# High-dimensional Inference and Beyond

Runmin Wang

March 18, 2023

### Motivation

A micro-array dataset measures gene expression.

"Large p, small n": number of genes p of order  $10^3$ , number of samples n of order  $10^2$ . n can be even smaller for rare diseases.

#### Possible questions:

- Identify gene-sets that are associated with clinical outcomes.
- Compare gene expressions for different groups.

#### Other examples:

- Network/tensor-valued time series
- Optimal portfolio construction

Classical statistical analysis requires  $n \gg p$ .

### **New Challenges**

- 1. Traditional methods will not work anymore.
  - ► Examples:
    - $|\bar{X}|_2$  is not a consistent estimator of  $||\mu||_2$ .
    - Sample covariance matrix may not be invertible. Difficult to normalize a statistic.
    - Overfitting when the number of predictors is larger than the sample size.
- 2. New theoretical tools need to be developed to handle growing p.
- 3. Computational complexity grows in both n and p.

### Possible Solutions

Assume that  $X_1,...,X_n\in\mathbb{R}^p$  are i.i.d. Denote  $\mu=\mathbb{E}[X_1]$ . Both n and p can grow to infinity. Test:  $\mathcal{H}_0:\mu=\mathbf{0}_p$  v.s.  $\mathcal{H}_1:\mu\neq\mathbf{0}_p$ .

1. Dimension Reduction: find a coefficient matrix  $\mathbf{A} \in \mathbb{R}^{m \times p}$  where  $m \geq 1$  is fixed, such that  $A\mu = \mathbf{0}_m$  if and only if  $\mu = \mathbf{0}_p$ .

This technique is useful, if we know  $\mu$  is a sparse vector, i.e. most components of  $\mu$  are zero.

2. Equivalent hypothesis:  $\mathcal{H}_0': \|\mu\| = 0$  v.s.  $\mathcal{H}_1': \|\mu\| \neq 0$ , where  $\|\cdot\|$  is some norm defined on  $\mathbb{R}^p$ .

Popular choices: for  $\mathbf{x} = (x_1, x_2, ..., x_p) \in \mathbb{R}^p$ ,

- $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_p^2} \ (\ell_2 \text{ norm})$

No need to find  $\boldsymbol{A}$ . In fact looking for  $\boldsymbol{A}$  is not easy as well, and it is often a separate problem.

# **Problem Setting**

- One-sample testing
  - ▶ Problem: Given i.i.d. high-dimensional random vectors  $X_1, \ldots, X_n \in \mathbb{R}^p$ , and  $\Theta = \Theta(X_1) = \{\theta_l : l \in \mathcal{L}\}.$
  - ▶ Goal: Test  $\Theta = \mathbf{0}$  against  $\Theta \neq \mathbf{0}$ .
- Two-sample testing
  - ▶ Problem: Given i.i.d. high-dimensional random vectors  $X_1, \ldots, X_n$ ;  $Y_1, \ldots, Y_m \in \mathbb{R}^p$ , and  $\Theta = \Theta(X_1, Y_1) = \{\theta_I : I \in \mathcal{L}\}$ .
  - ▶ Goal: Test  $\Theta = \mathbf{0}$  against  $\Theta \neq \mathbf{0}$ .

### Literature Review

Focus on i.i.d. data under high-dimensional setting.

 $\ell_2$ -type statistics for **dense** alternatives:

- Mean testing: Bai and Saranadasa (1996); Chen and Qin (2010);
   Goeman et al. (2006); Gregory et al. (2015); Srivastava and Du (2008); Srivastava et al. (2016);
- Covariance testing: Bai et al. (2009); Chen et al. (2010); Ledoit and Wolf (2002); Li et al. (2012);
- Component-wise independence testing: Leung and Drton (2018);
- Simultaneous testing for the coefficients of linear model: Zhong and Chen (2011);
- ...

### Literature Review

### $\ell_{\infty}$ -type statistics for **sparse** alternatives:

- Mean testing: Cai et al. (2014); Hall and Jin (2010);
- Covariance testing: Cai and Jiang (2011); Cai et al. (2013); Jiang (2004); Liu et al. (2008); Shao and Zhou (2014);
- Component-wise independence testing: Han et al. (2017); Drton et al. (2020);
- . .

#### Determine the norm

- Practically, which norm should we use? Any difference?
- It usually depends on the **sparsity** of  $\Theta$  (under the alternative).
- When  $\Theta$  is **sparse and strong**, the test is more powerful when using a larger q ( $\ell_{\infty}$  is most powerful).
- When Θ is dense and weak, the test is more powerful when using a smaller q.
- The test using a wrong norm could have no power at all.

#### Example:

- $m{\mu} = (p^{-1/2}, p^{-1/2}, ..., p^{-1/2})$ :  $\|m{\mu}\|_2 = 1$  and  $\|m{\mu}\|_{\infty} = p^{-1/2} o 0$ .
- $\mu=(1,0,...,0)$ : Although  $\|\mu\|_2=\|\mu\|_\infty=1$ , using  $\ell_2$  norm needs to aggregate all component sequences in the data therefore it has a much larger noise comparing to  $\ell_\infty$  norm based method.

### Literature Review

He et al. (2021, AoS): focus on mean (covariance) testing.

- Construct  $\ell_q$  norm based tests for even q and  $q = \infty$ .
- Combine tests for different q's to achieve adaptive testing, i.e. the test is powerful against both sparse and dense alternatives.

#### Our method:

- ullet  $\ell_q$  norm based statistics for a general high-dimensional parameter.
- Powerful against both dense and sparse alternative.
- Asymptotically normal and independent under the null and alternative.
- Dynamic programming method to speed up computation.

#### **U-statistic**

A U-statistic is an unbiased estimator of the parameter in interest  $\theta$ , which is defined as an average (across all combinatorial selections of the given size from the full set of observations) of the basic estimator applied to the sub-samples.

Example: Assume that  $X_1,...,X_n \in \mathbb{R}$  are i.i.d..

•  $\theta = \mathbb{E}[X_1]$ . Kernel function: h(x) = x.

$$U_n(X_1,...,X_n) = \binom{n}{1}^{-1} \sum_{i=1}^n h(X_i).$$

•  $\theta = \mathbb{E}^2[X_1]$ . Kernel function:  $h(x_1, x_2) = x_1x_2$ .

$$U_n(X_1,...,X_n) = {n \choose 2}^{-1} \sum_{i,j=1,i\neq j}^n h(X_i,X_j).$$

# U-Statistic Construction (even q)

Consider  $\|\Theta\|_q^q \stackrel{\Delta}{=} \sum_{l=1}^{|\mathcal{L}|} \theta_l^q$  (for one-sample testing).

• Start with symmetric (core) kernel functions  $h=(h_1,...,h_{|\mathcal{L}|})$  (of order r) s.t.

$$\mathbb{E}[h_I(X_1,\ldots,X_r)]=\theta_I.$$

for any  $l = 1, 2, ..., |\mathcal{L}|$ .

Then we have

$$\mathbb{E}[h_I(X_1,\ldots,X_r)\cdots h_I(X_{(q-1)r+1},\ldots,X_{qr})]=\theta_I^q.$$

• Derive an unbiased U-statistic for  $\|\Theta\|_q^q$  (order qr):

$$U_{n,q} = \sum_{l \in \mathcal{L}} (P_{qr}^n)^{-1} \sum_{1 \leq i_1, \dots, i_{qr} \leq n}^* \prod_{c=1}^q h_l(X_{i_{(c-1)r+1}}, \dots, X_{i_{cr}}),$$

where  $\sum^*$  is over all distinct indexes.

### **Examples**

• Test against  $\mathcal{H}_0: \boldsymbol{\mu} := \mathbb{E}[X_i] \equiv \mathbf{0}$ . Consider  $h_l(X_i) = x_{i,l}$ , so

$$U_{n,q} = \sum_{l=1}^{p} (P_q^n)^{-1} \sum_{1 \le i_1, \dots, i_q \le n}^* \prod_{c=1}^q x_{i_c, l}.$$

• Test against  $\mathcal{H}_0$ :  $Var(X_i)$  is a diagonal matrix (assuming  $\mu=0$ ). Consider  $h_l(X_i)=x_{lp_1}x_{lp_2},\ p_1< p_2$ .

### **Examples**

- Spatial sign based testing (Wang et al., 2015, JASA),  $\mathcal{H}_0: \mathbb{E}[X_i / \|X_i\|] = \mathbf{0}.$   $\mathcal{L} = [p]$ , and  $h_l(X_i) = x_{i,l} / \|X_i\|$  with r = 1.
- Testing for linear model coefficients (Zhong and Chen, 2011, JASA),  $Y = X\beta + \varepsilon$ ,  $\mathcal{H}_0 : \beta = \beta_0 (\Leftrightarrow \Theta = \Sigma_X (\beta \beta_0) = 0)$ .  $\mathcal{L} = [p]$ , and

$$h_I((X_1, Y_1), (X_2, Y_2)) = [(X_1 - X_2)(Y_1 - Y_2 - (X_1 - X_2)^T \beta_0)]_I/2$$

with r = 2.

### **Null Distribution**

Regularity conditions:

- Guarantee the dominance of the leading term;
- Guarantee the weak cross-sectional dependence.

### Theorem 1 (Limiting null distribution)

Suppose  $h = (h_1, ..., h_{|\mathcal{L}|})$  is a kernel with order r, under some regularity conditions.

Then we have under the null,

$$[(qs)!]^{-1/2} {r \choose s}^{-q} n^{qs/2} \widetilde{\Sigma}_s^{-1/2}(q) U_{n,q} \xrightarrow{\mathcal{D}} N(0,1), \tag{1}$$

where s is the order of degeneracy of h, and  $\tilde{\Sigma}_s^{-1/2}(q)$  is a technical quantity which needs to be estimated later on. Furthermore, for any finite set  $I \subset \mathbf{Z}_+$ ,  $(U_{n,q})_{q \in I}$  are asymptotically jointly independent.

## Sketch of the proof

1. Decompose  $U_{n,q}$  and find the leading term: Hajék projection and Hoeffding decomposition.

$$U_{n,q} = \binom{r}{s}^q U_{n,q}^{(qs)} [1 + o_p(1)].$$

2.  $U_{n,q}^{(qs)}$  can be further written as a martingale: Martingale central limit theorem.

# An Asymmetric U-statistic with Dynamic Programming

Define

$$D_{q,I}^{M}(m) = \sum_{1 \leq i_{1} < \dots < i_{qr} \leq m} \prod_{c=1}^{q} h_{I}(X_{i_{(c-1)r+1}}, \dots, X_{i_{cr}}),$$

and

$$U_{n,q}^{M} = \binom{n}{qr}^{-1} \sum_{l \in \mathcal{L}} D_{q,l}^{M}(n).$$

We may calculate  $D_{a,l}^M$  recursively by

$$D_{c,l}^{M}(m) = D_{c,l}^{M}(m-1) + D_{c-1,l}^{M}(m-1)h_{l}(X_{m}), \quad m \geq c,$$

with  $D_{c,l}^M(m) = 0$  for  $1 \le m < c$ . Reduce computation from  $O(qn^{qr}|\mathcal{L}|)$  to  $O(qn^r|\mathcal{L}|)$ .

### Variance Estimator

We consider two approaches for estimating the variance.

- Plug-in method (mainly used for  $U_{n,q}$  with r=1): Construct the **consistent** estimator of  $\tilde{\Sigma}_s(q)$ , which has the form of proposed statistic associated with some kernels derived by  $h_l$ .
- **Permutation** based variance estimator (for both  $U_{n,q}$  and  $U_{n,q}^{M}$ ): Find the variance of the statistics computed on permuted data.

# Asymptotic Distribution under Alternative

Define

$$\gamma_{n,q} = n^{qs/2} \widetilde{\Sigma}_s^{-1/2}(q) \|\Theta\|_q^q.$$

### Theorem 2 (Alternative)

Under the same assumption as null, we have

- Suppose  $\gamma_{n,q} \to \infty$ . Then  $n^{qs/2} \widetilde{\Sigma}_s^{-1/2}(q) U_{n,q} \xrightarrow{\mathcal{P}} \infty$  and the power goes to 1.
- Suppose  $\gamma_{n,q} \to 0$ . Then  $U_{n,q}$  has the same asymptotic distribution as null and the power converges to  $\alpha$ .
- Suppose  $\gamma_{n,q} \to \gamma \in (0,\infty)$  (local alternative). We have

$$n^{qs/2}\widetilde{\Sigma}_s^{-1/2}(q)U_{n,q} \stackrel{\mathcal{D}}{\longrightarrow} N\left(\gamma, [(qs)!]^{1/2} {r \choose s}^q\right).$$

# Adaptive Testing

- 1. Conduct tests for a set of q's, i.e.  $q_1, q_2, ..., q_I$ ;
- 2. Obtain p-values from each test:  $p_{q_1},...,p_{q_l}$ ;
- 3. Adaptive test statistic:  $p_{adp} = \min\{p_{q_1}, ..., p_{q_l}\};$
- 4. For a level  $\alpha$  test, reject if  $p_{adp} < 1 (1 \alpha)^{1/I}$ .

**Remark**: In real applications we recommend to combine two tests with different q's to obtain an adaptive test.

Consider testing for linear model  $Y_i = X_i \beta + \varepsilon_i$ .

$$\mathcal{H}_0: oldsymbol{eta} = oldsymbol{0} \quad \textit{v.s.} \quad \mathcal{H}_{\textit{a}}: oldsymbol{eta} 
eq oldsymbol{0}.$$

### Simulation setting:

- $X_i \stackrel{i.i.d.}{\sim} N(0, I_p)$ , independent of  $\varepsilon \stackrel{i.i.d.}{\sim} N(0, 1)$ .
- $\beta = \delta(\mathbf{1}_r, \mathbf{0}_{p-r}).$

| (n,p)     | $\delta$ , $r$ | q=2  | q = 4 | q = 6 | q = 2, 4 | q = 2, 6 |
|-----------|----------------|------|-------|-------|----------|----------|
| (100,50)  | 0,NA           | 5.7  | 6.4   | 3.1   | 6.3      | 4.6      |
|           | 0.4,2          | 50.4 | 72.0  | 56.2  | 74.0     | 67.4     |
|           | 0.05, <i>p</i> | 70.4 | 19.8  | 12.6  | 65.2     | 63.8     |
| (200,100) | 0,NA           | 5.5  | 4.9   | 3.5   | 5.1      | 5.6      |
|           | 0.4,2          | 76.0 | 98.0  | 95.2  | 98.2     | 96.4     |
|           | 0.05, <i>p</i> | 98.8 | 36.8  | 20.4  | 98.2     | 98.2     |

Table 1: Size and power in % for linear model coefficient testing

# Summary

- $\ell_q$ -norm based U-statistic for high dimensional testing.
- Asymptotically normal and independent statistics; adaptive test with high power against both dense and sparse alternatives.
- No explicit constraints on p with encouraging finite sample performance.

#### Future Work

- Study the asymptotic independence of  $\ell_{\infty}$ -based statistic.
- Generalize to non-i.i.d. data.

# Dimension-agnostic Inference

- Motivation:
  - ▶ The calibration of a test depends on the assumption of how *p* scales with *n*, which is usually pre-decided but unverifiable.
  - ► An illustrative example:

| Data             | Possible Scales       | Calibration of a Test                                           |  |
|------------------|-----------------------|-----------------------------------------------------------------|--|
| n = 100 $p = 20$ | p = 20 fixed          | low-dimensional method (fix $p$ while let $n \to \infty$ )      |  |
|                  | p/n = 0.2 fixed       |                                                                 |  |
|                  | $p/n^2 = 0.002$ fixed | high-dimensional method (let $p \to \infty$ as $n \to \infty$ ) |  |
|                  | $p/\sqrt{n}=2$ fixed  |                                                                 |  |

- ▶ Is there a test that works under all dimensional settings?
- Dimension-agnostic (Kim and Ramdas (2020)):
  - ··· the goal of dimension-agnostic inference: developing methods whose validity does not depend on any assumption on p versus n.
- Our method: Dimension-agnostic change point detection

#### Literature Review

#### Existing work:

| Low/fixed-dimensional                  | High-dimensional              |  |
|----------------------------------------|-------------------------------|--|
| Page (1954)                            | Horváth and Hušková (2012)    |  |
| Page (1955)                            | Jirak (2015), Cho (2016)      |  |
| Shao and Zhang (2010)                  | Wang and Samworth (2018)      |  |
| (Review) Aue and Horváth (2013)        | Enikeeva and Harchaoui (2019) |  |
| (Review) Casini and Perron (2019), etc | Wang et al. (2022)            |  |
|                                        | Yu and Chen (2022), etc       |  |

#### Limitations:

- Low/fixed-dimensional setup (p is fixed and small)
  - theory is justified specifically for small/fixed p.
  - o not applicable when p > n.
  - o serious size distortion when *p* is moderate.
- $\blacktriangleright$  High-dimensional setup (p is high and is comparable to or exceeds n)
  - the approximation accuracy may highly rely on the central limit effect from the high dimension.
  - o serious size distortion for data of low or moderate dimension.
  - different methods may require different growth rate of p, different sparsity, etc..

# Change Point Analysis









# Problem Setup

- Data: Given the observations  $\{X_t\}_{t=1}^n \in \mathbb{R}^p$  with both temporal and cross-sectional dependence. We denote  $\mu_t = \mathbb{E}\big[X_t\big]$  for  $t=1,\cdots,n$ .
- Single change point testing:

$$H_0: \ \mu_1 = \cdots = \mu_n \text{ v.s.}$$

$$H_1: \mu_1 = \cdots = \mu_{k_0} \neq \mu_{k_0+1} = \cdots = \mu_n$$

where  $k_0 = n\varepsilon_0$  with  $\varepsilon_0 \in (0,1)$  is an unknown location.

- Applications:
  - Finance: stock return volatility change
  - ▶ Neuroscience: functional magnetic resonance imaging (fMRI) study
  - Credit card fraud detection/monitoring

# Methodology

Step 1: Splitting (and trimming if temporal dependence exists)



- $\varepsilon \in (0,1)$ : the splitting ratio, satisfying that  $\varepsilon_0 \in (\varepsilon, 1-\varepsilon)$ .
- $\eta \in [0, \varepsilon)$ : the trimming ratio.

# Methodology

#### Step 2: Projection



### Proposed Test Statistic

- Test statistic for the single change point (Shao and Zhang (2010)):
  - ▶ For k = 1, 2, ..., N 1, define the CUMSUM statistic as

$$T_n(k) = N^{-1/2} \sum_{t=1}^{k} (Y_t - \bar{Y}_N)$$
 (2)

where  $\bar{Y}_N = \frac{1}{N} \sum_{j=1}^N Y_j$ .

For k = 1, 2, ..., N - 1, define the self-normalizer as

$$V_n(k) = N^{-2} \left( \sum_{t=1}^k \left( S_{1,t} - \frac{t}{k} S_{1,k} \right)^2 + \sum_{t=k+1}^N \left( S_{t,N} - \frac{N-t+1}{N-k} S_{+1,N} \right)^2 \right),$$
(3)

where  $S_{a,b} = \sum_{i=a}^{b} Y_i$  denotes the cumulative sum.

▶ The proposed test statistic is defined as

$$G_n = \sup_{k=1,\dots,N-1} T_n(k) V_n^{-1/2}(k). \tag{4}$$

### Theoretical Results

• Three data generating processes:

| Dimensionality     | Data Generating Process                                                                                                   | Temporal<br>Dependence | Cross-sectional<br>Dependence |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|
| Fixed p            | stationary sequence (DGP1)                                                                                                | weak                   | arbitrary                     |
|                    | Long-run variance $\Omega$ positive definite                                                                              |                        |                               |
|                    | linear process (DGP2)                                                                                                     |                        | weak                          |
| Diverging <i>p</i> | $X_t = \mu_t + \sum_{j=0}^{\infty} a_j \varepsilon_{t-j}, \ \{\varepsilon_t\}_{t \in 0} \stackrel{iid}{\sim} (0, \Gamma)$ | weak                   |                               |
|                    | static factor model (DGP3)                                                                                                |                        |                               |
|                    | $X_t = \mu_t + \Lambda F_t + Z_t, \ \Lambda \in \mathbb{R}^{p \times s}, s \ll p$                                         |                        | strong                        |
|                    | $\{F_t\}_{t=1}^n \in \mathbb{R}^s \sim (0,\Omega)$                                                                        | weak                   |                               |
|                    | $\{Z_t\}_{t=1}^n \in \mathbb{R}^p \sim (0,\Sigma)$ linear process                                                         |                        |                               |
|                    | $\{F_t\}_{t=1}^n \perp \{Z_t\}_{t=1}^n$                                                                                   |                        |                               |

#### Theoretical Results

#### Limiting null distribution

| р                       | $\{X_t\}_{t=1}^n$     | Key assumptions                                               | Limiting Null Distribution |  |
|-------------------------|-----------------------|---------------------------------------------------------------|----------------------------|--|
| Fixed p                 | Stationary (DGP1)     | Functional CLT                                                |                            |  |
| $ ho  ightarrow \infty$ | Linear process (DGP2) | $\ a_j\ \lesssim  ho^j$ for $ ho\in (0,1)$ and $j\geq 0$      |                            |  |
|                         |                       | $\rho^{m_2/4} \ \Gamma\ _F = o\left(\frac{n}{\log(n)}\right)$ | $G_n  ightarrow^d G$       |  |
|                         | Factor model (DGP3)   | Functional CLT for $\{F_t\}_{t=1}^n$                          |                            |  |
|                         | ractor moder (DGI 3)  | $\rho^{m_2/4} \ \Gamma\ _F = o\left(\frac{n}{\log(n)}\right)$ |                            |  |

where 
$$G := \sup_{r \in [0,1]} \left( B(r) - rB(1) \right) V^{-1/2}(r)$$
 with  $\{B(r)\}_{r \in [0,1]}$  denoting the standard Brownian motion, and  $V(r)$  is given by

$$V(r) = \int_0^r \left( B(s) - \frac{s}{r} B(r) \right)^2 ds + \int_r^1 \left( B(1) - B(s) - \frac{1-s}{1-r} \left( B(1) - B(r) \right) \right)^2 ds.$$

### Theoretical Results

• Theoretical asymptotic power against the local alternative

|                                                          | Stationary (DGP1)                  | Linear process (DGP2) (with $A^{(0)} = \sum_{\ell=0}^{\infty} a_{\ell}$ )         | Factor model (DGP3)                                                              |
|----------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $\mathbb{P}\left(G_{n} > G_{1-\alpha}\right) \to \alpha$ | $\sqrt{n}\ \delta\ _2 \to 0$       | $rac{\sqrt{n}\ \delta\ _2}{\ A^{(0)}\Gamma(A^{(0)})^{\top}\ _F^{1/2}} 	o 0$      | $rac{\sqrt{n}\ \delta\ _2}{\max\{\ \Lambda\ ,\ \Gamma\ _F^{1/2}\}} ightarrow 0$ |
| $\mathbb{P}\left(G_{n} > G_{1-\alpha}\right) \to \beta$  | $\sqrt{n}\ \delta\ _2 \to c_1$     | $rac{\sqrt{n}\ \delta\ _2}{\ A^{(0)}\Gamma(A^{(0)})^{	op}\ _F^{1/2}}	o c_2$      | $rac{\sqrt{n}\ \delta\ _2}{\max\{\ \Lambda\ ,\ \Gamma\ _F^{1/2}\}}	o c_3$       |
| $eta \in (lpha, 1)$                                      | $c_1 \in (0,\infty)$               | $c_2 \in (0,\infty)$                                                              | $c_3 \in (0,\infty)$                                                             |
| $\mathbb{P}\left(G_n > G_{1-\alpha}\right) \to 1$        | $\sqrt{n} \ \delta\ _2 \to \infty$ | $\frac{\sqrt{n}\ \delta\ _2}{\ A^{(0)}\Gamma(A^{(0)})^\top\ _F^{1/2}} \to \infty$ | $\frac{\sqrt{n}\ \delta\ _2}{\max\{\ \Lambda\ ,\ \Gamma\ _F^{1/2}\}}\to\infty$   |

### Generalization

- Single dense alternative → Single sparse alternative
  - use a sparse direction for projection
  - theory is wide open
- Single change point → Multiple change points
  - use scanning-based tests by Zhang and Lavitas (2018)
  - done with methodology, theory and simulations

• **DGP**: We generate the data from a *p*-dimensional AR(1) process

$$X_t - \mu_t = \kappa (X_{t-1} - \mu_{t-1}) + \epsilon_t \in \mathbb{R}^p, \qquad 1 \le t \le n,$$

where  $\kappa = 0.7$ ,  $\{\epsilon_t\} \stackrel{iid}{\sim} \mathcal{N}_{\mathcal{P}}(0, \Sigma)$  and  $\Sigma$  takes the following forms:

- AR  $(\Sigma_{i,i} = 0.8^{|i-j|})$
- CS  $(\Sigma_{i,i} = 0.5 + 0.5\mathbf{1}\{i = j\})$
- $\blacktriangleright \mathsf{ID} (\Sigma_{i,i} = \mathbf{1}\{i = i\})$

### • Proposed Method:

- ▶ the test statistic targeting at dense alternatives:  $G_{n,2}$
- the test statistic targeting at sparse alternatives:  $G_{n,\infty}$
- ▶ the Bonferroni test based on  $G_{n,2}$  and  $G_{n,\infty}$ : Bonf
- the splitting ratio  $\varepsilon = 0.1$ , the trimming ratio  $\eta = 0.04$

#### Comparison Methods:

- ▶ Wang et al. (2022), denoted by  $T(\eta_0)$  where  $\eta_0$  is a trimming parameter selected from  $\{0, 0.01, 0.02, 0.05, 0.1\}$
- Significance level  $\alpha = 0.05$
- 5000 Monte-Carlo replicates



Figure 1: Empirical size curves versus the logarithm of p against the single change point alternative

#### Dense change point:

▶ 
$$n = 200$$
,  $k = \lfloor n/2 \rfloor + 1$  and  $\mu_t = \begin{cases} (0, \dots, 0)^\top, & 1 \leq t < k \\ c(1, \dots, 1)^\top / \sqrt{p}, & k \leq t \leq n \end{cases}$ 

### • Sparse change point:

▶ 
$$n = 200, k = \lfloor n/2 \rfloor + 1 \text{ and } \mu_t = \left\{ \begin{array}{ll} (0, \dots, 0)^\top, & 1 \leq t < k \\ c(0, 0, 1, 0, \dots, 0)^\top, & k \leq t \leq n \end{array} \right.$$

#### Parameters:

▶ The splitting ratio  $\varepsilon = 0.1$ , the trimming ratio  $\eta = 0.04$ .



Figure 2: Power curves (size-adjusted) with a single dense change point



Figure 3: Power curves (size-adjusted) with a single sparse change point

# Summary and Future Work

#### Summary:

- Dimension-agnostic testing for (weakly dependent) time series is feasible and natural since the sample split is unique for given proportions.
- Agnostic to both the dimensionality and the magnitude of cross-sectional dependence.

#### • Future work:

- Dimension-agnostic segmentation.
- Dimension-agnostic testing for other parameters, e.g., covariance matrix, distribution, etc.

# Thank you!

- Aue, A. and Horváth, L. (2013). Structural breaks in time series. *Journal of Time Series Analysis*, 34(1):1–16.
- Bai, Z., Jiang, D., Yao, J.-F., and Zheng, S. (2009). Corrections to LRT on large-dimensional covariance matrix by RMT. *The Annals of Statistics*, pages 3822–3840.
- Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: by an example of a two sample problem. *Statistica Sinica*, 6(2):311–329.
- Cai, T., Liu, W., and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. *Journal of the American Statistical Association*, 108(501):265–277.
- Cai, T. T. and Jiang, T. (2011). Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices. *The Annals of Statistics*, 39(3):1496–1525.
- Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, pages 349–372.

- Casini, A. and Perron, P. (2019). Structural breaks in time series. Oxford Research Encyclopedia of Economics and Finance.
- Chen, S. X. and Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *The Annals of Statistics*, 38(2):808–835.
- Chen, S. X., Zhang, L.-X., and Zhong, P.-S. (2010). Tests for high-dimensional covariance matrices. *Journal of the American Statistical Association*, 105(490):810–819.
- Cho, H. (2016). Change-point detection in panel data via double cusum statistic. *Electronic Journal of Statistics*, 10(2):2000–2038.
- Drton, M., Han, F., and Shi, H. (2020). High-dimensional consistent independence testing with maxima of rank correlations. *The Annals of Statistics*, 48(6):3206–3227.
- Enikeeva, F. and Harchaoui, Z. (2019). High-dimensional change-point detection under sparse alternatives. *The Annals of Statistics*, 47(4):2051–2079.

- Goeman, J. J., Van De Geer, S. A., and Van Houwelingen, H. C. (2006). Testing against a high dimensional alternative. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(3):477–493.
- Gregory, K. B., Carroll, R. J., Baladandayuthapani, V., and Lahiri, S. N. (2015). A two-sample test for equality of means in high dimension. Journal of the American Statistical Association, 110(510):837–849.
- Hall, P. and Jin, J. (2010). Innovated higher criticism for detecting sparse signals in correlated noise. *The Annals of Statistics*, 38(3):1686–1732.
- Han, F., Chen, S., and Liu, H. (2017). Distribution-free tests of independence in high dimensions. *Biometrika*, 104(4):813–828.
- Horváth, L. and Hušková, M. (2012). Change-point detection in panel data. *Journal of Time Series Analysis*, 33(4):631–648.
- Jiang, T. (2004). The asymptotic distributions of the largest entries of sample correlation matrices. The Annals of Applied Probability, 14(2):865–880.
- Jirak, M. (2015). Uniform change point tests in high dimension. *The Annals of Statistics*, 43(6):2451–2483.

- Kim, I. and Ramdas, A. (2020). Dimension-agnostic inference. arXiv preprint arXiv:2011.05068.
- Ledoit, O. and Wolf, M. (2002). Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. *The Annals of Statistics*, 30(4):1081–1102.
- Leung, D. and Drton, M. (2018). Testing independence in high dimensions with sums of rank correlations. *The Annals of Statistics*, 46(1):280–307.
- Li, J., Chen, S. X., et al. (2012). Two sample tests for high-dimensional covariance matrices. *The Annals of Statistics*, 40(2):908–940.
- Liu, W.-D., Lin, Z., and Shao, Q.-M. (2008). The asymptotic distribution and berry–esseen bound of a new test for independence in high dimension with an application to stochastic optimization. *The Annals of Applied Probability*, 18(6):2337–2366.
- Page, E. S. (1954). Continuous inspection schemes. *Biometrika*, 41(1/2):100-115.
- Page, E. S. (1955). A test for a change in a parameter occurring at an unknown point. *Biometrika*, 42(3/4):523–527.

- Shao, Q.-M. and Zhou, W.-X. (2014). Necessary and sufficient conditions for the asymptotic distributions of coherence of ultra-high dimensional random matrices. *The Annals of Probability*, 42(2):623–648.
- Shao, X. and Zhang, X. (2010). Testing for change points in time series. Journal of the American Statistical Association, 105(491):1228–1240.
- Srivastava, M. S. and Du, M. (2008). A test for the mean vector with fewer observations than the dimension. *Journal of Multivariate Analysis*, 99(3):386–402.
- Srivastava, R., Li, P., and Ruppert, D. (2016). Raptt: An exact two-sample test in high dimensions using random projections. *Journal of Computational and Graphical Statistics*, 25(3):954–970.
- Wang, R., Zhu, C., Volgushev, S., and Shao, X. (2022). Inference for change points in high-dimensional data via selfnormalization. *The Annals of Statistics*, 50(2):781–806.
- Wang, T. and Samworth, R. J. (2018). High dimensional change point estimation via sparse projection. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), 80(1):57–83.

- Yu, M. and Chen, X. (2022). A robust bootstrap change point test for high-dimensional location parameter. *Electronic Journal of Statistics*, 16(1):1096–1152.
- Zhang, T. and Lavitas, L. (2018). Unsupervised self-normalized change-point testing for time series. *Journal of the American Statistical Association*, 113:637–648.
- Zhong, P.-S. and Chen, S. X. (2011). Tests for high-dimensional regression coefficients with factorial designs. *Journal of the American Statistical Association*, 106(493):260–274.