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Causality matters
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Causal discovery

» Causal discovery - infer causal structure from data.

v

Gold standard is experimental data, however mostly we have
observational data at our disposal.

Fairly a difficult task to do.
» Suppose X1,...,X, forms a graph G. Goal is to learn G.

v

» Some usual assumptions:-
1. Causal Markov condition — X; 1l XNonDesc(i)| Xpai) -

smoking — tissue damage — lung cancer

2. Causal faithfulness — X; 1, X;| X, = X; 1lg X;|X5.
3. Causal sufficiency — Absence of any hidden confounders.
4. Acyclicity — Use of Directed Acyclic Graphs (DAGs).



Current approaches

Model Model
free based




Current approaches
Model free approach:

» Uses conditional independence tests
-X 1Y|Z.

» Non-parametric approach.

» Assumptions: causal Markov
condition, causal faithfulness.

» determines the orientations of the

Approach edges up to the Markov equivalence
class.

» Examples: PC, FCI, CCD.

® ®» ® ® & ©
Markov equivalence class of trivariate graphs -
Xo AL Xg‘Xl

Model Model
free based

Question: Can we do better than this?



Current approaches

Model based approach:
> Structural equation model (SEM)
fz( pa(i)s )

Approach > Parametrlc approach.

Restricts the function class.

v

» The causal model is fully
Model Model identifiable.

free based » Examples - LINGAM, LiNG, PNL,
Non-linear Additive Noise models
etc.

F(Xpagi): €) = b Xpa) + €

v



Independent component analysis
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ICA & LINGAM

LiINGAM
ICA » Modelis (I — B)X = E.
> Model is X = AS. » Underlying graph
» Goal: to estimate W = A~1, structure is acyclic.

» Goal: to estimate B.



ICA & LINGAM
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ICA
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several algorithms leads to
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» Modelis (I — B)X = E.

» Underlying graph
structure is acyclic.

» Goal: to estimate B.
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ICA
Model is X = AS.
Goal: to estimate W = A~1.

S; are non-gaussian and
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Identifiable upto scaling and
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indep. components S.

X = (APD) (D 'P'S)
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A~ S
several algorithms leads to
efficient estimation of W.

LINGAM

Unlike ICA, the correct correspondence
between e; and x; is important in
LiNGAM.



ICA & LINGAM

v

ICA
Model is X = AS.
Goal: to estimate W = A~1.

S; are non-gaussian and
mutually independent.

Identifiable upto scaling and
permutation indeterminacy of
indep. components S.

X = (APD) (D 'P'S)
—_———— ——
A~ S
several algorithms leads to
efficient estimation of W.

LINGAM
Model is (I — B)X = E.
Underlying graph
structure is acyclic.
Goal: to estimate B.

FE; are non-gaussian and
mutually independent.

Some post-processing
needed on the W.
Efficient algorithm is

provided in Shimizu et al.
(2006).
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Presence of cycles - Difficulty?

> DAGs iff topological order.
» Topological sort/order: YV; = Y; = j > 1.
Example: Yl(XQ) }/2(X3) Y:),(X4) Y4(X1)

Ys Y,
Yi—oYo—Ys Y

v

\/
b14 b32
@ bi2 @ Yy 0 0 0 0 Y1 €2
Yy Y1 b3s 0 0 0 €3
| 4 : :
: 0 bas 0 0 . + €4
Yy bia 0 bia O Yy €1

» I — B is always invertible.



Presence of cycles - Difficulty?

Y3 Yy

b14 b32




Presence of cycles - Difficulty?

(I-B)X=E
0 0 0 by
by O 0 O
> =
B 0 b 0 0

0 0 by O
» |I — B| =1~ b14ba1b32bs3.
> Some extra conditions are neccessary on B
to ensure invertibility.

» The moduli of the eigenvalues of B are less
than 1 and none equal to 1.



Definition

>
>

Data where the data points are itself functions or curves.

A realization of a (typically smooth) random object that takes
values in an abstract function space.

H:={X|X :T — [a,b]}. Example: Hilbert space.

Denoted by X = (X1,...,X,)".

Examples: 1) daily PM10 concentration curves recorded in Graz,

Austria in winter season 2) electrical activity measured across
different regions of the brain (EEG data).

messivalue

Source: Internet



Challenges

1. Infinite-dimensionality of functional data
> Low-freq spectrum of Y; might causally affect the high-freq.
spectrum of Y.
» Demands identification of pertinent features.
» The challenge is that we may not know a priori what these
relevant features are.

2. Causal identifiability theory in presence of cycles/feedback loops.

3. Noisy functional data adds another layer of difficulty in probing
the causal relationships of interest.



Motivating example

» Electroencephalography (EEG)

d at a. Electroencephalogram (EEG)

Source: Internet




Motivating example

» Electroencephalography (EEG)
data. Electroencephalogram (EEG)

» Continuous and the short time
separation between the adjacent
measuring points.

» Goal: To estimate brain effective
connectivity among different regions.

Source: Internet

» Strong biological evidence behind
presence of feedback loops/cycles.



Model definition

>

>

>

Consider a multivariate stochastic process Y = (V1,...,Y,)"
where each Y is defined on a compact domain 7; C R.

Let Y; € H; where H; is a Hilbert space of functions defined on
T;.

Consider an operator-based non-recursive linear SEM on Y as
V()= Y BiY)()+ fi(-), Vi€l (1)
Lepa(j)

Y =Y, = B,y # 0. Assume B;; is a null operator (no self
loops).
Suppose if Y; € R™ Vj,, (1) is just,
Y;= > BuYi+f;, Vi€,
Lepa(y)

However, model (1) is infinite-dimensional and hence challenging
to estimate and interpret.



Causal embedded space

» Assume that the causal relationships are preserved in an
unknown low-dimensional subspace D; of H; of dim Kj.

> P; and Q; are the projections onto D; and its orthogonal
complement resp.

» Also assume Bj; = P;B;ePy.
» As such, (1) can be split into

PiY; = > Bu(PYo) +P;fj,
¢epa(j)

Q;Y; = Q;f;.

» We assume that P; f; and Q; f; are independent of each other.



Model definition

» In practice, we do not directly observe Y;.

> For each Y;, we observe {(tju, Xju)}o1,
measurement of Y; at location ¢, € 7;.

where X, € R is the

» Therefore, we consider the following measurement model:

Xju =Yj(tju) + €ju
= (P;Y;)(tju) + (Q5Y5)(tju) + €ju,  Yu € [myl,j € [p], (3)

with independent noises ej,, ~ N(0,0;),Yu € [m;].



Model definition

Recall that,

Xju = (P;Yj)(tju) + (Q5Y5) (tju) + €ju

Observed value Xju

at location t,
\K’L’L .eJ

Noise

Contains all the causal Devoid of any relevant causal
information information



Model definition

Recall that,

Xju = (P;Yj)(tju) + (Q5Y5) (tju) + €ju

Observec! value Xju
at location t,

» Define a; = P;Y;, 5j = Q]Y]
and € = ijj,Vj € [p] \K’L‘L_

» More compactly, Noise
X =alt)+8E) +e (4) VARRN
» Question: Is the proposed
model causally identifiable? ‘ ‘
Yes, under certain assump. Contains all the causal ~ Devoid of any relevant causal

information information



Assumptions

Assumption 1 (Causal Sufficiency)

The model S = (G,P) is causally sufficient, i.e., there are no
unmeasured confounders.

» Keeps the causal discovery task more manageable especially for
cyclic graphs with purely observational data.



Assumptions contd...

Assumption 2 (Disjoint Cycles)

The cycles in G are disjoint, i.e., no two cycles in the graph have two
nodes that are common to both.

@@ @93



Assumptions contd...

Assumption 3 (Stability)

For the model &, the moduli of the eigenvalues of the finite rank
operator B are less than or equal to 1, and none of the real
eigenvalues are equal to 1.

» Similar kind of assumptions that were discussed for the
univariate case have been extended for the random functions.



Assumptions contd...

Assumption 4 (Non-Gaussianity)
The exogenous variables have independent mixture of Gaussian

ind

distributions. i.e., €, ~ Zi\g;’“l TiemN(jkm, Tjkm) With My > 2.

» Can approx. any cont. distribution arbitrarily well !

» Useful as it induces model identifiability in the linear SEM
framework.?

I Titterington, Smith, & Makov (1985). Statistical analysis of finite mixture distributions.

2Shimizu, Hoyer, Hyvéirinen, & Kerminen. (2006). A Linear Non-Gaussian Acyclic Model for
Causal Discovery.



Assumptions contd...

Recall that,
Kju = (PiY3)(tju) + (Q5Y5) (tju) + €ju
B = QY;
Assumption 5 (Non-causal dependency)

Let B(t) = C(t)y, where C(t) = diag(C11(t1),...,Cpp(t,)) and ~ be
another exogenous component. We assume

ind .
Yik ~ Zm 1 ]kmN(M;kaT_;km) with Mjk 2 1.

> B;(t;) 1L Be(t,) for j # ¢ and j,¢ € [p].

» C;;(t;) mixes the independent entries in -« to generate temporal
dependence within 3;(t;).



Assumptions contd...

Recall, X = a(t) + B(t) + e. Then if o;(tju) = 2221 ajrdik(tiv),
then (4) can be written as,

X =®(t)a + B(t) +e,

where ®(t) = diag(®1(t1), ..., ®p(t,)) with ®;(t;) = (dju(tju))iily -
Assumption 6 (Sufficient sampling locations)

The basis matrix ®(t) of size 3 37_; m; x >37_, K; has a full column
rank.

» Implies enough sampling locations over which each random
function Y; is observed.

» Captures all the pertinent causal information that Y; contains.



Main thorem

Causal Sufficiency
Disjoint Cycles

--

on-causal dependency

Causal Identifiability

Sufficient Sampling Locations

Theorem (Causal Identifiability)
Under Assumptions 1-6, S = (G, P) is causally identifiable.



Inference - Model parameters

vvyyy

E = (Ej)},_, denote the adjacency matrix.
Xju = ij(t]u) + €juy Eju ™~ 1\1(07 Uj)

Suppose Y} = Zle &jk¢k~

We define SEM on first K; components.

a=Ba+ée

where dj = (O~l]‘17 s ,dej)T and a = (dl, . ,dp.
¢r’s are useful for restricting each Y; to D;. Do not fix them.
Further exgand them with known cubic b-spline basis functions,
Pr(-) = 2opmy Akrbr ().

ind <M,
€ik '~ ijzkl W,jkm,N(//’jk‘,rm Tjk‘m)~
Some very std. priors are taken to formulate the Bayesian
procedure.



Simulation study setup

> Sample size (n) = {75,150,300}, number of nodes (p) = {20, 40},
time grid size (d) = 125.
» The causal graph G is estimated by thresholding the posterior
probability of inclusion at 0.5.
» Methods compared against:
1. Functional Bayesian Network (fLING).
2. fPCA-CCD
3. fPCA-PC
4. fPCA-LINGAM
» 2 3 and 4 are two step procedures:
— First step involves obtaining the basis coefficients by carrying
out fPCA.
— Second step involves estimating the causal graphs using
existing causal discovery methods.



Results

Comparison of different methods
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» We used Matthew’s correlation coefficient (MCC) to assess the
graph recovery performance.



Application - EEG Data

» For both groups (alcoholic and control), brain regions that are
spatially closer to each other tend to be more connected.

» Dense connectivity is observed in the frontal region of the brain
in both groups, with multiple cycles being formed.

» Alcoholic group has more connectivity across the left parietal and
occipital lobes.



Conclusions

» Proposed an operator-based non-recursive linear SEM based
framework for functional data in the presence of cycles.

» Introduced the assumption of existence of a lower dimensional
causal embedded space that captures all the causal information.

» Proved causal identifiability of our model under certain
assumptions.

» Showed applications over an EEG dataset.
Future directions:
» Relaxing the assumption for causal sufficiency.

» Consider non linear SEM framework.
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Why stability assumption?

>

>

We assume our data are drawn from an equilibrium distribution
of a dynamic system involving multivariate functions.

Y[t = Yi()[H,...,Y,()[t]) " denote a vector of functions at
time point ¢ where the domain of each function Yj(-)[t] is not
necessarily time.

we have used () to denote the function input/domain and [] to
denote the time index of a dynamic system.

Consider an AR1-type dynamic system of those functions,

YOt =BY ()t -1 +£()

Recursively leads to,
t—1
Y ()] = BY()[0] + > BE()
s=0

Bt and Zi;é $B° converge as t approaches infinity.



Proof — A brief sketch pictorially

» In LHS, a hypergraph-like structure emerges when we assume the
existence of disjoint cycles.

» While the true graph contains cycles, this hypergraph-like
structure is essentially a DAG, thus easier to work with.

> LHS to RHS.



Prior specifications

Prior on spline coefficients A,

Ag|\ ~N(0,),1Q7)
where Q7 is the pseudoinverse of & = [b"(t)[b" (t)]T dt. We

constrain the regularization parameters \; > --- > Ag > 0 by putting
a uniform prior:

A ~ Uniform(Lg, Uy), V k € [9],

U, = IOS,Lk = )\k+1 Vke [S* 1],

U= 1 Vke{2,...,8 Ls=10"8,

which implies that the smoothness of ¢ (-) decreases as k gets larger.



Prior specifications

Prior on adjacency matrix E

Ejolp 2d Bernoulli(p)
p ~ Uniform(0, 1)

» The marginal distribution of E with p integrated out is

Beta <Z Ej+1,>(1—-Ej)+ 1).

J#e J#L
» If FEy denotes the null adj. matrix and E; denotes the adj. matrix
with only one edge, then we can see that p(Ey)/p(E1) = p? — p.
» prevents false discoveries and leads to a sparse network by
increasing the penalty against additional edges as the dimension
D grows.



Prior specifications

Prior on the causal effect matrix B
Bj|Eje ~ (1 = Ej))MVN(Bji; 0, 571k, Ix,) + EjeMVN(Bje; 0,71k, I, )
v ~1G(ay, by)
with s = 0.02,a, = by = 1.
» continuous spike and slab prior.
» When Ej, = 0, By, is negligibly small.

Prior on the noise variances o;
o; ~1G(as,bs)

with a, = b, = 0.01.



Prior specifications

Prior on the mixture distribution parameters

(7Tjk1, . ’ﬂ—jijk) ~ Dirichlet(ﬂ, R ,ﬂ), \ j e [p], ke [S]
Wikm ~ N(au,by), Tjkm ~ 1G(ar,br), ¥V j € [pl,k € [S],m € [Mjy]

We have fixed values for the hyperparameters, § =1,
a, =0,b, =100, ar = b, = 1.



Choice of K;

» Possible to use a prior to learn the number of basis functions
jointly with other parameters.

» The functional observations are imputed and arranged into a
(n x p) x d matrix, where d = |U; ; 7;(1)\ represents the size of the
union of the measurement grid over all realized random functions.

» Singular value decomposition is performed, and the minimum
value of K is selected such that its proportion of variance
explained is at least 90%.

> We set K; = K. Note that although K is fixed, the basis
functions are adaptively inferred.

» Fix a grid encompassing values {1,2,3,4,5,6,7} for K and
subsequently selecting the K associated with the lowest WAIC.

» The graph recovery performance remains almost the same.
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