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Markov chain Monte Carlo sampling

Markov chain Monte Carlo (MCMC) algorithms can generate samples
from a target distribution 7w by simulating a Markov chain with stationary

distribution 7.

Example: Metropolis-Hastings (MH) algorithms, Gibbs samplers.
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Markov chain Monte Carlo sampling

Markov chain Monte Carlo (MCMC) algorithms can generate samples
from a target distribution 7 by simulating a Markov chain with stationary
distribution .

Example: Metropolis-Hastings (MH) algorithms, Gibbs samplers.

Widely used in Bayesian statistics, since posterior distributions often
involve intractable normalizing constants.
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Markov chain Monte Carlo sampling

Sampling and optimization are closely related: Dalalyan [2017a], Ma et al.
[2019], Talwar [2019].
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Example 1: variable selection

Consider the linear regression model

y=2p+e,

where y,e € R", 3 € RP and Z is an n x p design matrix. We assume
most entries of 3 are zero, and our goal is to identify

v={1<k<p: B, #0}.
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Example 1: variable selection

Consider the linear regression model
Yy=2ZB+e,

where y,e € R", 3 € RP and Z is an n x p design matrix. We assume
most entries of 3 are zero, and our goal is to identify

v={1<k<p: B, #0}.

Search space

The search space is 211} which has cardinality 27. J
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Example 1: variable selection

In high-dimensional settings, sparsity constraints need to be imposed, but
usually the search space still grows super-polynomially in p.
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Example 1: variable selection

In high-dimensional settings, sparsity constraints need to be imposed, but
usually the search space still grows super-polynomially in p.

Local algorithms

Most sampling algorithms for variable selection are “local”: the next move

is selected from a “small” set of neighboring states which has cardinality
polynomial in p.
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Example 1: variable selection

In high-dimensional settings, sparsity constraints need to be imposed, but
usually the search space still grows super-polynomially in p.

Local algorithms

Most sampling algorithms for variable selection are “local”: the next move
is selected from a “small” set of neighboring states which has cardinality
polynomial in p.

Example: a typical search path in variable selection.

{1’ 2} add covariate 4 {17 2, 4} swap covariate 2 with 3, {1’ 3’ 4}

delete covariate 4 delete covariate 1
—— {1,3} ———— {3}
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Example 1: variable selection

o eveues ) [

GWAS Catalog

The NHGRI-EBI Catalog of human genome-wide association studies

Examples: breast carcinoma, 1s7329174, Yao, 2q37.1, HBS1L, 6:16000000-25000000

Heritability estimation

In addition to variable selection, we also want to estimate Var(e)/Var(y).
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Example 2: structure learning

DAG model

A p-variate directed acyclic graph (DAG) encodes the conditional
independence (Cl) relations among p node variables.

Structure learning

Learn the underlying DAG model of a p-variate probability distribution
from n i.i.d. observations, Zy, Z>, ..., Z,; each Z; € RP.
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Example 2: structure learning

DAG model

A p-variate directed acyclic graph (DAG) encodes the conditional
independence (Cl) relations among p node variables.

Structure learning

Learn the underlying DAG model of a p-variate probability distribution
from n i.i.d. observations, Z1, Zs, ..., Z,; each Z; € RP.

Search space

The collection of all p-vertex labeled DAGs; cardinality is
super-exponential in p.

Quan Zhou Research Summary August 30, 2023 7/21



Quan Zhou

Example 2: structure learning

For two variables, there are 3 possible DAGs.

=
DAG 1 @
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Example 3: estimation of PDE parameters

Suppose that we have i.i.d. observations (z1,91), (22,¥2), - - -, (2n, Yn)
generated from

vi = f(2;0) + €,

where f is the solution to a partial differential equation (PDE)
parameterized by 6. Our goal is to estimate 8 € RP.
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Example 3: estimation of PDE parameters

Suppose that we have i.i.d. observations (z1,91), (22,¥2), - - -, (2n, Yn)
generated from

vi = f(2;0) + €,

where f is the solution to a partial differential equation (PDE)
parameterized by 6. Our goal is to estimate 8 € RP.

Search space

The parameter space RP. Though it is continuous, gradient-based
sampling methods cannot be applied.
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Metropolis-Hastings (MH) algorithms

Let X be a finite state space on which each x has NV neighbors. We write
y ~ z if y is a neighbor of x; assume x ~ y whenever y ~ x.
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Metropolis-Hastings (MH) algorithms

Let X be a finite state space on which each x has NV neighbors. We write
y ~ x if y is a neighbor of x; assume = ~ y whenever y ~ .
Random walk MH algorithm targeting m
An iteration at state x:
© Draw a neighbor y randomly with equal probability.
@ Accept y with probability

ofe.y) = min {1, 70

m(z)

@ If y is accepted, we move to y; otherwise, stay at x.
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Each dot represents a state, and the height of the blue bar indicates 7(-).
At point xg, the best move is xg — x4.
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At point zg, a random walk proposal proposes z4 with probability 1/6.
We may use a locally informed proposal to increase this probability.
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Informed MH

Choose a non-decreasing function h: (0,00) — (0, c0).

Locally informed MH algorithm targeting 7

An iteration at state x:
@ Draw y ~ x with probability proportional to h(w(y)/m(x)).
@ Accept y with probability

o )k (%) Zp(z)
ap(z,y) = min | 1, r(2)h (58) Zu(y) |
where Zp(x) = Z b (7;((3;,)

@ If y is accepted, we move to y; otherwise, stay at x.
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Remarks on informed proposals

@ Similar ideas are used in many MCMC methods [Titsias and Yau,
2017, Zanella and Roberts, 2019, Zanella, 2020, Griffin et al., 2021]
and some non-MCMC methods [Hans et al., 2007, Shin et al., 2018].

@ To implement an informed proposal at x, we need to evaluate 7(y)
for each y ~ x; this can be parallelized.

o Difficult to control the acceptance probability.

@ Informed MH algorithms can mix even more slowly than RWMH.
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Question 1: Do we have theoretical guarantees?
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Question 1: Do we have theoretical guarantees?

Define mixing time by Thix = max, min{t: ||P!(x,-) — 7||prv < 1/4}.

Under a “unimodal condition” on 7 (precise statements given later),
-1

e For random walk MH, the mixing time is O(N log7_; ) where

> Tmin = minzeX W(I),
» N is the neighborhood cardinality.
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Question 1: Do we have theoretical guarantees?

Define mixing time by Thix = max, min{t: ||P!(x,-) — 7||prv < 1/4}.

Under a “unimodal condition” on 7 (precise statements given later),

e For random walk MH, the mixing time is O(N log WI;iln) where
> Tmin = minzGX W(.’E),
» N is the neighborhood cardinality.

o There exists an informed MH with mixing time O(log 71 ).

min

See Zhou et al. [2022], Zhou and Chang [2023] for general results and the
analysis of variable selection and structure learning.
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Question 2: Do we have to use MH schemes?
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Question 2: Do we have to use MH schemes?

Recall informed proposals draw y ~ z with probability o< h(7(y)/m(z)).
Now we assume h is a balancing function.

Balancing function [Zanella, 2020]
We say h: (0,00) — (0,00) is a balancing function if

h(u) =uwh(l/u), VYu>D0.

Examples: h(u) = 1+ u, h(u) = min{1, u}, h(u) = /u.
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Question 2: Do we have to use MH schemes?

Recall informed proposals draw y ~ z with probability o< h(7(y)/m(z)).
Now we assume h is a balancing function.

Balancing function [Zanella, 2020]
We say h: (0,00) — (0,00) is a balancing function if

h(u) =uwh(l/u), VYu>D0.

Examples: h(u) = 1+ u, h(u) = min{1, u}, h(u) = /u.

Our solution is very simple: always accept the informed proposal and use
importance sampling to correct for the bias.
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Question 2: Do we have to use MH schemes?

Informed importance tempering (11T)

Choose a balancing function h. An iteration at state z:
@ Calculate h(n(y)/m(x)) for every y ~ .
@ Calculate Zp,(z) = >, h(m(y)/m(2)).
@ Assign to x importance weight 1/Zj(x).

@ Move to Zpext with probability proportional to h(7(Zpext)/m(x)).
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Question 2: Do we have to use MH schemes?

Informed importance tempering (11T)

Choose a balancing function h. An iteration at state z:
@ Calculate h(n(y)/m(x)) for every y ~ .
@ Calculate Zp,(z) = >, h(m(y)/m(2)).
@ Assign to x importance weight 1/Zj(x).

@ Move to Zpext with probability proportional to h(7(Zpext)/m(x)).

This generalizes the tempered Gibbs sampler of Zanella and Roberts
[2019], an MCMC scheme for variable selection that can be seen as IIT
with balancing function h(u) = 1 + u.
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Question 3: How to choose the informed proposal?
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Question 3: How to choose the informed proposal?

In Zhou and Smith [2022], we show that:

o IIT with hA(u) = 1 + u converges “extremely fast” (see our paper for
definition).
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Question 3: How to choose the informed proposal?

In Zhou and Smith [2022], we show that:
o IIT with hA(u) = 1 + u converges “extremely fast” (see our paper for
definition).
e However, h(u) =1+ u is too aggressive and can be very inefficient
for multimodal targets.
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Question 3: How to choose the informed proposal?

In Zhou and Smith [2022], we show that:
o IIT with hA(u) = 1 + u converges “extremely fast” (see our paper for
definition).
@ However, h(u) = 1+ u is too aggressive and can be very inefficient
for multimodal targets.
@ h(u) = +/u performs well in a wider range of settings.
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Question 4: Is importance tempering a general technique?
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Question 4: Is importance tempering a general technique?

In Li et al. [2023], we propose the following IIT variants:
@ |IT schemes that do not require posterior evaluation of all neighbors;
@ integration of IIT and simulated tempering algorithm;
@ integration of IIT and pseudo-marginal methods;

@ importance-tempered multiple-try algorithm, which is applicable to
general state spaces.
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Question 4: Is importance tempering a general technique?

In Li et al. [2023], we propose the following IIT variants:
@ |IT schemes that do not require posterior evaluation of all neighbors;
@ integration of IIT and simulated tempering algorithm;
@ integration of IIT and pseudo-marginal methods;

@ importance-tempered multiple-try algorithm, which is applicable to
general state spaces.

IIT schemes appear to always converge faster than their MH counterparts
in our numerical studies.
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Future research projects

1. Developing importance tempering-based MCMC algorithms for variable
selection, graphical models, PDE learning, heritability estimation,
stochastic neural networks, etc. Potential challenges:

o realistic, flexible and hierarchical Bayesian modeling
efficient, high-quality implementation

approximating informed proposals

more sophisticated MCMC schemes

experience and knowledge about competing methods

handling complex real data

interdisciplinary knowledge
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Future research projects

2. Online estimation of MCMC convergence, especially for problems with
finite state spaces.

@ Mostly computational, but knowledge about Markov chain mixing will
be useful.

@ Methodology for IIT samplers need to be further developed.
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Future research projects

2. Online estimation of MCMC convergence, especially for problems with
finite state spaces.

@ Mostly computational, but knowledge about Markov chain mixing will
be useful.

@ Methodology for IIT samplers need to be further developed.

3. Adaptive MCMC methods for multimodal targets.
@ How to choose state space partition?
@ How to allocate computational budget?
@ How to learn the optimal temperature?

@ How to learn the optimal informed proposal scheme?
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Skills to learn

Linear algebra, especially numerical linear algebra
Programming: Cpp, python, etc.

Statistical simulation

MCMC theory and methodology

High-dimensional theory and methodology for Bayesian statistics
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Thank you!
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