto-Barajas, L. E., Müller, P., Ji, Y., Lu, Y., and Mills, G. B. (2012). A time-series DDP for functional proteomics profiles. *Biometrics*. 68(3):859–868.

Perrone, V., Jenkins, P. A., Spano, D., and Teh, Y. W. (2017). Poisson random fields for dynamic feature models. *Journal of Machine Learning Research*, 18:1–45.

Polson, N. G., Scott, J. G., and Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables.

Journal of the American Statistical Association, 108(504):1339–1349.

Ren, L., Du, L., Carin, L., and Dunson, D. B. (2011). Logistic stick-breaking process. Journal of Machine Learning Research, 12(1):203–239.

Rigon, T. and Durante, D. (2021).

Tractable Bayesian density regression via logit stick-breaking priors. Journal of Statistical Planning and Inference, 211:131–142.

References IV

Sethuraman, J. (1994).

A constructive definition of Dirichlet priors. *Statistica Sinica*, 4(2):639–650.

Trippa, L., Müller, P., and Johnson, W. (2011).

The multivariate beta process and an extension of the Polya tree model. *Biometrika*, 98(1):17–34.

Tutz, G. (1991).

Sequential models in categorical regression. Computational Statistics & Data Analysis, 11(3):275–295.

Wade, S., Inacio, V., and Petrone, S. (2023).

Bayesian dependent mixture models: A predictive comparison and survey. arXiv preprint arXiv:2307.16298.

Properties of LB-DDP (1988)

Theorem (correlation range)

Consider a single-atoms LB-DDP $\{G_x: x \in \mathcal{X}\}$ with concentration parameter b and correlation kernel R, where its atoms are i.i.d. from a nonatomic base measure. Let $\mu(x_i, x_j) = \mathbb{E}[\sigma\{\eta(x_i)\}\sigma\{\eta(x_j)\}]$ with $\eta \sim \text{LBP}(1, b, R)$. Then, for any Borel set B,

$$corr(G_{x_i}(B), G_{x_j}(B)) = \frac{(1+b)^2}{2/\mu(x_i, x_j) - (1+b)}.$$

Theorem (full weak support, [Barrientos et al., 2012])

Consider an LB-DDP with an atom process $\{\theta(x): x \in \mathcal{X}\}$ with support Θ that can be represented with a collection of copulas with positive density w.r.t. Lebesgue measure. Then, LB-DDP has full weak support, i.e. the topological support of LB-DDP coincides with the space of collections of all probability measures with support Θ indexed by \mathcal{X} .

Properties of LB-DDP (back)

- AR1sq-DDP [DeYoreo and Kottas, 2018]: smallest range, due to shared component
- tsDDP [Nieto-Barajas et al., 2012]: infimum attained at independent stick-breaking ratios
- Copula-based DDP [MacEachern, 2000]: infimum attained at Fréchet lower bound

• Density function of Polya(a, b):

$$Polya(\lambda; a, b) = \sum_{k=0}^{\infty} {\binom{-(a+b)}{k}} \frac{k + (a+b)/2}{B(a,b)} \exp\left\{-\frac{(k+a)(k+b)}{2}\lambda\right\},\tag{1}$$

where
$$\binom{x}{k} = \frac{x(x-1)\cdots(x-k+1)}{k(k-1)\cdots 1}$$
 for any $x \in \mathbb{R}$ and $k \in \{1,2,\ldots,\}$, with provision $\binom{x}{0} = 1$.

• Alternating series, evaluation becomes unstable, especially near the origin

Assessing the predictive performance of latent LBP under the correctly specified model

Data generation	Model	RMSE ×100		mean CRPS ×100		mESS/sec
		training	test	training	test	
Latent LBP $\varrho = 0.1$	Latent LBP Gauss. copula	11.59 (0.15) 11.66 (0.15)	12.17 (0.20) 12.19 (0.20)	6.31 (0.10) 6.35 (0.09)	6.62 (0.12) 6.65 (0.12)	21.27 (0.24) 0.48 (0.01)
Latent LBP $\varrho = 0.2$	Latent LBP Gauss. copula	8.54 (0.18) 8.59 (0.17)	8.73 (0.19) 8.76 (0.18)	4.67 (0.11) 4.70 (0.10)	4.77 (0.11) 4.79 (0.11)	17.87 (0.16) 0.44 (0.01)
Latent LBP $\varrho = 0.4$	Latent LBP Gauss. copula	6.12 (0.19) 6.15 (0.17)	6.16 (0.19) 6.19 (0.18)	3.41 (0.11) 3.43 (0.10)	3.43 (0.11) 3.44 (0.11)	17.48 (0.16) 0.47 (0.01)

Real data analysis settings ••••

- Collaborative perinatal project data, publicly available [Longnecker et al., 2001]
- Collected between 1959-1966, smoking group n = 1023, non-smoking n = 1290.
- Data are standardized, β_{0h} , $\beta_{1h} \stackrel{\text{iid}}{\sim} N(0,1)$, $\tau_h \stackrel{\text{iid}}{\sim} Gamma(1,1)$
- Both LB-DDP, LSBP used normalized natural spline basis with 6 degrees of freedom
- 35,000 MCMC iteration took 7 mins for LB-DDP, 5 mins for LSBP
 - ▶ Setting 1: b=0.2 (LB-DDP), $\sigma_{\alpha}^2=100$ (LSBP), co-clustering prob. ≈ 0.84
 - ► Setting 2: b=1 (LB-DDP), $\sigma_{\alpha}^2=\pi^2/3$ (LSBP), co-clustering prob. ≈ 0.5
 - ► Setting 3: b=2 (LB-DDP), $\sigma_{\alpha}^2=0.2^2$ (LSBP), co-clustering prob. ≈ 0.33