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Motivations

Why we study a perceptron (Two-Layer neural network, shallow neural
network, ...)?

A tractable model for the theoretical analysis.
Implicit bias

How model settings (activation functions, optimization algorithms,
initializations, ...) affect the solution we obtain?
Model settings ‘implicitly’ give us some ‘bias’ toward the certain
solutions.

Depth separation

What kind of problems are solved with shallow networks, and better
solved by deeper networks?
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Neural Network I

A neural network is a function of the following form:

f (x) = g ◦ hK ◦ hK−1 ◦ · · · h1(x)

where hk : Rdk−1 → Rdk s.t. hk(z) = σk(Wkz + bk).

W is called a ‘weight’.
b is called a ‘bias’.
σ is a pre-defined non-linear function called an ‘activation function’.

Examples: tanh(x), ReLU(x) = max{0, x}.
From now on, we fix σ = ReLU.

g is called a final layer, and convert the output into desired form (linear
map if regression, softmax function if classification, ...).
Each hk is called a layer, dk is called a width of the kth layer. K is
called a depth.

Park, Pelakh, Wojtowytsch (TAMU, ISU, Pitt) Minimum norm interpolation by perceptra 4 / 46



Neural Network II

Why neural network? Universal Approximation Theorems.

Any continuous function with compact support can be approximated by
a neural network with suitable width, depth, and activation w.r.t.
sup-norm topology (i.e. a set of neural network is dense in C (K ) w.r.t.
sup-norm topology).
Limitations:

Compact support is necessary.

Lacking quantatitive bound or obtaining very loose bound.

Only for sup-norm topology.

In shallow neural network cases, these limitations can be resolved.
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Barron Space I

A Two-Layer neural network (perceptron, shallow neural network, ...)
is the neural network with two layers including a final layer.

fm(x) =
1

m

m∑
j=1

ajσ(w
T
j x + bj).
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Barron Space II

Which functions can be approximated well by a Two-Layer ReLU
neural network?

A measure representation of m-width Two-Layer neural networks:

fm(x) =
1

m

m∑
j=1

ajσ(w
T
j x + bj)

=

∫
aσ(wT x + b) d

 1

m

m∑
j=1

δθm


⇒ f (x) =

∫
θ

aσ(wT x + b)dπ(θ) (1)

where θ = (a,w , b) and π(θ) is a probability measure in Θ space.
Denote B: a set of functions that can be expressed by the form (1).
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Barron Space III

We can assign a natural norm in B (Barron norm).

∥f ∥B := inf
π

∫
|a|(∥w∥+ |b|)dπ.

The normed space (B, ∥ · ∥B) is indeed a Banach space.
⇒ ‘Barron Space’

Barron space is a space can be approximated well by perceptra (i.e.
perceptra is dense subset of Barron space w.r.t. Barron norm).

Park, Pelakh, Wojtowytsch (TAMU, ISU, Pitt) Minimum norm interpolation by perceptra 8 / 46



Barron Space IV

Barron space has a relationship with other function spaces →
convenient theoretical analysis ([EW21]).

E.g. Hs(Rd) ⊆ B for s > d/2 + 2 if µ has a bounded support.
B ⊂ C 0,1(Rd).

Intuition: The form in (1) with σ(·) = cos(·) is a R-valued Fourier
inversion → ∥ · ∥B resembles the fractional Sobolev norm.

⇒ Is everything good now?
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Barron Space V

The existence of the bias term in Barron norm causes discrepancies
with practical settings. Why?

Barron Norm: Not invariant under translations in the data space.

⇒⇐ In practice we frequently center the data.

Bias term has no contribution to overfitting.

∴ Want to make a regularization without controlling the bias.

Due to above facts, in practice ‘weight decay’ penalty is used instead
of Barron norm penalty.

RWD(θ) =
∥a∥2ℓ2 + ∥W ∥2F

2m
.

⇒ Any concept corresponding to this Weight Decay regularizer?
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Barron Space VI

Construct continuum extension of Weight Decay regularizer:

[f ]B = inf
π
RWD(π) := inf

π

1

2

∫
|a|2 + ∥w∥2dπ.

This [·]B is not a norm but is a semi-norm. ⇒ ‘Barron semi-norm’.

Benefits of Barron semi-norm:

Any f with f (0) < ∞ and [f ]B < ∞ is a Barron function ⇒ Can
import theoretical benefits of Barron norm.
If f ∈ B, then Lip(f ) ≤ [f ]B.

Minimum norm interpolant: A function with min[f ]B under data
fitting constraint.
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Main questions

Main questions addressed in the work:

Can we obtain the approximation error between a Two-Layer ReLU net-
work and a target function in terms of number of parameters and data
points, under more general conditions (unbounded & non-Lipschitz loss,
non-compact & sub-Gaussian data)?

How do Two-Layer ReLU networks interpolate where there is no data?

Can we use theoretical solutions to compare different learning schemes
(optimization algorithms, initialization)?
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Notations

x ∼ µ: Data distribution, ∥x∥ is assumed to be σ2-sub-Gaussian.

n: Dataset size.

m: Width of the neural network.

λ: Strength of weight decay regularizer in the risk functional.

f ∗: Target function.

Two-layer ReLU net fθ(x) =
1
m

∑m
j=1 ajσ(w

T
j x + bj)

(Regularized) empirical risk

R̂n,m,λ(θ) =
1

2n

n∑
i=1

ℓ2 (fθ(xi ), f
∗(xi )) + λRWD(θ)

fn = Empirical Risk Minimizer (ERM) for R̂n,mn,λn .

[·]B: Barron semi-norm (infinite width weight decay norm).
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General Convergence Result

Theorem (Convergence Theorem)

If m and λ scale with n as

log n√
n

≪ λ ≪ 1,
1

m
≪ λ,

then almost surely over the choice of data points, fn converges to f∞ (1)
in Lp(µ) for p < ∞ and (2) uniformly on compact subsets of Rd , where
f∞ ≡ f ∗ µ-almost everywhere and [f∞]B ≤ [f ∗]B. Also, with probability
1− 1/n2:

∥f(a,W ,b)n − f ∗∥2L2(µ) ≤ C

(
[f ∗]2B
m

Eµ

[
∥x∥2

]
+ [f ∗]2B

(
Eµ∥x∥+ σ2

) log n√
n

+ λ [f ∗]B

)
.

Park, Pelakh, Wojtowytsch (TAMU, ISU, Pitt) Minimum norm interpolation by perceptra 14 / 46



Remark

Comparison with the previous result ([EMW19]).
1 We allow for general sub-Gaussian rather than compactly supported

data distributions.
2 We do not control the magnitude of the bias variables.
3 Our results apply to ℓ2-loss, which is neither globally

Lipschitz-continuous nor bounded.
4 In a limiting regime, we characterize how the empirical risk minimizers

interpolate in the region where no data is given by proving uniform
convergence to a minimum norm interpolant.

Minimum norm interpolant is not unique.
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Analysis of the bound

C

(
[f ∗]2B
m

Eµ

[
∥x∥2

]
+ [f ∗]2B

(
Eµ∥x∥+ σ2

) log n√
n

+ λ [f ∗]B

)
.

1/m term comes from the risk competitor (a ‘good’ Two-Layer ReLU
network approximator need not be an ERM).

log n/
√
n term comes from sub-Gaussian condition and Rademacher

Complexity of Two-Layer ReLU neural networks.

λ term comes from the weight decay regularizer.

Dependency on the dimension is implicit in Eµ∥x∥ and σ terms (and
it is ‘not’ sharp).
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Application

There is no guarantee that a training algorithm (often a ‘local’
algorithm) finds a ‘global’ ERM.

When the set of minimum norm interpolants is known, we can
compare numerical solutions to theoretical predictions to figure out
how optimization algorithms work.

Examples of known minimum norm interpolants:

Convex data in one dimension.
Radially symmetric bump functions in odd dimensions.
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Convex data in one dimension

In 1d, any convex function is a minimum norm interpolant of convex data.

Consider f ∗(x) = |x | with data given for 1 < |x | < 2.

Small initialization Large initialization

No regularization

Regularization

Small initialization and/or regularization lead to minimum norm bias for all
optimization algorithms we studied.
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Radially Symmetric Bump Function I

For radially symmetric ‘bump function’ data

f (0) = 1 and ∥x∥2 ≥ 1 ⇒ f (x) = 0

there exists a unique radially symmetric minimum norm interpolant for odd
dimensions (but there may be solutions without radial symmetry).

1 All algorithms (SGD, SGD+Momentum, Adam) find a solution with
the correct radial average shape without regularization (left).

2 Adam exhibits the lowest degree of symmetry (middle).
3 Adam has by far the highest value for the norm of the weights (right).
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Radially Symmetric Bump Function II

∵ Adam has a coordinate-wise update, unlike SGD (+Momentum).

Figure 1: Adam updates. Element-wise squaring and re-scaling steps of Adam
depend on coordinates.

As in this example, our theoretical results can be used to empirically
demonstrate implicit bias of optimization algorithms.
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Summary

Obtained convergence of Two-Layer ReLU neural network ERMs with
a rate for unbounded data and unbounded, non-Lipschitz loss.

Proved locally uniform convergence to a minimum norm interpolant
(no rate), esepcially even away from the support of the data.

Demonstrated that known minimum norm interpolants can be used to
study implicit bias in optimization.

In several settings, empirically demonstrated implicit bias towards mini-
mum norm solutions without regularization – large initialization exhibits
less such bias.
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Further works

Generalizing & Sharpening the bound.

Different activations.
Sharper rate for different norm (e.g. L∞(µ) norm)?
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Theorem Revisited

Theorem (Convergence Theorem)

If m and λ scale with n as

log n√
n

≪ λ ≪ 1,
1

m
≪ λ,

then almost surely over the choice of data points, fn converges to f∞ (1)
in Lp(µ) for p < ∞ and (2) uniformly on compact subsets of Rd , where
f∞ ≡ f ∗ µ-almost everywhere and [f∞]B ≤ [f ∗]B. Also, with probability
1− 1/n2:

∥f(a,W ,b)n − f ∗∥2L2(µ) ≤ C

(
[f ∗]2B
m

Eµ

[
∥x∥2

]
+ [f ∗]2B

(
Eµ∥x∥+ σ2

) log n√
n

+ λ [f ∗]B

)
.
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Proof Ingredients

1 Lp(µ)-convergence:
1 Rademacher complexity of Two-Layer ReLU networks with bounded weights

(but not biases)
2 Concentration inequalities to bound the magnitude of observed data

(with high probability)
3 1, 2 ⇒ generalization bound with high probability.
4 Direct approximation theorem to construct a risk competitor.
5 2, 3, 4 ⇒ L2(µ) bound ≤ (ERM - risk competitor) + (risk competitor

- f ∗). The first term is controlled by 3. The second term is controlled
from 4.

6 For p ̸= 2: Interpolation using the a priori Lipschitz bound from regu-
larization.

2 Minimum norm interpolation (via Γ-convergence):
lim inf-inequality: Compact embedding theorem, L2(µ)-bound,
Generalization bound.
lim sup-inequality: Direct approximation theorem and concentration for
risk competitor.
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Rademacher Complexity

Definition (Rademacher Complexity)

Let Sn = {x1, . . . , xn} be a set of points in Rd (a data sample) and F a
real-valued function class. We define the empirical Rademacher complexity
of F on the data sample as

R̂ad(F ; Sn) = Eϵ

[
sup
f ∈F

1

n

n∑
i=1

ϵi f (xi )

]

where ϵi are iid random variables which take the values ±1 with equal
probability 1

2 . The population Rademacher complexity is defined as

Radn(F) = ESn∼µn

[
R̂ad(F ; S)

]
,

i.e. as the expected empirical Rademacher complexity over a set of n iid
data points.
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RC of Two-Layer network

Consider the function classes FQ and FQ(R):

FQ = conv
{
a
(
σ(w · x + b)− σ(b)

)
: a2 + ∥w∥2 ≤ 2Q

}
FQ(R) = conv

{
a
(
σ(w · x + b)− σ(b)

)
: a2 + ∥w∥2 ≤ 2Q, |b| ≤

√
Q R

}
.

Lemma

R̂ad(FQ ,Sn) ≤
(
1 + 3

√
2
)
Q

√
n

max
1≤i≤n

∥xi∥.

If in addition µ is a σ2 sub-Gaussian distribution in Rd . Then for all n ≥ 2

Rad(FQ) ≤
(
1 + 3

√
2
)
Q

(
Ex∼µ

[
∥x∥
]

√
n

+ σ

√
2
log n

n

)
.

Park, Pelakh, Wojtowytsch (TAMU, ISU, Pitt) Minimum norm interpolation by perceptra 30 / 46



RC of Two-Layer network I

Some techniques for this calculation:

The extreme points of supFQ

∑
i ϵi f (xi ) are achieved in the boundary

of the convex hull (i.e. single width neural network).

∵ Combining the facts that (1) The functional f 7→
∑n

i=1 ϵi f (xi ) is a
continuous linear functional, and (2) FQ is a compact set in C 0(K )
and L2(µ).

R̂ad(FQ ;Sn) = R̂ad
(
FQ(R);Sn

)
.

∵ if |b| ≥ ∥w∥R, then σ(w · x + b)− σ(b) = σ
(
sgn(b)

)
w · x ⇒

substitute the cases |b| ≥ ∥w∥R to |b| = ∥w∥R.
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RC of Two-Layer network II

Split the variation by the following:

Eϵ

[
sup

a2+∥w∥2≤Q, |b|≤∥w∥R

n∑
i=1

ϵia
(
σ(w · xi + b)− σ(b)

)]

≤ Eϵ

[
sup

|a|=∥w∥≤
√
Q, |b|≤

√
QR

(∣∣∣∣∣∑
i

ϵiaσ(w · xi + b)

∣∣∣∣∣+
∣∣∣∣∣∑

i

ϵiaσ(b)

∣∣∣∣∣
) ]

First term bound:
ReLU: 1-Lipschitz ⇒ Contraction Lemma for Rademacher complexity
⇒ Can bound by Rademacher complexity of the class of linear
functions on Hilbert space (We get maxi ∥xi∥ term here).

Second term bound:
Use ReLU is 1-Lipschitz again and bound on E|

∑
i ϵi |.

For population quantity, use the concentration of maxi ∥xi∥ to E∥x∥,
due to the sub-Gaussian condition (We get log n/

√
n term here).
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RC of Two-Layer network III

A slight modification of the previous Lemma leads to Rademacher
complexity of general Barron functions with controlled bias.

Corollary (RC of Two-Layer ReLU)

Let
FA,Q := {f ∈ B : [f ]B ≤ Q, |f (0)| ≤ A}.

Under the same conditions as the above Lemma, we have

Rad(FA,Q) ≤
(
1 + 3

√
2
)
Q

(
Ex∼µ

[
∥x∥
]

√
n

+ σ

√
2
log n

n

)
+

A√
n

⇒ Rademacher complexity we obtained enable us to obtain a
generalization bound.
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Generalization bound I

Corollary (Generalization bound)

Let

R̂n(f ) =
1

n

n∑
i=1

∣∣f (Xi )− f ∗(Xi )
∣∣2, R(f ) = Ex∼µ

[
|f (x)− f ∗(x)|2

]
.

If f ∗ satisfies |f ∗(x)− f ∗(0)| ≤ B1 + B2∥x∥ µ-almost everywhere, then
with probability at least 1− 2δ,

sup
f−f ∗(0)∈FA,Q

(
R(f )− R̂n(f )

)
≤ C ∗

((
Q + B2

)(
Ex∼µ∥x∥+ σ2 + 1

)
+ A+ B1

)2 log(n/δ)√
n
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Generalization bound II

Proof techniques:

Split Eµ

[
(f (x)− f ∗(x))2

]
to

Eµ

[
(f (x)− f ∗(x))21∥x∥≤R

]
+ Eµ

[
(f (x)− f ∗(x))21∥x∥>R

]
.

First term: Regard it as using bounded Lipschitz loss ⇒ Apply
canonical method of obtaining generalization bound from
Rademacher complexity (See [SSBD14] Thm 26.5.).

Second term: Use the fact |f (x)− f ∗(x)| ≤∣∣f (x)− f ∗(0)|+ |f ∗(x)− f ∗(0)| ≤ (A+ B1) + (Q + B2)∥x∥ and
sub-Gaussian properties of ∥x∥.
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Risk competitor

Theorem (Direct approximation, [Woj22] Prop. 2.6.)

Let f ∈ B and µ a measure on Rd with finite second moments. Then for
any m ∈ N there exist c ∈ R and (ai ,wi , bi ) ∈ R× Rd × R such that

m∑
i=1

a2i + ∥wi∥2 ≤ [f ]B,∥∥∥∥∥f − c −
m∑
i=1

aiσ(w
T
i x + bi )

∥∥∥∥∥
L2(µ)

≤ 2 [f ]B√
m

sup
∥w∥=1

√∫
Rd

|wT x |2 dµx .

Given f ∗, we can obtain fθ̃ from the direct approximation theorem,
which we call a risk competitor.
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L2(µ) bound I

Theorem (L2-convergence)

Let θ̂ ∈ argminθ R̂n,m,λ(θ). If δ ≥ e−n, and f ∗ ∈ FQ∗ , then with
probability at least 1− 4δ over the choice of random points x1, . . . , xn we
have

R(fθ̂) ≤ C

(
(Q∗)2

m

(
E
[
∥x∥2

])
+ λQ∗ + Q∗ (E∥x∥+ σ2 + [f ∗]B

) log(n/δ)√
n

)
up to higher order terms in the small quantities (λm)−1,m−1, n−1/2 log n.
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L2(µ) bound II

Idea of proof:

1 Note the following:

R(fθ̂) = R̂n(fθ̂) +R(fθ̂)− R̂n(fθ̂)

≤ R̂n,m,λ(θ̂) +R(fθ̂)− R̂(fθ̂)

≤ R̂n,m,λ(θ̃) +R(fθ̂)− R̂n(fθ̂)

2 First term in 1 is directly bounded using direct approximation
theorem.

3 Second term: use generalization bound with suitable choice of Q and
A.

Q: [fθ̂]B ≤ 1
λ R̂n,m,λ(θ̂) ≤ 1

λR̂n,m,λ(θ̃) = [f ∗]B + O((λm)−1), which
implies we can use Q = C [f ∗]B
A: Use the fact that Barron function is [·]B-Lipschitz and apply the
above.
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General Lp(µ) convergence I

Corollary (Lp-convergence)

Let p ∈ [1,∞] and θ̂ is ERM. Then there exists a constant C̃ > 0
depending on E∥x∥,E[∥x∥2], σ2 and p such that

∥fθ̂ − f ∗∥Lp(µ) ≤ C̃
(
R̂n,m,λ(θ̂)

1/2 + [f ∗]B

)1−1/p
∥fθ̂ − f ∗∥1/p

L2(µ)
.
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General Lp(µ) convergence II

p < 2: From the fact L2(µ) embeds continuously into Lp(µ).

p > 2: Apply the following fact with g = fθ̂ − f ∗:

if g is a measurable function which satisfies |g(x)| ≤ Cg (1 + ∥x∥) for
some Cg > 0, then

∥g∥pLp(µ) = E
[
g · gp−1

]
≤ E

[
g2
]1/2 E[g2(p−1)

]1/2
= ∥g∥L2∥g∥p−1

L2(p−1) .

For ∥fθ̂ − f ∗∥L2(p−1) , we use the following from the Lipschitz condition:

∥fθ̂ − f ∗∥L2(p−1)(µ) ≤ C
(
|fθ̂ − f ∗|(0) + [fθ̂ − f ∗]B

)
.

Bound of the first term was already derived as R̂n,m,λ(θ̂)
1/2 + C [f ∗]B

in L2(µ) convergence analysis (when figuring out A in generalization
bound).

[fθ̂ − f ∗]B ≤ [fθ̂]B + [f ∗]B ≤ R̂n,m,λ(θ̂) + [f ∗]B ≲ R̂n,m,λ(θ̂)
1/2 + [f ∗]B.
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Overview so far...

1 Lp(µ)-convergence: Done!
1 Rademacher complexity of Two-Layer ReLU networks with bounded weights

(but not biases)
2 Concentration inequalities to bound the magnitude of observed data

(with high probability)
3 1, 2 ⇒ generalization bound with high probability.
4 Direct approximation theorem to construct a risk competitor.
5 2, 3, 4 ⇒ L2(µ) bound ≤ (ERM - risk competitor) + (risk competitor

- f ∗). The first term is controlled by 3. The second term is controlled
from 4.

6 For p > 2: Interpolation using the a priori Lipschitz bound from regu-
larization.

2 Minimum norm interpolation (via Γ-convergence): Next Step!
lim inf-inequality: Compact embedding theorem, L2(µ)-bound,
Generalization bound.
lim sup-inequality: Direct approximation theorem and concentration for
risk competitor.
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Γ-Convergence I

A concept from the calculus of variation that is useful for the convergence
of minimization problems.

Definition

Let (X , d) be a metric space and Fn,F : X → R ∪ {−∞,∞} be functions.
We say that Fn converges to F in the sense of Γ-convergence if two
conditions are met:

1 (lim inf-inquality) If xn is a sequence in X and xn → x , then
lim infn→∞ Fn(xn) ≥ F (x).

2 (lim sup-inequality) For every x ∈ X , there exists a sequence x∗n ∈ X
such that x∗n → x and lim supn→∞ Fn(x

∗
n ) ≤ F (x).

Remark: Γ-convergence depends on the convergence of the base
space X .
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Γ-Convergence II

Usefulness of Γ-convergence: Guarantees an empirical minimizer
converging to a population minimizer (but without explicit rate).

Lemma

Assume that Fn → F in the sense of Γ-convergence, ϵn → 0+ and xn ∈ X
is a sequence such that

Fn(xn) ≤ inf
x∈X

Fn(x) + ϵn.

Assume that xn → x∗. Then F (x∗) = infx∈X F (x). In particular, if xn is a
minimizer of Fn and the sequence xn converges, then the limit point is a
minimizer of F .
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Γ-expansion of the problem

Convergence in the base space:

Define fk
good−−−→ f if fk → f uniformly on compact sets and in L2(µ).

Define θk
good−−−→ f if fθk

good−−−→ f .

Γ-functional:

Fn(θ) := R̂n,mn,λn(fθ)/λn

F (f ) = [f ]B if f = f ∗ µ− a.s. and +∞ o.w.

Theorem (Γ-convergence of the risk functional)

Given above constructions, Γ− limn→∞ Fn = F a.s. with respect to the

notion of convergence θk
good−−−→ f .

⇒ Since F ’s minimizer is a minimum norm interpolant, the theorem gives
ERM’s convergence to a minimum norm interpolant.
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lim inf-inequality

lim inf-inequality:

Strategy: Divide the case when f = f ∗ µ− a.s. and not.

f = f ∗ µ− a.s.:

lim inf
n→∞

Fn(θn) ≥ lim inf
n→∞

RWD(θn) ≥ lim inf
n→∞

[fθn ]B ≥ [f ]B = F (f )

where third inequality comes from lower semi-continuity of Barron
semi-norm.

f ̸= f ∗ µ− a.s.: Show lim infn Fn(θn) ≥ F (f ) = ∞ for ∀θn
good−−−→ f :

Fn(θn) ≥
R̂n(fθn)−R(fθn)

λn
+

∥f − f ∗∥2L2(µ) + ∥fθn − f ∥2L2(µ)

λn
+ [fθn ]B

≥ O

(
log n

λn
√
n

)
+

∥f − f ∗∥2L2(µ)

λn
+ [fθn ]B → ∞.
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lim sup-inequality

lim sup-inequality:

Strategy: Only one sequence is sufficient
⇒ for given f take θ̃n from Direct approximation.

f = f ∗ µ− a.s.:

Fn(θ̃n) ≤
C

λnmn

(
1 +

log n√
n

)
+ [f ]B → [f ]B = F (f ).

f ̸= f ∗ µ− a.s.: Since F (f ) = ∞, any sequence θn satisfy
Fn(θn) ≤ ∞ = F (f ).
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