
Graphical models for multivariate time series
(or Interpreting the inverse of very big matrices)






















































Motivating example

Consider the following realisations from the multivariate time series
{X>

t = (X(1)
t , X(2)
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t , X(4)

t )}nt=1
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Pairwise relationships:

• Visually, it appears that every
component is correlated with the
others.

• Visually, it is clear that every
component is nonstationary.

Formally, we would test and (a) H0 : no correlation vs H1: correlation and

(b) H0 : second order stationary (i.e. for all t.⌧ 2 Z cov[X(a)
t , X(b)

⌧ ] =
ca,b(t� ⌧)) vs H1 : second order nonstationary.
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• All tests strongly suggests the time series is both pairwise correlated and
nonstationary. But visually this is quite “obvious”.

• Aim Move away from “pairwise” relationships. Conditional or “system-
wide” relationships may give us greater insight into dependence structures
in the time series.

) Take the GGM route.
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Review: Gaussian Graphical Models (GGM)

• X = (X(1), . . . , X(p))0 is a Gaussian random vector with var[X] = ⌃.

• A graph is defined by the node set V = {1, . . . , p} and edge set
E ✓ V ⇥ V .

• Define the vector XV \{a,b} which is X without X(a) and X(b).

• Conditional Graph definition An undirected conditional graph G = (V,E)
places an edge between two nodes a and b if cov[X(a), X(b)|XV \{a,b}] 6=
0, where XV \{a,b} is the random vector with (X(a), X(b)) removed.
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Workhorse of GGM: the precision matrix

(i) ⌃ = var[X],

⌃�1 =

0

BB@

d(1,1) d(1,2) . . . d(1,p)

d(2,1) d(2,2) . . . d(2,p)
... ... . . . ...

d(p,1) d(p,2) . . . d(p,p)

1

CCA .

• Then cov[X(a), X(b)|XV \{a,b}] = 0 i↵ [⌃�1]a,b(= d(a,b)) = 0:

• We below show why this is true. Classical results in multivariate analysis:
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var

 
X(1)

X(2) |XV \{1,2}
!

=

 
c(1,1) c(1,2)

c(1,2) c(2,2)

!
�
 

c(1,3) . . . c(1,p)

c(2,3) . . . c(2,p)

!
0

BB@

c(3,3) . . . c(3,p)

...
. . .

...

c(p,3) . . . c(p,p)

1

CCA

�10

BB@

c(1,3) c(2,3)

...
...

c(1,p) c(2,p)

1

CCA

=

 
d(1,1) d(1,2)

d(1,2) d(2,2)

!�1

• It is clear if d(1,2) is zero, then the above matrix results shows that the
partial covariance cov[X(1), X(2)|XV \{1,2}] = 0.

• Entries in the precision matrix are also connected to those in linear
regression. Thus tools from linear regression are often used to estimate
conditional graphs.

Inverting matrices (the precision matrix) to learn conditional relationships
is central to this talk.
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Stationary Graphical Models (StGM)
• Suppose {X>

t = (X(1)
t , . . . , X(p)

t )}t is a p-dimensional (Gaussian) second

order stationary time series where cov[Xt, X⌧ ] = Ct�⌧ = (c(a,b)t�⌧ ; 1 
a, b  p).

• Directly applying GGM to time series data would mean only considering
contemporaneous interactions:

var(Xt)
�1 = C�1

0 =

0

BBB@

c(1,1)0 c(1,2)0 . . . c(1,p)0

c(2,1)0 c(2,2)0 . . . c(2,p)0
... ... . . . ...

c(p,1)0 c(p,2)0 . . . c(p,p)0

1

CCCA

�1

• It would completely ignore lead lag correlations between di↵erent time
points.
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• Dahlhaus (2000) proposed StGM based on the partial
correlation/covariance commonly used the multivariate time series.

• Define the linear space XV \{a,b} = sp(X(c)
t , t 2 Z, 1  c  p, c 6= a, b)

• The time series partial covariance is defined as cov[X(a)
t , X(b)

⌧ |XV \{a,b}].

• Conditional Graph definition In StGM an edge exists between nodes a
and b i↵ cov[X(a)

t , X(b)
⌧ |XV \{a,b}] 6= 0 for some (t, ⌧).
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Application to EEG data

Taken from Krampe and Paparoditis https://arxiv.org/pdf/2206.02250.pdf
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• Later in the talk I will explain how the multivariate partial correlation is
related to an inverse covariance matrix (an infinite dimensional one).

• However, estimation of “big” matrices can be (very) di�cult. Instead
what is done is to transform to the so called frequency domain.

• Define the so called p⇥ p spectral density matrix as

f(!) =
1X

r=�1
Cr exp(ir!) ! 2 [0, 2⇡].

• The spectral precision matrix is f(!)�1 (it is a p⇥ p matrix).

• It can be shown that cov[X(a)
t , X(b)

⌧ |XV \{a,b}] = 0 i↵ [f(!)�1]a,b = 0
for all ! 2 [0, 2⇡] (we explain why later).
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• Estimation of graph: Low dimension (fixed p) Eichler (2008), Böhm and
van Sachs (2009). High dimensions (large p): Fiecas et. al. (2018),
Basu et. al. (2022) and Krampe and Paparoditis (2022).

• Our objective: Generalize these notions to (second order) nonstationary
multivariate time series.
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Nonstationary StGM (NonStGM)

• Suppose {Xt}t is a zero mean p-dimensional multivariate nonstationary
time series in the sense that Ct,⌧ = cov[Xt, X⌧ ]. We do not place any
modelling assumptions on {Xt}t and the approach is nonparametric.

• Our aim is to build a parsimonious network for {Xt}nt=1 that describes
conditional relationships between the components of the time series.

– Conditional (non)correlation (analogous to Gaussian Graphical
Models).

– Conditional (non)stationarity (a notion we introduce).

• We show that this information can be found in an infinite dimensional
precision matrix. Like StGM, we show that frequency domain can better
encode conditional relationships.
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Motivation: Example for stationary case
Graphical models for the stationary VAR(1)

0

BBB@

X(1)
t

X(2)
t

X(3)
t

X(4)
t

1

CCCA
=

0

BB@

↵1 0 ↵3 0
�1 �2 0 �4

0 0 �3 0
⌫1 0 0 ⌫4

1

CCA

0

BBBB@

X(1)
t�1

X(2)
t�2

X(3)
t�3

X(4)
t�4

1

CCCCA
+ "t = AXt�1 + "t

{"t}t are iid N(0, I4).

Brillinger (1996) and Dahlhaus (2000) connect the entries of the transition
matrix to those of conditional uncorrelatedness.

0

BB@

↵1 0 ↵3 0
�1 �2 0 �4

0 0 �3 0
⌫1 0 0 ⌫4

1

CCA
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Nonstationary graphical models: Running example

0

BBB@

X(1)
t

X(2)
t

X(3)
t

X(4)
t

1

CCCA
=

0

BB@

↵(t) 0 ↵3 0
�1 �2 0 �4

0 0 �(t) 0
0 ⌫2 0 ⌫4

1

CCA

0

BBBB@

X(1)
t�1

X(2)
t�1

X(3)
t�1

X(4)
t�1

1

CCCCA
+ "t = A(t)Xt�1 + "t,
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• Pairwise each component
in the time series is
nonstationary.

• However, components (1)
and (3) are driving
the nonstationarity which
propogates through to
component (2) and (4).
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A potential network for nonstationary data?

As the zeros in the stationary AR transition matrix match those in the
time-varying AR it seems plausible that the same network holds:

(i) Stationary Xt = AXt�1 + "t

(ii) Nonstationary Xt = A(t)Xt�1 + "t?

• Question What network conveys meaningful information about
nonstationary time series?
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Def: Conditional graph for nonstationary time series
• Two nodes a and b are said to be conditionally
uncorrelated if cov[X(a)

t , X(b)
⌧ |XV \{a,b}] = 0 for

all t, ⌧ 2 Z.

• A node a is conditionally stationary if for all t, ⌧
⇢(a,a)|�{a}
t�⌧ = cov[X(a)

t , X(a)
⌧ |XV \{a}]

• An edge (a, b) is conditionally time
invariant if for all t, ⌧ ⇢(a,b)|�{a,b}

t�⌧ =

cov[X(a)
t , X(b)

⌧ |XV \{a,b}].

• A node or edge (a, b) is conditionally
nonstationary/time-varying if

⇢(a,b)|�{a,b}
t,⌧ = cov[X(a)

t , X(b)
⌧ |XV \{a,b}] (is not

shift invariant).
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Running example: NonStGM Network

0

BBB@

X(1)
t

X(2)
t

X(3)
t

X(4)
t

1

CCCA
=

0

BB@

↵(t) 0 ↵3 0
�1 �2 0 �4

0 0 �(t) 0
0 ⌫2 0 ⌫4

1

CCA

0

BBBB@

X(1)
t�1

X(2)
t�1

X(3)
t�1

X(4)
t�1

1

CCCCA
+ "t = A(t)Xt�1 + "t,

Using the Cholesky decomposition, the
infinite dimensional inverse covariance can be
deduced from the model.
It can be shown that the conditional
relationships are described by this network:
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• Like GGM, we show these partial covariances are encoded within a
precision matrix.
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Encoding in terms of matrices

• Define the infinite dimensional matrix operator C containing all the
covariances of {Xt}t2Z

C =

0

BB@

C1,1 C1,2 . . . C1,p

C2,1 C2,2 . . . C2,p
... ... . . . ...

Cp,1 Cp,2 . . . Cp,p

1

CCA ,

where Ca,b contains all the cross covariances between X(a) and X(b).

Di↵erence to most covariance matrices each “entry” in this matrix is
infinite dimensional.

• The central assumption is the eigenvalues of C are bounded away from
zero and are finite.
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Encoding these relationships in the precision matrix

• The conditional relationships (described above) are encoded in an infinite
dimensional precision matrix

D = C�1 =

0

BB@

C1,1 C1,2 . . . C1,p

C2,1 C2,2 . . . C2,p
... ... . . . ...

Cp,1 Cp,2 . . . Cp,p

1

CCA

�1

=

0

BB@

D1,1 D1,2 . . . D1,p

D2,1 D2,2 . . . D2,p
... ... . . . ...

Dp,1 Dp,2 . . . Dp,p

1

CCA .
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Comparison between regular precision and infinite
precision

• Recall the regular partial covariance result:

var

 
X(a)

X(b) |XV \{a,b}
!

=

 
d(a,a) d(a,b)

d(b,a) d(b,b)

!�1

• We can show a similar result for infinite dimensional matrices:

(i) var
h
X(a)|V \{a}

t ; t 2 Z
i
= D�1

a,a.

(ii) If a 6= b, then

var
h
X(c)|V \{a,b}

t ; t 2 Z, c 2 {a, b}
i

=

✓
Da,a Da,b

Db,a Db,b

◆�1

• These are the partial covariances of a multivariate time series.
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The conditional graphs in terms of the precision infinite
dimensonal matrix

• Two nodes a and b are conditionally uncorrelated i↵ Da,b = 0 (the
zero matrix).

• A node a is conditionally stationary i↵ Da,a is Toeplitz. 1

• An edge (a, b) is conditionally invariant i↵ Da,b is a Toeplitz matrix.

• A node a or edge (a, b) is conditionally nonstationary/time-varying if
Da,a or Da,b is not Toeplitz.

1Definition: a Toeplitz matrix is a matrix whose rows are successive shifts of one sequence.
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Sparsity relations in the Fourier domain

• Directly estimating D in order to estimate the conditional graph is
di�cult.

• Instead, we transform the matrix, which can “sparsify” it (estimating
“large” sparse matrices is easier).

• Recall, if var(X) = C and A is a deterministic, then the linear
transformation AX is such that var(AX) = ACA>.

• If one takes the Fourier transform matrix F (a special transform consisting
of signs and cosines) and var(X) = C, where C is a Toeplitz matrix,
then var(AX) = FCF⇤ = diagonal ”matrix”
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Example: Multivariate stationary time series
• Consider, as an example, the multivariate stationary VAR model

0

BBB@

X(1)
t

X(2)
t

X(3)
t

X(4)
t

1

CCCA
=

0

BB@

↵1 0 ↵3 0
�1 �2 0 �4

0 0 �3 0
⌫1 0 0 ⌫4

1

CCA

0

BBBB@

X(1)
t�1

X(2)
t�2

X(3)
t�3

X(4)
t�4

1

CCCCA
+ "t = AXt�1 + "t

{"t}t are iid var("t) = I4.

Stationarity means that the covariance matrix and its inverse are both
Toeplitz matrices
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FDF⇤ = diag

0

BB@

0

BB@

g(1,1)(!) g(1,2)(!) g(1,3)(!) g(1,4)(!)
g(2,1)(!) g(2,2)(!) 0 g(2,4)(!)
g(3,1)(!) 0 g(3,3)(!) 0
g(4,1)(!) g(4,2)(!) 0 g(4,4)(!)

1

CCA ;! 2 [0, 2⇡]

1

CCA

• We use the Discrete Fourier Transform (DFT) to estimate the conditional
graph.

The DFT of the univariate time series {X(a)
t }nt=1 is defined as

J (a)
k = 1

n

Pn
t=1X

(a)
t exp(it!k) where !k = 2⇡k/n and Jk = (J (a)

k ).

• Since ⌃(!k)�1 ⇡ var[Jk]
�1, we estimate the entries in ⌃(!k)�1 using

regression of the DFTs.
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Returning to nonstationary multivariate time series

• For 1  a  p string all the frequencies in a vector J(a)
n =

(J (a)
1 , J (a)

2 , . . . , J (a)
n )0 and define the concatonated np-dimensional vector

Jn = vec
⇣

J(1)
n ,J(2)

n , . . . ,J(p)
n

⌘
.

• var[Jn] is a p⇥ p block variance matrix of DFTs.

• Idea In GGM conditional relationships are encoded in the inverse
(precision) covariance matrix.

In NonStGM, D = C�1 encodes nonstationary relationships. Could the
inverse of the variance of the Fourier transform, (var[Jn])�1 contain
“useable” information too?
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The DFT precision matrix and conditional relationships

• (var[Jn])�1 is p⇥ p-dimensional block matrix, each block has dimension
n⇥ n:

Kn = (var[Jn])
�1 =

0

BB@

(Kn)1,1 (Kn)1,2 . . . (Kn)1,p
(Kn)2,1 (Kn)2,2 . . . (Kn)2,p

... ... . . . ...
(Kn)p,1 (Kn)p,2 . . . (Kn)p,p

1

CCA .

where (Kn)a,b = (Ka,b(!k1,!k2); 1  k1, k2  n).

• Theorem Conditional relationships between (a, b) are encoded in (Kn)a,b.
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Theorem: Sparsity in the Fourier domain
• Two nodes a and b are said
to be conditionally uncorrelated if
(Kn)a,b ⇡ 0.

• A node a is conditionally stationary
if (Kn)a,b is approx diagonal.

• An edge (a, b) is conditionally
time-invariant if (Kn)a,b is approx
diagonal.

• A node or edge (a, b) is
conditionally nonstationary/time
varying if (Kn)a,b is not diagonal.
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The running example in the frequency domain

0

BBB@

X(1)
t

X(2)
t

X(3)
t

X(4)
t

1

CCCA
=

0

BB@

↵(t) 0 ↵3 0
�1 �2 0 �4

0 0 �(t) 0
0 ⌫2 0 ⌫4

1

CCA

0

BBBB@

X(1)
t�1

X(2)
t�1

X(3)
t�1

X(4)
t�1

1

CCCCA
+ "t = A(t)Xt�1 + "t,

• Aim Understand the structure of Ka,b when conditionally nonstationary.
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Structure of Ka,b under local stationarity
• We focus on time series whose covariance structure changes smoothly
(or piecewise smoothly) over time.

• Dahlhaus (1997) developed the asymptotic machinery for studying such
processes, which he showed were “locally stationary”.

• If {Xt} is locally stationary and (a, b) is conditionally nonstationary/time-
varying, then:

– Ka,b is non-zero o↵ the diagonal.

– Sub-diagonals close to the diagonal are
large and taper o↵ further from the
diagonal:
Ka,b(!k,!k+r) = O(|r|�1).
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Relationship between linear regression and Kn

• In classical GGM (or StGM) we often estimate the entries of the precision
matrix using linear regression.

• Similarly we can estimate the entries of Kn = (var[Jn])�1 = F ⇤
nDnFn

by projecting/regressing one DFT on all the other DFTs:

PGn�J
(a)
k

(J (a)
k ) =

pX

b=1

X

r 6=0

�(b,k+r))(a,k)J
(b)
k+r,

where Gn � J (a)
k = sp(J (c)

s ; 1  c  p, 1  s  n, (c, s) 6= (a, k)).

• The coe�cients related to Ka,b through the relation: �(b,k+r))(a,k) =
�Ka,b(!k,!k+r)/Ka,a(!k,!k).
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Motivation: Spectral precision matrix estimation

• Suppose that {Xt} is a multivariate stationary time series with spectral
density ⌃(!) and spectral precision matrix �(!) = ⌃(!)�1.

• Since �(!) is smooth across frequencies, like spectral density estimation,
localised least squares is often used to estimate the entries of the spectral
precision matrix �(!):

b�a,k = argmin
�

MX

`=�M

W

✓
`

M

◆ ������
J (a)
k+` �

pX

b 6=a

�(b,k))(a,k)J
(b)
k+`

������

2

• b�(b,k))(a,k) is an estimator of ��a,b(!k)/�a,a(!k)
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Estimation of Kn

• Likewise, to estimate the entries of Kn we use localised least squares.

• However, each row of Kn has dimension np, which is infeasible to
estimate without regularisation.

• Under local stationarity the coe�cients �(b,k+r))(a,k) decay as |r| grows.
Thus we can truncate the number of regressors to estimate in the
localised regression

b�a,k = argmin
�

MX

`=�M

W

✓
`

M

◆ ������
J (a)
k+` �

pX

b=1

X

|r|⌫

�(b,k+r))(a,k)J
(b)
k+`+r

������

2
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• b�(b,k+r))(a,k) is an estimator of �Ka,b(!k,!k+r)/Ka,a(!k,!k).

• We show that under suitable conditions, a Gaussian approximation of

⇣
b�(b,k+r))(a,k); |r|  d

⌘

is possible where we allow d to grow with n.

• This result can be used to test the values in the row of Ka,b and thus to
test for particular features in the graph.
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Challenges in inference and testing

• Truncation to ⌫ induces a bias in the parameter estimators.
Asymptotically we need to allow for the truncation ⌫ to grow with
the sample size.

• The asymptotic analysis requires a delicate and intricate study of the
DFTs in the case of nonstationarity.

• The variance of the regression estimators also needs to be estimated in
order to implement the test (to build the graph).
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Conclusion

• The main aim in this work was to build a graph for nonstationary time
series based on conditional relationships.

• The paper for the main part of this talk is based on (Basu and SSR,
2023, Annals of Statistics).

• The relationship between locally stationarity (in terms of the covariances)
and its inverse covariance operator can be found in Krampe and SSR,
2023, Bernoulli.

• Estimation of the network: Krampe and SSR, 2023, Preprint.

• Future work: Estimation of network for high dimensional time series.
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