
GGBoost - Graph Gradient Boosting

Isaac Ray, Huiyan Sang

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 1 / 1



Section 1

Motivation

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 2 / 1



Data

Response: House prices in
Sacramento
Covariates: Longitude,
Latitude, sq.ft., # beds, #
baths, etc.
We know that longitude and
latitude are highly related!
Treating them independently is a
bad modeling assumption
How can we predict unobserved
housing prices using these
covariates?

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 3 / 1



More generally:

Observed data D = {di}n
i=1; di = (xi , yi) from random variables

(X, Y )
X = {X1, . . . , Xp} ∈ X ; p dimensional ‘feature’ vector lying in feature
space
Y ∈ R ; real-valued response (for regression)
There is an unknown function ϕ : X → R relating X and Y
We may know something about X or the relationships between
our Xj ’s

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 4 / 1



Decision Tree Ensembles

A popular approach to estimate ϕ is using an ensemble model
We choose to model ϕ̂(x) =

∑K
k=1 fk(x) ; fk is called a weak learner

function
The form of our weak learner function is a decision tree T

▶ Decision trees have a recursive structure; they consist of nodes ζ which
define the decision tree structure

▶ A decision node η consists of a predicate P(x) : X → {0, 1} and 2 child
nodes {ζt , ζf }

▶ The value of a decision node is η(x) = P(x)ζt(x) + (1 − P(x))ζf (x)
▶ A leaf node ξ takes a fixed scalar value called its leaf weight

We use our ϕ̂(xi) = ŷi to do prediction

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 5 / 1



Gradient Boosting

Gradient Boosting is a technique for constructing our fk ’s in an
iterative fashion

Given some loss function ℓ(yi , ŷi), we use its gradient to inform our
update of fk then shrink its contribution (learning rate)

Instead of updating all K weak learners at once, updates are done
conditioned on all other weak learners (residual fitting)

Updating a decision tree weak learner consists of changing a leaf node
into a decision node

Essentially all existing GBDT models use a predicate of the form
Xj > c for a single feature Xj and constant c

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 6 / 1



XGBoost

eXtreme Gradient Boosting uses both first and second order gradient
information; at iteration t we have

g (t)
i = ∂ŷ (t−1)ℓ(yi , ŷ (t−1)); h(t)

i = ∂2
ŷ (t−1)ℓ(yi , ŷ (t−1))

Looks scary; but easy and fast to compute (for example, mean squared
error)

Express our Ω penalized objective function as second-order Taylor
expansion:

L(t) ≃
n∑

i=1

(
ℓ(yi , ŷ (t−1)

i ) + g (t)
i fk (xi) + 1

2h(t)
i f 2

k (xi)
)

+ Ω(fk)

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 7 / 1



By sorting each feature, can do a linear scan over observations to
greedily choose the best predicate for the new decision node;
equivalent to maximizing:

Gain = 1
2

[
G2

L
HL + λ

+ G2
R

HR + λ
− G2

I
HI + λ

]
− γ

where GA =
∑

i∈A gi and HA =
∑

i∈A hi for

A = I (current data in leaf node),

A = L (data that would satisfy new predicate), and

A = R (data that would not satisfy new predicate)

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 8 / 1



Consider as an example, D = {di}4
i=1 where di = ({xi ,1, xi ,2, xi ,3}, yi)

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 9 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 10 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 11 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 12 / 1



Section 2

Graph-Split Decisions

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 13 / 1



Candidate Graph

Before we can propose our graph-split-based predicate, we have to
describe our graphs

We assume that for each weak learner fk , there is a set of candidate
graphs Gk ; can vary across weak learners to enhance diversity

A candidate graph
−→
Γ ∈ G is a graph with arborescence structure

Definition
An arborescence denoted

−→
Γ = {V,

−→
E } is a directed tree that connects all

the vertices in a graph, and has a designated root vertex from which all
other vertices are reachable through directed edges

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 14 / 1



Why arborescences?

The choice of restricting candidate graphs to arborescences may seem
to come out of nowhere

We do it because of two essential properties:
▶ Order: By starting at the root vertex, we can define an ordering on the

graph to do a greedy search (parallels the linear scan for XGBoost!)
▶ Split-Separable: Removing any edge from an arborescence results in two

sub-graphs which are also arborescences (parallels the L, R predicate sets
for XGBoost!)

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 15 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 16 / 1



Binning

What do graphs have to do with our data? Suppose for now that we
already have a candidate graph

−→
Γ q

We assume there is a known function Zq : X → V(
−→
Γ q) called the

binning function that maps the feature data to each vertex in
−→
Γ q

We allow Zq to be a function of multiple features in X so that a
candidate split of

−→
Γ q can depend on multiple features

Zq(x) may be defined in a way such that multiple observations are
assigned to a single vertex; vertices can be considered bins of data

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 17 / 1



Building Candidate Graphs

How do we actually choose a Zq and
−→
Γ q?? Usually, we define them

simultaneously

▶ For univariate data, we can construct
−→
Γ q to be a chain graph and Zq to

be an ordering function (or ordering + histogram binning, such as
LightGBM)

▶ For data on a known manifold, we can sample random tessellations to
get neighbor graphs + binning, then sample candidate graphs

▶ For data with an existing graphical structure, we can sample candidate
graphs directly or collapse the graph with a binning function

This is a flexible framework with lots of unexplored potential! In the
most general setting a candidate graph edge is simply a hypothesis
about a relationship in the data

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 18 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 19 / 1



Graph Split Decision Rule

Now that we’ve described our candidate graph and binning function,
we can define our graph-split predicate for our decision tree

Definition
A graph-split decision rule is a predicate Pq,j uniquely identified by an edge
eq,j ∈

−→
E (

−→
Γ q). For any vertex v ∈

−→
Γ q, Pq,j(v) is true iff removing edge

eq,j from
−→
Γ q causes v to belong to the sub-arborescence rooted at vj . We

denote this as Split eq,j

Using this predicate and our known Z , we get our L, R data sets and
can evaluate a split using the same Gain formula as XGBoost!

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 20 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 21 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 22 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 23 / 1



Section 3

Experiments

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 24 / 1



Competing Methods

GGBoost is implemented in C++ with OpenMP parallelism and an R
interface

We compared against XGBoost and Random Forest (two most popular
ensemble decision tree models)

Also compared against BART because we are fans of Ed George

We investigated some other approaches like oblique tree ensembles but
encountered lots of implementation issues

Used the caret package to do model tuning via cross-validation

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 25 / 1



Synthetic Data

Regression tasks with an R (loss is testing mean square error),
classification with a C (loss is testing accuracy)

GGBoost XGBoost RF BART

U-shapeR 0.57 1.20 1.08 1.29
TorusR 2.16 3.28 3.89 4.09
U-shapeC 90.7 90.3 90.5 89.8
TorusC 83.2 80.2 82.3 78.3

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 26 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 27 / 1



Real Data

Includes both spatial data with known boundaries (GeoDa Data & Lab)
and graphical data (citation networks)

GGBoost XGBoost RF BART

Sacramento HomesR 1.79 2.10 1.87 1.91
NYC EducationR 0.52 0.59 0.57 0.68
King County HomesR 2.58 2.96 3.26 2.83
Las Rosas CropsR 2.34 2.57 2.22 2.39
US ElectionR 0.61 0.68 0.84 0.70
Cora CitationsC 83.8 76.4 75.1 70.1
PubMed CitationsC 90.3 90.7 89.0 88.8

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 28 / 1



Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 29 / 1



Section 4

Conclusion

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 30 / 1



GGBoost is neat!
GGBoost is a highly flexible extension of standard GBDT models, with
clear applications to problems with well understood relationships such
as spatial covariates

It maintains the benefits of normal GBDTs (fast, scalable, easily
deployed, importance scores, etc) while allowing for more expressive
decision trees

Lots of future directions to investigate
▶ Using manifold estimation techniques such as UMAP (estimates feature

relationships as a weighted graph already!)
▶ Different loss functions / data augmentation schemes for new tasks

(density/intensity estimation with logistic approximation)
▶ How to incorporate time series data
▶ Bagging approach instead of boosting (straightforward, we just haven’t

tried yet)

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 31 / 1



Thank you! Questions?

Isaac Ray, Huiyan Sang GGBoost - Graph Gradient Boosting 32 / 1


	Motivation
	Graph-Split Decisions
	Experiments
	Conclusion

