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Motivation

A micro-array dataset measures gene expression.

“Large p, small n”: number of genes p of order 103, number of samples n
of order 102. n can be even smaller for rare diseases.

Possible questions:

• Identify gene-sets that are associated with clinical outcomes.

• Compare gene expressions for different groups.

Other examples:

• Network/tensor-valued time series

• Optimal portfolio construction

Classical statistical analysis requires n ≫ p.
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New Challenges

1. Traditional methods will not work anymore.
▶ Examples:

◦ ∥X̄∥2 is not a consistent estimator of ∥µ∥2.
◦ Sample covariance matrix may not be invertible. Difficult to normalize

a statistic.

◦ Overfitting when the number of predictors is larger than the sample
size.

2. New theoretical tools need to be developed to handle growing p.

3. Computational complexity grows in both n and p.
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Possible Solutions
Assume that X1, ...,Xn ∈ Rp are i.i.d. Denote µ = E[X1]. Both n and p
can grow to infinity. Test: H0 : µ = 0p v.s. H1 : µ ̸= 0p.

1. Dimension Reduction: find a coefficient matrix A ∈ Rm×p where
m ≥ 1 is fixed, such that Aµ = 0m if and only if µ = 0p.

This technique is useful, if we know µ is a sparse vector, i.e. most
components of µ are zero.

2. Equivalent hypothesis: H′
0 : ∥µ∥ = 0 v.s. H′

1 : ∥µ∥ ≠ 0, where ∥ · ∥ is
some norm defined on Rp.

Popular choices: for x = (x1, x2, ..., xp) ∈ Rp,
▶ ∥x∥∞ = max(|x1|, |x2|, ..., |xp|) (ℓ∞ norm)

▶ ∥x∥2 =
√
x21 + x22 + · · ·+ x2p (ℓ2 norm)

No need to find A. In fact looking for A is not easy as well, and it is
often a separate problem.
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Problem Setting

• One-sample testing
▶ Problem: Given i.i.d. high-dimensional random vectors

X1, . . . ,Xn ∈ Rp, and Θ = Θ(X1) = {θl : l ∈ L}.
▶ Goal: Test Θ = 0 against Θ ̸= 0.

• Two-sample testing
▶ Problem: Given i.i.d. high-dimensional random vectors

X1, . . . ,Xn; Y1, . . . ,Ym ∈ Rp, and Θ = Θ(X1,Y1) = {θl : l ∈ L}.
▶ Goal: Test Θ = 0 against Θ ̸= 0.
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Literature Review

Focus on i.i.d. data under high-dimensional setting.

ℓ2-type statistics for dense alternatives:

• Mean testing: Bai and Saranadasa (1996); Chen and Qin (2010);
Goeman et al. (2006); Gregory et al. (2015); Srivastava and Du
(2008); Srivastava et al. (2016);

• Covariance testing: Bai et al. (2009); Chen et al. (2010); Ledoit and
Wolf (2002); Li et al. (2012);

• Component-wise independence testing: Leung and Drton (2018);

• Simultaneous testing for the coefficients of linear model: Zhong and
Chen (2011);

• · · ·
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Literature Review

ℓ∞-type statistics for sparse alternatives:

• Mean testing: Cai et al. (2014); Hall and Jin (2010);

• Covariance testing: Cai and Jiang (2011); Cai et al. (2013); Jiang
(2004); Liu et al. (2008); Shao and Zhou (2014);

• Component-wise independence testing: Han et al. (2017); Drton
et al. (2020);

• · · ·
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Determine the norm

• Practically, which norm should we use? Any difference?

• It usually depends on the sparsity of Θ (under the alternative).

• When Θ is sparse and strong, the test is more powerful when using
a larger q (ℓ∞ is most powerful).

• When Θ is dense and weak, the test is more powerful when using a
smaller q.

• The test using a wrong norm could have no power at all.

Example:
▶ µ = (p−1/2, p−1/2, ..., p−1/2): ∥µ∥2 = 1 and ∥µ∥∞ = p−1/2 → 0.
▶ µ = (1, 0, ..., 0): Although ∥µ∥2 = ∥µ∥∞ = 1, using ℓ2 norm needs to

aggregate all component sequences in the data therefore it has a much
larger noise comparing to ℓ∞ norm based method.
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Literature Review

He et al. (2021, AoS): focus on mean (covariance) testing.

• Construct ℓq norm based tests for even q and q = ∞.

• Combine tests for different q’s to achieve adaptive testing, i.e. the
test is powerful against both sparse and dense alternatives.

Our method:

• ℓq norm based statistics for a general high-dimensional parameter.

• Powerful against both dense and sparse alternative.

• Asymptotically normal and independent under the null and alternative.

• Dynamic programming method to speed up computation.
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U-statistic

A U-statistic is an unbiased estimator of the parameter in interest θ, which
is defined as an average (across all combinatorial selections of the given
size from the full set of observations) of the basic estimator applied to the
sub-samples.

Example: Assume that X1, ...,Xn ∈ R are i.i.d..

• θ = E[X1]. Kernel function: h(x) = x .

Un(X1, ...,Xn) =

(
n

1

)−1 n∑
i=1

h(Xi ).

• θ = E2[X1]. Kernel function: h(x1, x2) = x1x2.

Un(X1, ...,Xn) =

(
n

2

)−1 n∑
i ,j=1,i ̸=j

h(Xi ,Xj).
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U-Statistic Construction (even q)

Consider ∥Θ∥qq
∆
=

∑|L|
l=1 θ

q
l (for one-sample testing).

• Start with symmetric (core) kernel functions h = (h1, ..., h|L|) (of
order r) s.t.

E[hl(X1, . . . ,Xr )] = θl .

for any l = 1, 2, ..., |L|.
• Then we have

E[hl(X1, . . . ,Xr ) · · · hl(X(q−1)r+1, . . . ,Xqr )] = θql .

• Derive an unbiased U-statistic for ∥Θ∥qq (order qr):

Un,q =
∑
l∈L

(Pn
qr )

−1
∗∑

1≤i1,...,iqr≤n

q∏
c=1

hl(Xi(c−1)r+1
, . . . ,Xicr ),

where
∑∗ is over all distinct indexes.
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Examples

• Test against H0 : µ := E[Xi ] ≡ 0. Consider hl(Xi ) = xi ,l , so

Un,q =

p∑
l=1

(Pn
q )

−1
∗∑

1≤i1,...,iq≤n

q∏
c=1

xic ,l .

• Test against H0 : Var(Xi ) is a diagonal matrix (assuming µ = 0).
Consider hl(Xi ) = xip1xip2 , p1 < p2.
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Examples

• Spatial sign based testing (Wang et al., 2015, JASA),
H0 : E[Xi / ∥Xi∥ ] = 0.
L = [p], and hl(Xi ) = xi ,l / ∥Xi∥ with r = 1.

• Testing for linear model coefficients (Zhong and Chen, 2011, JASA),
Y = Xβ + ε, H0 : β = β0(⇔ Θ = ΣX (β − β0) = 0).
L = [p], and

hl
(
(X1,Y1), (X2,Y2)

)
= [ (X1 − X2)(Y1 − Y2 − (X1 − X2)

Tβ0) ]l/2

with r = 2.
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Null Distribution
Regularity conditions:

• Guarantee the dominance of the leading term;

• Guarantee the weak cross-sectional dependence.

Theorem 1 (Limiting null distribution)

Suppose h = (h1, ..., h|L|) is a kernel with order r , under some regularity
conditions.
Then we have under the null,

[(qs)!]−1/2

(
r

s

)−q

nqs/2Σ̃
−1/2
s (q)Un,q

D−→ N(0, 1), (1)

where s is the order of degeneracy of h, and Σ̃
−1/2
s (q) is a technical

quantity which needs to be estimated later on.
Furthermore, for any finite set I ⊂ Z+, (Un,q)q∈I are asymptotically
jointly independent.
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Sketch of the proof

1. Decompose Un,q and find the leading term: Hajék projection and
Hoeffding decomposition.

Un,q =

(
r

s

)q

U
(qs)
n,q [1 + op(1)].

2. U
(qs)
n,q can be further written as a martingale: Martingale central limit

theorem.
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An Asymmetric U-statistic with Dynamic Programming

Define

DM
q,l(m) =

∑
1≤i1<···<iqr≤m

q∏
c=1

hl(Xi(c−1)r+1
, . . . ,Xicr ),

and

UM
n,q =

(
n

qr

)−1∑
l∈L

DM
q,l(n).

We may calculate DM
q,l recursively by

DM
c,l(m) = DM

c,l(m − 1) + DM
c−1,l(m − 1)hl(Xm), m ≥ c ,

with DM
c,l(m) = 0 for 1 ≤ m < c .

Reduce computation from O(qnqr |L|) to O(qnr |L|).
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Variance Estimator

We consider two approaches for estimating the variance.

• Plug-in method (mainly used for Un,q with r = 1): Construct the
consistent estimator of Σ̃s(q), which has the form of proposed
statistic associated with some kernels derived by hl .

• Permutation based variance estimator (for both Un,q and UM
n,q):

Find the variance of the statistics computed on permuted data.
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Asymptotic Distribution under Alternative

Define
γn,q = nqs/2Σ̃

−1/2
s (q)∥Θ∥qq.

Theorem 2 (Alternative)

Under the same assumption as null, we have

• Suppose γn.q → ∞. Then nqs/2Σ̃
−1/2
s (q)Un,q

P−→ ∞ and the power
goes to 1.

• Suppose γn.q → 0. Then Un,q has the same asymptotic distribution
as null and the power converges to α.

• Suppose γn,q → γ ∈ (0,∞) ( local alternative). We have

nqs/2Σ̃
−1/2
s (q)Un,q

D−→ N

(
γ, [(qs)!]1/2

(
r

s

)q)
.
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Adaptive Testing

1. Conduct tests for a set of q′s, i.e. q1, q2, ..., qI ;

2. Obtain p-values from each test: pq1 ,...,pqI ;

3. Adaptive test statistic: padp = min{pq1 , ..., pqI };

4. For a level α test, reject if padp < 1− (1− α)1/I .

Remark: In real applications we recommend to combine two tests with
different q’s to obtain an adaptive test.
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Simulation Studies
Consider testing for linear model Yi = Xiβ + εi .

H0 : β = 0 v .s. Ha : β ̸= 0.

Simulation setting:

• Xi
i .i .d .∼ N(0, Ip), independent of ε

i .i .d .∼ N(0, 1).

• β = δ(1r , 0p−r ).

(n, p) δ, r q = 2 q = 4 q = 6 q = 2, 4 q = 2, 6

(100,50)
0,NA 5.7 6.4 3.1 6.3 4.6
0.4,2 50.4 72.0 56.2 74.0 67.4
0.05, p 70.4 19.8 12.6 65.2 63.8

(200,100)
0,NA 5.5 4.9 3.5 5.1 5.6
0.4,2 76.0 98.0 95.2 98.2 96.4
0.05, p 98.8 36.8 20.4 98.2 98.2

Table 1: Size and power in % for linear model coefficient testing
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Summary

• ℓq-norm based U-statistic for high dimensional testing.

• Asymptotically normal and independent statistics; adaptive test with
high power against both dense and sparse alternatives.

• No explicit constraints on p with encouraging finite sample
performance.

Future Work

• Study the asymptotic independence of ℓ∞-based statistic.

• Generalize to non-i.i.d. data.
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Dimension-agnostic Inference

• Motivation:
▶ The calibration of a test depends on the assumption of how p scales

with n, which is usually pre-decided but unverifiable.
▶ An illustrative example:

Data Possible Scales Calibration of a Test

p = 20 fixed
low-dimensional method
(fix p while let n → ∞)

p/n = 0.2 fixed
n = 100
p = 20

p/n2 = 0.002 fixed
high-dimensional method
(let p → ∞ as n → ∞)

p/
√
n = 2 fixed

▶ Is there a test that works under all dimensional settings?

• Dimension-agnostic (Kim and Ramdas (2020)):

· · · the goal of dimension-agnostic inference: developing methods
whose validity does not depend on any assumption on p versus n.

• Our method: Dimension-agnostic change point detection
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Literature Review

• Existing work:

Low/fixed-dimensional High-dimensional
Page (1954) Horváth and Hušková (2012)
Page (1955) Jirak (2015), Cho (2016)
Shao and Zhang (2010) Wang and Samworth (2018)
(Review) Aue and Horváth (2013) Enikeeva and Harchaoui (2019)
(Review) Casini and Perron (2019), etc Wang et al. (2022)

Yu and Chen (2022), etc

• Limitations:
▶ Low/fixed-dimensional setup (p is fixed and small)

◦ theory is justified specifically for small/fixed p.
◦ not applicable when p > n.
◦ serious size distortion when p is moderate.

▶ High-dimensional setup (p is high and is comparable to or exceeds n)

◦ the approximation accuracy may highly rely on the central limit effect
from the high dimension.

◦ serious size distortion for data of low or moderate dimension.
◦ different methods may require different growth rate of p, different

sparsity, etc..
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Change Point Analysis

0 50 100 150 200

−
2

0
2

4
6

8

Index

V
al

ue

0 50 100 150 200

−
5

0
5

10

Index

V
al

ue

0 50 100 150 200

−
20

0
−

10
0

0
10

0

Index

V
al

ue

0 50 100 150 200

Index

24 / 45



Problem Setup

• Data: Given the observations {Xt}nt=1 ∈ Rp with both temporal and
cross-sectional dependence. We denote µt = E

[
Xt

]
for t = 1, · · · , n.

• Single change point testing:
H0 : µ1 = · · · = µn v.s.

H1 : µ1 = · · · = µk0 ̸= µk0+1 = · · · = µn

where k0 = nε0 with ε0 ∈ (0, 1) is an unknown location.

• Applications:
▶ Finance: stock return volatility change
▶ Neuroscience: functional magnetic resonance imaging (fMRI) study
▶ Credit card fraud detection/monitoring
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Methodology

• Step 1: Splitting (and trimming if temporal dependence exists)

r 6

X11={X1,...,Xm1}
m1=⌊n(ε−η)⌋ r

?
X12={Xm1+1,...,Xm}
m2=m−m1, m=⌊nε⌋

r
← trimming →

6

X2={Xm+1,...,Xn−m}
N=n−2m

r
?

X31={Xn−m+1,...,Xn−m1}
m2=m−m1, m=⌊nε⌋

r 6

X32={Xn−m1+1,...,Xn}
m1=⌊n(ε−η)⌋ r

▶ ε ∈ (0, 1): the splitting ratio, satisfying that ε0 ∈ (ε, 1− ε).
▶ η ∈ [0, ε): the trimming ratio.
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Methodology

• Step 2: Projection

r
?

µ̂1 =
1
m1

m1∑
i=1

Xi
- µ̂1 − µ̂n

6
project

6

Yj = (µ̂1 − µ̂n)
⊤Xj+m, j = 1, · · · ,N

6

E[Y1]− E[YN ] ≈ ∥µ1 − µn∥22

�

r rX2 = {Xm+1, . . . ,Xn−m} r r
?

µ̂n = 1
m1

m1∑
i=1

Xn+1−i

r
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Proposed Test Statistic

• Test statistic for the single change point (Shao and Zhang
(2010)):

▶ For k = 1, 2, . . . ,N − 1, define the CUMSUM statistic as

Tn(k) = N−1/2
k∑

t=1

(
Yt − ȲN

)
(2)

where ȲN = 1
N

∑N
j=1 Yj .

▶ For k = 1, 2, . . . ,N − 1, define the self-normalizer as

Vn(k) = N−2

(
k∑

t=1

(
S1,t −

t

k
S1,k

)2
+

N∑
t=k+1

(
St,N −

N − t + 1

N − k
S+1,N

)2
)
,

(3)
where Sa,b =

∑b
j=a Yj denotes the cumulative sum.

▶ The proposed test statistic is defined as

Gn = sup
k=1,...,N−1

Tn(k)V
−1/2
n (k). (4)
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Theoretical Results

• Three data generating processes:

Dimensionality Data Generating Process
Temporal Cross-sectional

Dependence Dependence

Fixed p
stationary sequence (DGP1)

weak arbitrary
Long-run variance Ω positive definite

Diverging p

linear process (DGP2)
weak weak

Xt = µt +
∑∞

j=0 ajεt−j , {εt}t∈0
iid∼ (0, Γ)

static factor model (DGP3)

weak strong

Xt = µt + ΛFt + Zt , Λ ∈ Rp×s , s ≪ p

{Ft}nt=1 ∈ Rs ∼ (0,Ω)

{Zt}nt=1 ∈ Rp ∼ (0,Σ) linear process

{Ft}nt=1 ⊥⊥ {Zt}nt=1
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Theoretical Results

• Limiting null distribution

p {Xt}nt=1 Key assumptions Limiting Null Distribution

Fixed p Stationary (DGP1) Functional CLT

Gn →d G
p → ∞

Linear process (DGP2)
∥aj∥ ≲ ρj for ρ ∈ (0, 1) and j ≥ 0

ρm2/4∥Γ∥F = o
(

n
log(n)

)

Factor model (DGP3)
Functional CLT for {Ft}nt=1

ρm2/4∥Γ∥F = o
(

n
log(n)

)
where G := sup

r∈[0,1]

(B(r)− rB(1))V−1/2(r) with {B(r)}r∈[0,1] denoting the

standard Brownian motion, and V (r) is given by

V (r) =

∫ r

0

(
B(s)−

s

r
B(r)

)2
ds +

∫ 1

r

(
B(1)− B(s)−

1− s

1− r
(B(1)− B(r))

)2

ds.
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Theoretical Results

• Theoretical asymptotic power against the local alternative

Stationary (DGP1)
Linear process (DGP2)

Factor model (DGP3)
(with A(0) =

∑∞
ℓ=0 aℓ)

P (Gn > G1−α) → α
√
n∥δ∥2 → 0

√
n∥δ∥2

∥A(0)Γ(A(0))⊤∥1/2F

→ 0
√
n∥δ∥2

max{∥Λ∥,∥Γ∥1/2F }
→ 0

P (Gn > G1−α) → β
√
n∥δ∥2 → c1

√
n∥δ∥2

∥A(0)Γ(A(0))⊤∥1/2F

→ c2
√
n∥δ∥2

max{∥Λ∥,∥Γ∥1/2F }
→ c3

β ∈ (α, 1) c1 ∈ (0,∞) c2 ∈ (0,∞) c3 ∈ (0,∞)

P (Gn > G1−α) → 1
√
n∥δ∥2 → ∞

√
n∥δ∥2

∥A(0)Γ(A(0))⊤∥1/2F

→ ∞
√
n∥δ∥2

max{∥Λ∥,∥Γ∥1/2F }
→ ∞
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Generalization

• Single dense alternative → Single sparse alternative
▶ use a sparse direction for projection
▶ theory is wide open

• Single change point → Multiple change points
▶ use scanning-based tests by Zhang and Lavitas (2018)
▶ done with methodology, theory and simulations
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Simulation Studies
• DGP: We generate the data from a p-dimensional AR(1) process

Xt − µt = κ(Xt−1 − µt−1) + ϵt ∈ Rp, 1 ≤ t ≤ n,

where κ = 0.7, {ϵt}
iid∼ Np(0,Σ) and Σ takes the following forms:

▶ AR (Σi,j = 0.8|i−j|)
▶ CS (Σi,j = 0.5 + 0.51{i = j})
▶ ID (Σi,j = 1{i = j})

• Proposed Method:
▶ the test statistic targeting at dense alternatives: Gn,2

▶ the test statistic targeting at sparse alternatives: Gn,∞
▶ the Bonferroni test based on Gn,2 and Gn,∞: Bonf
▶ the splitting ratio ε = 0.1, the trimming ratio η = 0.04

• Comparison Methods:
▶ Wang et al. (2022), denoted by T (η0) where η0 is a trimming

parameter selected from {0, 0.01, 0.02, 0.05, 0.1}
• Significance level α = 0.05

• 5000 Monte-Carlo replicates
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Simulation Studies
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Figure 1: Empirical size curves versus the logarithm of p against the single change
point alternative
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Simulation Studies

• Dense change point:

▶ n = 200, k = ⌊n/2⌋+ 1 and µt =

{
(0, . . . , 0)⊤, 1 ≤ t < k
c(1, . . . , 1)⊤/

√
p, k ≤ t ≤ n

• Sparse change point:

▶ n = 200, k = ⌊n/2⌋+ 1 and µt =

{
(0, . . . , 0)⊤, 1 ≤ t < k
c(0, 0, 1, 0, . . . , 0)⊤, k ≤ t ≤ n

• Parameters:
▶ The splitting ratio ε = 0.1, the trimming ratio η = 0.04.
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Simulation Studies
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Figure 2: Power curves (size-adjusted) with a single dense change point

36 / 45



Simulation Studies
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Figure 3: Power curves (size-adjusted) with a single sparse change point
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Summary and Future Work

• Summary:

▶ Dimension-agnostic testing for (weakly dependent) time series is
feasible and natural since the sample split is unique for given
proportions.

▶ Agnostic to both the dimensionality and the magnitude of
cross-sectional dependence.

• Future work:

▶ Dimension-agnostic segmentation.
▶ Dimension-agnostic testing for other parameters, e.g., covariance

matrix, distribution, etc.
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Thank you!
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