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Causality matters
Example 2
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Causal discovery

▶ Causal discovery - infer causal structure from data.

▶ Gold standard is experimental data, however mostly we have
observational data at our disposal.

▶ Fairly a difficult task to do.

▶ Suppose X1, . . . , Xp forms a graph G. Goal is to learn G.
▶ Some usual assumptions:-

1. Causal Markov condition – Xi ⊥⊥ XNonDesc(i)|Xpa(i).

smoking → tissue damage → lung cancer

2. Causal faithfulness – Xi ⊥⊥p Xj |Xk =⇒ Xi ⊥⊥G Xj |Xk.
3. Causal sufficiency – Absence of any hidden confounders.
4. Acyclicity – Use of Directed Acyclic Graphs (DAGs).
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Current approaches

Approach

Model
free

Model
based

Model free approach:

▶ Uses conditional independence tests
– X ⊥⊥ Y |Z.

▶ Non-parametric approach.

▶ Assumptions: causal Markov
condition, causal faithfulness.

▶ determines the orientations of the
edges up to the Markov equivalence
class.

▶ Examples: PC, FCI, CCD.

Markov equivalence class of trivariate graphs -
X2 ⊥⊥ X3|X1

Question: Can we do better than this?



Current approaches

Approach

Model
free

Model
based

Model based approach:

▶ Structural equation model (SEM)
Xi = fi(Xpa(i), ϵi).

▶ Parametric approach.

▶ Restricts the function class.

▶ The causal model is fully
identifiable.

▶ Examples - LiNGAM, LiNG, PNL,
Non-linear Additive Noise models
etc.

▶ f(Xpa(i), ϵi) = b⊤i Xpa(i) + ϵi



Independent component analysis

Goal is to recover the independent source signals Si.

X = AS



ICA & LiNGAM

ICA

▶ Model is X = AS.

▶ Goal: to estimate W = A−1.

LiNGAM

▶ Model is (I −B)X = E.

▶ Underlying graph
structure is acyclic.

▶ Goal: to estimate B.
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ICA

▶ Model is X = AS.

▶ Goal: to estimate W = A−1.

▶ Si are non-gaussian and
mutually independent.

▶ Identifiable upto scaling and
permutation indeterminacy of
indep. components S.

X = (APD)︸ ︷︷ ︸
A∗

(D−1P⊤S)︸ ︷︷ ︸
S∗

▶ several algorithms leads to
efficient estimation of W .
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Unlike ICA, the correct correspondence
between ei and xi is important in
LiNGAM.



ICA & LiNGAM

ICA

▶ Model is X = AS.

▶ Goal: to estimate W = A−1.

▶ Si are non-gaussian and
mutually independent.

▶ Identifiable upto scaling and
permutation indeterminacy of
indep. components S.

X = (APD)︸ ︷︷ ︸
A∗

(D−1P⊤S)︸ ︷︷ ︸
S∗

▶ several algorithms leads to
efficient estimation of W .

LiNGAM

▶ Model is (I −B)X = E.

▶ Underlying graph
structure is acyclic.

▶ Goal: to estimate B.

▶ Ei are non-gaussian and
mutually independent.

▶ Some post-processing

needed on the Ŵ .

▶ Efficient algorithm is
provided in Shimizu et al.
(2006).
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Presence of cycles - Difficulty?

X1 X2

X3X4

Y4 Y1

Y2Y3
b43

b14 b32

b12

▶ DAGs iff topological order.

▶ Topological sort/order: Yi → Yj =⇒ j > i.

▶ Example: Y1(X2) Y2(X3) Y3(X4) Y4(X1)

Y1 Y2 Y3 Y4

▶

Y1

...
Y4

 =


0 0 0 0
b32 0 0 0
0 b43 0 0
b12 0 b14 0


Y1

...
Y4

+


e2
e3
e4
e1


▶ I −B is always invertible.
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Presence of cycles - Difficulty?

X1 X2

X3X4

Y4 Y1

Y2Y3
b43

b14 b32

b12

X1 X2

X3X4
b43

b14 b32

b21

(I −B)X = E

▶ B =


0 0 0 b14
b21 0 0 0
0 b32 0 0
0 0 b43 0


▶ |I −B| = 1− b14b21b32b43.

▶ Some extra conditions are neccessary on B
to ensure invertibility.

▶ The moduli of the eigenvalues of B are less
than 1 and none equal to 1.



Definition
▶ Data where the data points are itself functions or curves.

▶ A realization of a (typically smooth) random object that takes
values in an abstract function space.

▶ H := {X|X : T → [a, b]}. Example: Hilbert space.

▶ Denoted by X = (X1, . . . , Xp)
⊤.

▶ Examples: 1) daily PM10 concentration curves recorded in Graz,
Austria in winter season 2) electrical activity measured across
different regions of the brain (EEG data).

Source: Internet



Challenges

1. Infinite-dimensionality of functional data
▶ Low-freq spectrum of Yj might causally affect the high-freq.

spectrum of Yℓ.
▶ Demands identification of pertinent features.
▶ The challenge is that we may not know a priori what these

relevant features are.

2. Causal identifiability theory in presence of cycles/feedback loops.

3. Noisy functional data adds another layer of difficulty in probing
the causal relationships of interest.



Motivating example

▶ Electroencephalography (EEG)
data.

▶ Continuous and the short time
separation between the adjacent
measuring points.

▶ Goal: To estimate brain effective
connectivity among different regions.

▶ Strong biological evidence behind
presence of feedback loops/cycles.

Source: Internet
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Model definition

▶ Consider a multivariate stochastic process Y = (Y1, . . . , Yp)
⊤

where each Yj is defined on a compact domain Tj ⊂ R.
▶ Let Yj ∈ Hj where Hj is a Hilbert space of functions defined on

Tj .
▶ Consider an operator-based non-recursive linear SEM on Y as

Yj(·) =
∑

ℓ∈pa(j)

(BjℓYℓ)(·) + fj(·), ∀j ∈ [p], (1)

▶ Yℓ → Yj =⇒ Bjℓ ̸= 0. Assume Bjj is a null operator (no self
loops).

▶ Suppose if Yj ∈ Rm ∀j,, (1) is just,

Yj =
∑

ℓ∈pa(j)

BjℓYℓ + fj , ∀j ∈ [p],

▶ However, model (1) is infinite-dimensional and hence challenging
to estimate and interpret.



Causal embedded space

▶ Assume that the causal relationships are preserved in an
unknown low-dimensional subspace Dj of Hj of dim Kj .

▶ Pj and Qj are the projections onto Dj and its orthogonal
complement resp.

▶ Also assume Bjℓ = PjBjℓPℓ.

▶ As such, (1) can be split into

PjYj =
∑

ℓ∈pa(j)

Bjℓ(PℓYℓ) + Pjfj , (2)

QjYj = Qjfj .

▶ We assume that Pjfj and Qjfj are independent of each other.



Model definition

▶ In practice, we do not directly observe Yj .

▶ For each Yj , we observe {(tju, Xju)}
mj

u=1, where Xju ∈ R is the
measurement of Yj at location tju ∈ Tj .

▶ Therefore, we consider the following measurement model:

Xju = Yj(tju) + eju

= (PjYj)(tju) + (QjYj)(tju) + eju, ∀u ∈ [mj ], j ∈ [p], (3)

with independent noises eju ∼ N(0, σj),∀u ∈ [mj ].



Model definition

Recall that,

Xju = (PjYj)(tju) + (QjYj)(tju) + eju

▶ Define αj = PjYj , βj = QjYj

and ϵj = Pjfj ,∀j ∈ [p].

▶ More compactly,

X = α(t) + β(t) + e (4)

▶ Question: Is the proposed
model causally identifiable?
Yes, under certain assump.
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Assumptions

Assumption 1 (Causal Sufficiency)
The model S = (G,P) is causally sufficient, i.e., there are no
unmeasured confounders.

▶ Keeps the causal discovery task more manageable especially for
cyclic graphs with purely observational data.



Assumptions contd...

Assumption 2 (Disjoint Cycles)
The cycles in G are disjoint, i.e., no two cycles in the graph have two
nodes that are common to both.

X1

X2

X3

X4

X5

X6

X7

X1

X2

X3

X4



Assumptions contd...

Assumption 3 (Stability)
For the model S, the moduli of the eigenvalues of the finite rank
operator B are less than or equal to 1, and none of the real
eigenvalues are equal to 1.

▶ Similar kind of assumptions that were discussed for the
univariate case have been extended for the random functions.



Assumptions contd...

Assumption 4 (Non-Gaussianity)
The exogenous variables have independent mixture of Gaussian

distributions. i.e., ϵjk
ind∼
∑Mjk

m=1 πjkmN(µjkm, τjkm) with Mjk ≥ 2.

▶ Can approx. any cont. distribution arbitrarily well 1

▶ Useful as it induces model identifiability in the linear SEM
framework.2

1Titterington, Smith, & Makov (1985). Statistical analysis of finite mixture distributions.

2Shimizu, Hoyer, Hyvärinen, & Kerminen. (2006). A Linear Non-Gaussian Acyclic Model for
Causal Discovery.



Assumptions contd...

Recall that,

Xju = (PjYj)(tju) + (QjYj)(tju) + eju

βj = QjYj

Assumption 5 (Non-causal dependency)
Let β(t) = C(t)γ, where C(t) = diag(C11(t1), . . . ,Cpp(tp)) and γ be
another exogenous component. We assume

γjk
ind∼
∑Mjk

m=1 π
′
jkmN(µ′

jkm, τ ′jkm) with Mjk ≥ 1.

▶ βj(tj) ⊥⊥ βℓ(tℓ) for j ̸= ℓ and j, ℓ ∈ [p].

▶ Cjj(tj) mixes the independent entries in γ to generate temporal
dependence within βj(tj).



Assumptions contd...

Recall, X = α(t) + β(t) + e. Then if αj(tju) =
∑Kj

k=1 α̃jkϕjk(tju),
then (4) can be written as,

X = Φ(t)α̃+ β(t) + e,

where Φ(t) = diag(Φ1(t1), . . . ,Φp(tp)) with Φj(tj) = (ϕjv(tju))
mj ,Kj

u,v=1 .

Assumption 6 (Sufficient sampling locations)
The basis matrix Φ(t) of size

∑p
j=1 mj ×

∑p
j=1 Kj has a full column

rank.

▶ Implies enough sampling locations over which each random
function Yj is observed.

▶ Captures all the pertinent causal information that Yj contains.



Main thorem

Assumptions

Causal Sufficiency

Disjoint Cycles

Stability

Non-Gaussianity

Non-causal dependency

Sufficient Sampling Locations

Causal Identifiability

Theorem (Causal Identifiability)
Under Assumptions 1-6, S = (G,P) is causally identifiable.



Inference - Model parameters

▶ E = (Ejℓ)
p
j,ℓ=1 denote the adjacency matrix.

▶ Xju = Yj(tju) + eju, eju ∼ N(0, σj)

▶ Suppose Yj =
∑S

k=1 α̃jkϕk.

▶ We define SEM on first Kj components.

α̃ = Bα̃+ ϵ̃

where α̃j = (α̃j1, · · · , α̃jKj
)⊤ and α̃ = (α̃1, . . . , α̃p.

▶ ϕk’s are useful for restricting each Yj to Dj . Do not fix them.

▶ Further expand them with known cubic b-spline basis functions,
ϕk(·) =

∑R
r=1 Akrbr(·).

▶ ϵjk
ind∼
∑Mjk

m=1 πjkmN(µjkm, τjkm).

▶ Some very std. priors are taken to formulate the Bayesian
procedure.



Simulation study setup

▶ Sample size (n) = {75, 150, 300}, number of nodes (p) = {20, 40},
time grid size (d) = 125.

▶ The causal graph G is estimated by thresholding the posterior
probability of inclusion at 0.5.

▶ Methods compared against:

1. Functional Bayesian Network (fLiNG).
2. fPCA-CCD
3. fPCA-PC
4. fPCA-LiNGAM

▶ 2, 3 and 4 are two step procedures:
– First step involves obtaining the basis coefficients by carrying
out fPCA.
– Second step involves estimating the causal graphs using
existing causal discovery methods.



Results
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Comparison of different methods

▶ We used Matthew’s correlation coefficient (MCC) to assess the
graph recovery performance.



Application - EEG Data

▶ For both groups (alcoholic and control), brain regions that are
spatially closer to each other tend to be more connected.

▶ Dense connectivity is observed in the frontal region of the brain
in both groups, with multiple cycles being formed.

▶ Alcoholic group has more connectivity across the left parietal and
occipital lobes.



Conclusions

▶ Proposed an operator-based non-recursive linear SEM based
framework for functional data in the presence of cycles.

▶ Introduced the assumption of existence of a lower dimensional
causal embedded space that captures all the causal information.

▶ Proved causal identifiability of our model under certain
assumptions.

▶ Showed applications over an EEG dataset.

Future directions:

▶ Relaxing the assumption for causal sufficiency.

▶ Consider non linear SEM framework.



Reference
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Thank you!



Backup slides



Why stability assumption?

▶ We assume our data are drawn from an equilibrium distribution
of a dynamic system involving multivariate functions.

▶ Y(·)[t] = (Y1(·)[t], . . . , Yp(·)[t])⊤ denote a vector of functions at
time point t where the domain of each function Yj(·)[t] is not
necessarily time.

▶ we have used () to denote the function input/domain and [] to
denote the time index of a dynamic system.

▶ Consider an AR1-type dynamic system of those functions,

Y(·)[t] = BY(·)[t− 1] + f(·)
▶ Recursively leads to,

Y(·)[t] = BtY(·)[0] +
t−1∑
s=0

Bsf(·)

▶ Bt and
∑t−1

s=0 B
s converge as t approaches infinity.



Proof – A brief sketch pictorially

▶ In LHS, a hypergraph-like structure emerges when we assume the
existence of disjoint cycles.

▶ While the true graph contains cycles, this hypergraph-like
structure is essentially a DAG, thus easier to work with.

▶ LHS to RHS.



Prior specifications

Prior on spline coefficients Ak

Ak|λk ∼ N(0, λ−1
k Ω−)

where Ω− is the pseudoinverse of Ω =
∫
b

′′
(t)[b

′′
(t)]⊤ dt. We

constrain the regularization parameters λ1 > · · · > λS > 0 by putting
a uniform prior:

λk ∼ Uniform(Lk, Uk), ∀ k ∈ [S],

U1 = 108, Lk = λk+1 ∀ k ∈ [S − 1],

Uk = λk−1 ∀ k ∈ {2, . . . , S}, LS = 10−8,

which implies that the smoothness of ϕk(·) decreases as k gets larger.



Prior specifications

Prior on adjacency matrix E

Ejℓ|ρ
ind∼ Bernoulli(ρ)

ρ ∼ Uniform(0, 1)

▶ The marginal distribution of E with ρ integrated out is

Beta

(∑
j ̸=ℓ

Ejℓ + 1,
∑
j ̸=ℓ

(1− Ejℓ) + 1

)
.

▶ If E0 denotes the null adj. matrix and E1 denotes the adj. matrix
with only one edge, then we can see that p(E0)/p(E1) = p2 − p.

▶ prevents false discoveries and leads to a sparse network by
increasing the penalty against additional edges as the dimension
p grows.



Prior specifications

Prior on the causal effect matrix B

Bjℓ|Ejℓ ∼ (1− Ejℓ)MVN(Bjℓ;0, sγIKj
, IKℓ

) + EjℓMVN(Bjℓ;0, γIKj
, IKℓ

)

γ ∼ IG(aγ , bγ)

with s = 0.02, aγ = bγ = 1.

▶ continuous spike and slab prior.

▶ When Ejℓ = 0, Bjℓ is negligibly small.

Prior on the noise variances σj

σj ∼ IG(aσ, bσ)

with aσ = bσ = 0.01.



Prior specifications

Prior on the mixture distribution parameters

(πjk1, . . . , πjkMjk
) ∼ Dirichlet(β, . . . , β), ∀ j ∈ [p], k ∈ [S]

µjkm ∼ N(aµ, bµ), τjkm ∼ IG(aτ , bτ ), ∀ j ∈ [p], k ∈ [S],m ∈ [Mjk]

We have fixed values for the hyperparameters, β = 1,
aµ = 0, bµ = 100, aτ = bτ = 1.



Choice of Kj

▶ Possible to use a prior to learn the number of basis functions
jointly with other parameters.

▶ The functional observations are imputed and arranged into a

(n× p)× d matrix, where d = | ∪i,j T (i)
j | represents the size of the

union of the measurement grid over all realized random functions.

▶ Singular value decomposition is performed, and the minimum
value of K is selected such that its proportion of variance
explained is at least 90%.

▶ We set Kj = K. Note that although K is fixed, the basis
functions are adaptively inferred.

▶ Fix a grid encompassing values {1, 2, 3, 4, 5, 6, 7} for K and
subsequently selecting the K associated with the lowest WAIC.

▶ The graph recovery performance remains almost the same.
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