GGBoost - Graph Gradient Boosting

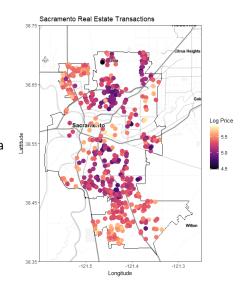
Isaac Ray, Huiyan Sang

Section 1

Motivation

Data

- Response: House prices in Sacramento
- Covariates: Longitude,
 Latitude, sq.ft., # beds, # baths, etc.
- We know that longitude and latitude are highly related!
- Treating them independently is a bad modeling assumption
- How can we predict unobserved housing prices using these covariates?



More generally:

- Observed data $\mathcal{D} = \{d_i\}_{i=1}^n$; $d_i = (\mathbf{x}_i, y_i)$ from random variables (\mathbf{X}, Y)
- $\mathbf{X} = \{X_1, \dots, X_p\} \in \mathcal{X}$; p dimensional 'feature' vector lying in feature space
- $Y \in \mathbb{R}$; real-valued response (for regression)
- ullet There is an unknown function $\phi:\mathcal{X} o \mathbb{R}$ relating **X** and Y
- We may know something about \mathcal{X} or the relationships between our X_j 's

Decision Tree Ensembles

- ullet A popular approach to estimate ϕ is using an *ensemble* model
- We choose to model $\hat{\phi}(\mathbf{x}) = \sum_{k=1}^{K} f_k(\mathbf{x})$; f_k is called a weak learner function
- ullet The form of our weak learner function is a decision tree ${\mathcal T}$
 - ightharpoonup Decision trees have a recursive structure; they consist of nodes ζ which define the decision tree structure
 - ▶ A decision node η consists of a predicate $P(\mathbf{x}): \mathcal{X} \to \{0,1\}$ and 2 child nodes $\{\zeta_t, \zeta_f\}$
 - ▶ The value of a decision node is $\eta(\mathbf{x}) = P(\mathbf{x})\zeta_t(\mathbf{x}) + (1 P(\mathbf{x}))\zeta_f(\mathbf{x})$
 - ▶ A leaf node ξ takes a fixed scalar value called its *leaf weight*
- We use our $\hat{\phi}(\mathbf{x}_i) = \hat{y}_i$ to do prediction

Gradient Boosting

- Gradient Boosting is a technique for constructing our f_k 's in an iterative fashion
- Given some loss function $\ell(y_i, \hat{y}_i)$, we use its gradient to inform our update of f_k then shrink its contribution (learning rate)
- Instead of updating all K weak learners at once, updates are done conditioned on all other weak learners (residual fitting)
- Updating a decision tree weak learner consists of changing a leaf node into a decision node
- Essentially all existing GBDT models use a predicate of the form $X_j > c$ for a single feature X_j and constant c

XGBoost

 eXtreme Gradient Boosting uses both first and second order gradient information; at iteration t we have

$$g_i^{(t)} = \partial_{\hat{y}^{(t-1)}} \ell(y_i, \hat{y}^{(t-1)}); \quad h_i^{(t)} = \partial_{\hat{y}^{(t-1)}}^2 \ell(y_i, \hat{y}^{(t-1)})$$

- Looks scary; but easy and fast to compute (for example, mean squared error)
- Express our Ω penalized objective function as second-order Taylor expansion:

$$\mathcal{L}^{(t)} \simeq \sum_{i=1}^{n} \left(\ell(y_{i}, \hat{y}_{i}^{(t-1)}) + g_{i}^{(t)} f_{k}\left(\mathbf{x}_{i}\right) + \frac{1}{2} h_{i}^{(t)} f_{k}^{2}\left(\mathbf{x}_{i}\right) \right) + \Omega(f_{k})$$

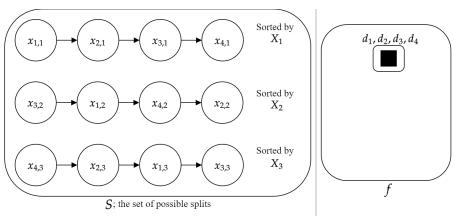
 By sorting each feature, can do a linear scan over observations to greedily choose the best predicate for the new decision node; equivalent to maximizing:

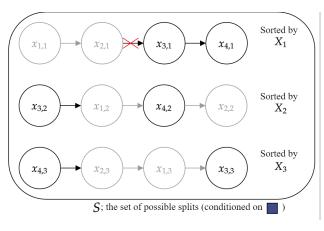
$$\textit{Gain} = \frac{1}{2} \left[\frac{\textit{G}_{\textit{L}}^2}{\textit{H}_{\textit{L}} + \lambda} + \frac{\textit{G}_{\textit{R}}^2}{\textit{H}_{\textit{R}} + \lambda} - \frac{\textit{G}_{\textit{I}}^2}{\textit{H}_{\textit{I}} + \lambda} \right] - \gamma$$

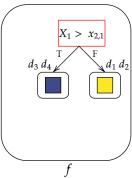
where $G_A = \sum_{i \in A} g_i$ and $H_A = \sum_{i \in A} h_i$ for

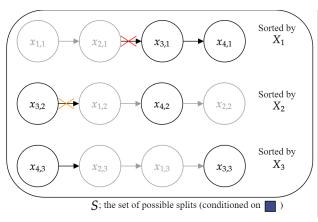
- A = I (current data in leaf node),
- A = L (data that would satisfy new predicate), and
- A = R (data that would not satisfy new predicate)

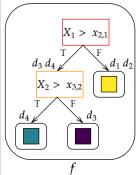
Consider as an example, $\mathcal{D} = \{d_i\}_{i=1}^4$ where $d_i = (\{x_{i,1}, x_{i,2}, x_{i,3}\}, y_i)$

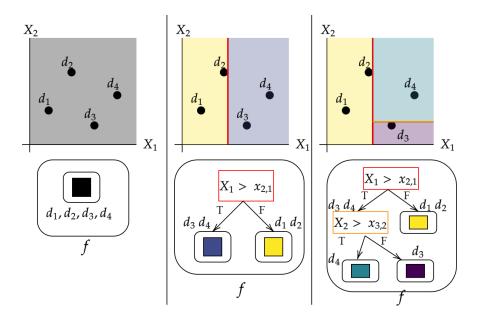












Section 2

Graph-Split Decisions

Candidate Graph

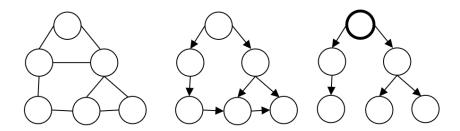
- Before we can propose our graph-split-based predicate, we have to describe our graphs
- We assume that for each weak learner f_k , there is a set of candidate graphs \mathbb{G}_k ; can vary across weak learners to enhance diversity
- \bullet A candidate graph $\overrightarrow{\Gamma} \in \mathbb{G}$ is a graph with arborescence structure

Definition

An arborescence denoted $\overrightarrow{\Gamma}=\{\mathcal{V},\overrightarrow{\mathcal{E}}\}$ is a directed tree that connects all the vertices in a graph, and has a designated root vertex from which all other vertices are reachable through directed edges

Why arborescences?

- The choice of restricting candidate graphs to arborescences may seem to come out of nowhere
- We do it because of two essential properties:
 - Order: By starting at the root vertex, we can define an ordering on the graph to do a greedy search (parallels the linear scan for XGBoost!)
 - ► Split-Separable: Removing any edge from an arborescence results in two sub-graphs which are also arborescences (parallels the *L*, *R* predicate sets for XGBoost!)

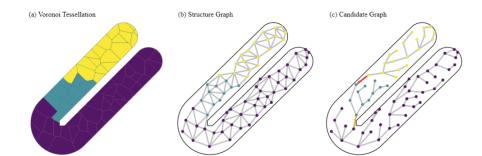


Binning

- What do graphs have to do with our data? Suppose for now that we already have a candidate graph $\overrightarrow{\Gamma}_q$
- We assume there is a known function $Z_q: \mathcal{X} \to \mathcal{V}(\overrightarrow{\Gamma}_q)$ called the binning function that maps the feature data to each vertex in $\overrightarrow{\Gamma}_q$
- We allow Z_q to be a function of multiple features in X so that a candidate split of $\overrightarrow{\Gamma}_q$ can depend on multiple features
- $Z_q(\mathbf{x})$ may be defined in a way such that multiple observations are assigned to a single vertex; vertices can be considered bins of data

Building Candidate Graphs

- How do we actually choose a Z_q and $\overrightarrow{\Gamma}_q$?? Usually, we define them simultaneously
 - For univariate data, we can construct $\overrightarrow{\Gamma}_q$ to be a *chain graph* and Z_q to be an ordering function (or ordering + histogram binning, such as LightGBM)
 - ► For data on a known manifold, we can sample random tessellations to get neighbor graphs + binning, then sample candidate graphs
 - ► For data with an existing graphical structure, we can sample candidate graphs directly or collapse the graph with a binning function
- This is a flexible framework with lots of unexplored potential! In the most general setting a candidate graph edge is simply a hypothesis about a relationship in the data



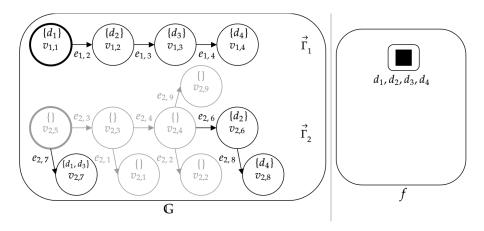
Graph Split Decision Rule

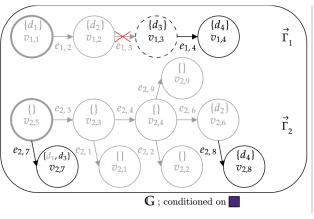
 Now that we've described our candidate graph and binning function, we can define our graph-split predicate for our decision tree

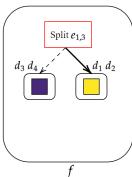
Definition

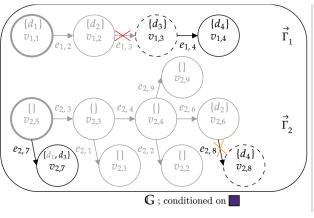
A graph-split decision rule is a predicate $P_{q,j}$ uniquely identified by an edge $e_{q,j} \in \overrightarrow{\mathcal{E}}(\overrightarrow{\Gamma}_q)$. For any vertex $v \in \overrightarrow{\Gamma}_q$, $P_{q,j}(v)$ is true iff removing edge $e_{q,j}$ from $\overrightarrow{\Gamma}_q$ causes v to belong to the sub-arborescence rooted at v_j . We denote this as $Split\ e_{q,j}$

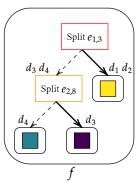
• Using this predicate and our known Z, we get our L, R data sets and can evaluate a split using the same Gain formula as XGBoost!











Section 3

Experiments

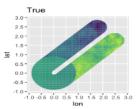
Competing Methods

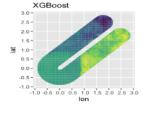
- GGBoost is implemented in C++ with OpenMP parallelism and an R interface
- We compared against XGBoost and Random Forest (two most popular ensemble decision tree models)
- Also compared against BART because we are fans of Ed George
- We investigated some other approaches like oblique tree ensembles but encountered lots of implementation issues
- Used the caret package to do model tuning via cross-validation

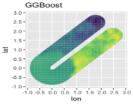
Synthetic Data

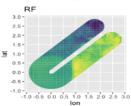
• Regression tasks with an R (loss is testing mean square error), classification with a C (loss is testing accuracy)

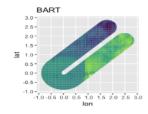
	GGBoost	XGBoost	RF	BART
\overline{U} -shape $_R$	0.57	1.20	1.08	1.29
$Torus_R$	2.16	3.28	3.89	4.09
$U ext{-}shape_{\mathcal{C}}$	90.7	90.3	90.5	89.8
$Torus_{\mathcal{C}}$	83.2	80.2	82.3	78.3







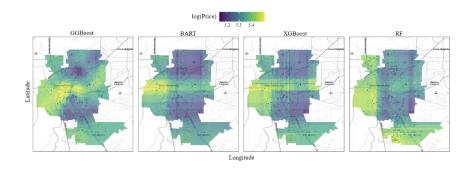




Real Data

 Includes both spatial data with known boundaries (GeoDa Data & Lab) and graphical data (citation networks)

	GGBoost	XGBoost	RF	BART
Sacramento Homes $_R$	1.79	2.10	1.87	1.91
NYC Education $_R$	0.52	0.59	0.57	0.68
King County Homes $_R$	2.58	2.96	3.26	2.83
Las Rosas Crops _R	2.34	2.57	2.22	2.39
US Election _R	0.61	0.68	0.84	0.70
Cora Citations $_C$	83.8	76.4	75.1	70.1
PubMed Citations _C	90.3	90.7	89.0	88.8



Section 4

Conclusion

GGBoost is neat!

- GGBoost is a highly flexible extension of standard GBDT models, with clear applications to problems with well understood relationships such as spatial covariates
- It maintains the benefits of normal GBDTs (fast, scalable, easily deployed, importance scores, etc) while allowing for more expressive decision trees
- Lots of future directions to investigate
 - Using manifold estimation techniques such as UMAP (estimates feature relationships as a weighted graph already!)
 - ► Different loss functions / data augmentation schemes for new tasks (density/intensity estimation with logistic approximation)
 - ► How to incorporate time series data
 - ▶ Bagging approach instead of boosting (straightforward, we just haven't tried yet)

Thank you! Questions?