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1 Introduction

The title of this article is (essentially) the same as the famous paper Basu (2011b). Basu

often opined that counterexamples were the best way to learn limitations of theories or

methods and I have followed his directive in my own teaching. In fact, my PhD advisor

– Larry Brown – once told me that he thought my philosophy of statistics was simply the

intersection of those concepts and approaches that survived counterexamples. A number of

the counterexamples that affected my philosophy of statistics are collected in this article.

2 Two counterexamples of Basu, to set the stage

Many of Basu’s writings focused on survey sampling or the concept of ancillarity. Here are

two of his counterexamples, the first from Basu (2011a) and the second from Basu (2011b).

The description in the first example is essentially a direct quote from Basu (2011a), so as to

also give a sense of the wonderful writing style of Basu.

Elephant Counterexample: “The circus owner is planning to ship his 50 adult elephants

and so he needs a rough estimate of the total weight of the elephants. As weighing an

elephant is a cumbersome process, the owner wants to estimate the total weight by weighing

just one elephant. Which elephant should he weigh? So the owner looks back on his records

and discovers a list of the elephants weights taken 3 years ago. He finds that 3 years ago

Sambo the middle-sized elephant was the average (in weight) elephant in his herd. He

checks with the elephant trainer who reassures him (the owner) that Sambo may still be

considered to be the average elephant in the herd. Therefore, the owner plans to weigh

Sambo and take 50y (where y is the present weight of Sambo) as an estimate of the total
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weight Y = Y1 + . . . + Y50 of elephants. But the circus statistician is horrified when he

learns the owners purposive samplings plan. “How can you get an unbiased estimate of

Y this way?” protests the statistician. So, together they work out a compromise sampling

plan. With the help of a table of random numbers they devise a plan that allots a selection

probability of 99/100 to Sambo and equal selection probabilities of 1/4900 to each of the

other 49 elephants. Naturally, Sambo is selected and the owner is happy. “How are you

going to estimate Y ?”, asks the statistician. “Why? The estimate ought to be 50y of

course,” says the owner. “Oh! No! That cannot possibly be right,” says the statistician,

“I recently read an article in the Annals of Mathematical Statistics where it is proved that

the Horvitz-Thompson estimator is the unique hyperadmissible estimator in the class of all

generalized polynomial unbiased estimators.” “What is the Horvitz-Thompson estimate in

this case?” asks the owner, duly impressed. “Since the selection probability for Sambo in our

plan was 99/100,” says the statistician, “the proper estimate of Y is 100
99
y ≈ y and not 50y.”

[The Horvitz-Thompson estimator weights the observations by the inverse of the probability

of which that unit was selected.] “And, how would you have estimated Y ,” inquires the

incredulous owner, “if our sampling plan made us select, say, the big elephant Jumbo?”

“According to what I understand of the Horvitz- Thompson estimation method,” says the

unhappy statistician, “the proper estimate of Y would then have been 4900y, where y is

Jumbo’s weight.” That is how the statistician lost his circus job (and perhaps became a

teacher of statistics!)”

Over the years, many who have commented about this example state that it is highly

unrealistic, and is not the type of situation that the Horvitz-Thompson estimator was de-

signed for. But Basu was very clear that he was not criticizing practical use of the Horvitz-

Thompson estimator (although he did point out potential problems in its use when using

probability proportional to size sampling — Example 4 in Basu (2011a)). Rather, he was

showing that the usual logic used to justify the Horvitz-Thompson estimator — namely that

it is unbiased in terms of the unit selection probabilities — is faulty logic, since using the

same logic in the elephant example led to an absurdity. So he was simply pointing out that

different justifications were needed for the Horvitz-Thompson estimator.

Ancillarity Counterexample: Let {(xi, yi), i = 1, 2, . . . , n}, be iid observations whose

joint distribution is bivariate normal with zero means, unit variances and correlation ρ,

which is the parameter of interest. Note that x = (x1, . . . , xn) and y = (y1, . . . , yn) are each

a vector of independent N(0, 1) random variables, so that their distributions do not depend

on ρ; they are thus each an ancillary statistic. The ancillary method in statistics proposes

conditioning on an ancillary statistic, and then analyzing the remaining data. Conditioning

on x, the yi are independently N(ρxi, 1−ρ2), so one might estimate ρ by
∑

xiyi/
∑

x2
i , since

it is clearly an unbiased estimate of ρ. On the other hand, one could instead condition on y,
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leading to the unbiased estimate
∑

xiyi/
∑

y2i . Thus utilizing ancillarity does not necessarily

lead to a unique answer, and these estimates are likely suboptimal. (Usual estimators of ρ

in this situation are based on the sample correlation r =
∑

xiyi/
√∑

x2
i

∑
y2i .)

Again, Basu was not trying to say that ancillarity is a useless concept; he was actually

quite supportive of its typical uses in practice (although he preferred just taking a Bayesian

approach, for which one does not need the concept of ancillarity). He was, instead, sim-

ply pointing out that one cannot build a complete theory of statistical inference based on

ancillarity, something that many have tried to do over the years.

Many of the examples in this paper have the same flavor as these two examples of Basu’s;

they often look at rather extreme situations to make a point about logical difficulties with

various statistical approaches or methodologies. Some of the examples do go further, how-

ever, and call into question actual statistical practice; this distinction will be highlighted

when relevant.

3 Conditioning counterexamples, the Likelihood Prin-

ciple and the Stopping Rule Principle

Many believe that the biggest difference between various statistical approaches is that some

(e.g. the Bayesian approach) condition on the actual observed data, while others (e.g. the

traditional frequentist approach) include averages over all data. My first introduction to

conditioning was the famous example of David Cox (Cox, 1958).

Example 1. A variant of the Cox example: Each day an employee arrives at work to

perform measurements, and is given an unbiased instrument to make the measurements. Half

of the available instruments are relatively new and have a variance of 1, while the others are

older and have variance 3. The employee is assigned each type randomly but knows whether

the instrument is old or new.

Conditional inference: For each measurement, report variance 1 or 3, depending on the

variance of the instrument actually being used.

Unconditional inference: The overall variance of the assays is 1
2
× 1 + 1

2
× 3 = 2, so report a

variance of 2 regardless of the instrument actually being used.

It seems unreasonable to perform the unconditional inference here, especially because the

conditional inference is also frequentist, in that the conditional reports are just averaging over

the low variance measurements or over the high variance measurements, respectively. Be-

cause the conditional inferences are also frequentist, many dismiss this example as not being

3



relevant to statistics. However, the virtually identical issue can arise within an experiment,

as demonstrated in the following example, from Berger and Wolpert (1988).

Example 2. Pedagogical conditioning example: Two observations, X1 and X2, are

taken, where

Xi =

 θ + 1 with probability 1/2

θ − 1 with probability 1/2.

Consider the following confidence set for the unknown θ ∈ (−∞,∞):

C(X1, X2) =

 the point {1
2
(X1 +X2)} if X1 ̸= X2

the point {X1 − 1} if X1 = X2.

The frequentist coverage of this confidence set can easily be seen to be

Pθ(C(X1, X2) contains θ) = 0.75 .

This is a silly report once the data is at hand. If x1 ̸= x2, then
1
2
(x1 + x2) is equal to θ, so

the confidence set is then actually 100% accurate. If x1 = x2, we do not know whether θ

equals the data’s common value plus one or their common value minus one, and each of these

possibilities is equally likely to have occurred. Thus intuition suggests that the confidence

interval is then only 50% accurate. It is not incorrect to say that the confidence interval has

75% coverage, but it is much more scientifically useful to report 100% or 50%, depending on

the data. And this conditional report can, again, be given a fully frequentist justification,

as averaging over the sets of data {(x1, x2) : x1 ̸= x2} and {(x1, x2) : x1 = x2}, respectively.

The clear message from this example (and the Cox) example is that frequentists cannot

ignore the need to involve conditioning on the data. This was already well known, as the

need to condition on ancillary statistics. (Indeed, T = x1 − x2 in the pedagogical example

is an ancillary statistic, and conditioning on T produces the correct answers.) But it is still

often necessary to condition even when an ancillary statistic is not available, as we will see

in many of the examples herein.

The need to condition, in general, was strongly reinforced by the Likelihood Principle (LP)

and Stopping Rule Principle (SRP) and their justifications. The LP is actually the more

general of the two and has the best logical justification, but we begin with the SRP because

it is supported by more fun counterexamples.

To introduce the SRP, suppose an experiment E is conducted, which consists of observing

data x having density f(x | θ), where θ is the unknown parameters of the statistical model.

Let xobs denote the data actually observed.

Stopping Rule Principle (SRP): The reasons for stopping experimentation have no bear-

ing on the information about θ arising from E and xobs.
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Serious discussion of the SRP goes back at least to Barnard (1949), who wondered why

thoughts in the experimenter’s head concerning why to stop an experiment should affect how

we analyze the actual data that were obtained. Here are two amusing example of this, the

first a variant of a well known example and the second from Berger and Berry (1988).

Example 3. Thoughts in heads 1: Two scientists are collaborating and have a joint

graduate student who is conducting an experiment. They both watch her as she collects the

data. The observations x1, x2, . . . are i.i.d. Bernoulli(θ) random variables and the scientists

are testing H0 : θ = 0.5 versus H1 : θ > 0.5. After the ninth observation, they simultaneously

say “That’s enough,” and tell the student to stop collecting data. The final data consists of

9 successes and 3 failures.

Each scientist separately analyzes the data and, when getting back together, are surprised

to find that they reached different conclusions. Scientist 1 says that there is not significant

evidence againstH0 at the 0.05 level, while Scientist 2 claims that there is significant evidence

at the 0.05 level. How did this disagreement happen?

Scientist 1’s analysis: He had planned to take just 12 observations. Thus the number of

successes, x, is Binomial(12, θ), and the p-value for the observed x = 9 is

p = Pr(X ≥ 9 | θ = 0.5) =
12∑
x=9

(
12

x

)
0.5x(1− 0.5)(12−x) = .0730 . (1)

Scientist 2’s analysis: She had planned to take observations until observing 3 failures. Thus,

for her, x has a Negative-binomial(3, θ) distribution, and the p-value is

p = Pr(X ≥ 9 | θ = 0.5) =
∞∑
x=9

(
x+ 2

x

)
0.5x(1− 0.5)3 = .0338 . (2)

Thus the two scientists had different stopping rules, but these were just thoughts in their

heads; these thoughts had no effect on the experiment that was actually conducted or the

data that was obtained. The SRP says that such thoughts should not matter.

Example 4. Thoughts in heads 2: A scientist comes to a statistician with 100 ob-

servations, assumed to be independent and from a N(θ, 1) distribution and desires to test

H0 : θ = 0 versus H1 : θ ̸= 0. The data average is x̄n = 0.2, so the standardized test statistic

is z = |
√
nx̄n − 0| = 2. It is tempting to simply conclude that there is significant evidence

against H0 at the 0.05 level, but a careful classical statistician should ask the scientist “Why

did you cease experimentation after 100 observations?”; in other words “what was your stop-

ping rule?” If the scientist replies, “I decided to take an initial batch of 100 observations,”

there would seem to be no problem, but the words initial batch should give pause. Indeed, one

should then (from a classical perspective) ask the followup question “What would you have
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done had the first 100 observations not yielded significance?” Suppose the scientist replies:

“I would then have taken another batch of 100 observations.” This reply does not completely

specify a stopping rule, but the scientist might agree that he was implicitly considering a

procedure of the form:

� take 100 observations;

� if
√
100 x̄100 > k then stop and reject H0,

� but if
√
100 x̄100 < k then take another 100 observations and reject if

√
200 x̄200 > k.

For this procedure to have level α = 0.05, k must be chosen to be 2.18 (Pocock, 1977).

Since the actual data had
√
100 x̄100 = 2 < 2.18, the scientist would not be able to conclude

significance, and hence would have to take the next 100 observations. Again, the conclusion

is being affected simply by thoughts in the scientist’s head.

This can be carried further. Suppose the scientist duly obtains another 100 observations

and brings the data back to the statistician. Suppose
√
200 x̄200 = 2.2 > 2.18 so significance

has apparently been obtained. But, again, the statistician should ask the scientist what

would have happened if the result had not been significant. (The statistician should have

really asked this question earlier, completely nailing down the stopping rule that was in use

from the beginning, but the story is more amusing this way.) Suppose the scientist says, “If

my grant renewal is approved, I would then take another 100 observations but, if the grant

is rejected, I would have no more funds and would have to stop the experiment.” The advice

of the classical statistician must then be: “We cannot make a conclusion until we find out

the outcome of your grant renewal; if it is not renewed, you can claim significant evidence

against H0 while, if it is renewed, you cannot claim significance and must take another 100

observations.”

More general than the SRP is the Likehood Principle (LP), which roughly states that one

must always condition on only the actual data at hand.

Likelihood Principle (LP): The information about θ, arising from just E and xobs, is

contained in the observed likelihood function L(θ) = f(xobs | θ). Furthermore, if two observed

likelihood functions are proportional (for the same θ), then they contain the same information

about θ.

Example 3 continued. For Scientist 1 the observed likelihood function was

L1(θ) =

(
12

9

)
θ9(1− θ)3 ;

for Scientist 2 it was

L2(θ) =

(
11

9

)
θ9(1− θ)3 .
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The first part of the LP states that one should look no further than these functions to

perform inference; in particular the involvement of other possible data in (1) and (2) violates

the LP. Furthermore, since L1(θ) ∝ L2(θ), the LP also says that the evidence about θ from

either viewpoint is the same and, hence, that the two scientists should not have arrived at

different conclusions.

The LP became prominent with the remarkable paper Birnbaum (1962), which deduced

the LP as a logical consequence of the conditionality principle (essentially the Cox example,

that one should base inference on the measuring instrument actually used) and the suffi-

ciency principle, which states that a sufficient statistic for θ in E contains all information

about θ that is available from the experiment. At the time of Birnbaum’s paper, almost

everyone agreed with the conditionality principle and the sufficiency principle, but did not

agree with the LP; so it was a shock that the LP is a direct consequence of the other two

principles. There are numerous qualifications relevant to the LP, and various generalizations

and implications. (One such implication is the SRP, since ‘stopping rules’ affect L(θ) only

by multiplicative constants). Many of these (and the history of the LP) are summarized in

Berger and Wolpert (1988).

4 Other counterexamples relevant to classical statistics

The list of ‘counterexamples’ in classical statistics is enormous, but many are just examples

where a particular method (such as maximum liklihood estimation) fails. Such examples are

useful in reminding us of the limitations of the various methods, but they do not impact

philosophical understanding; the examples in this section do have such impact.

Example 5. Shrinkage estimation: Independently, xi ∼ N(θi, 1), i = 1, 2, . . . , p, and it

is desired to estimate θ = (θ1, θ2, . . . , θp) with an estimator δ(x) = (δ1(x), δ2(x), . . . , δp(x)),

where x = (x1, x2, . . . , xp), under the expected loss

E[L(δ,θ)] = E

[ p∑
i=1

(δi(x)− θi)
2

]
,

where the expectation is over the distribution of x.

Until 1961, the estimator δ(x) = x was almost universally considered to be fine. It is

the maximum likelihood estimator, the best unbiased estimator, the fiducial estimator, the

invariant estimator and the objective Bayesian estimator. James and Stein (1961) shocked

statistics by showing that the estimator

δJS(x) =

(
1− (p− 2)

|x|2

)
x
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has smaller expected loss than δ(x) = x if p ≥ 3, with significantly smaller expected loss

near θ = 0.

Besides upending standard thinking, this led to philosophical quagmires, such as the fol-

lowing, which has not really been resolved to this day. Suppose you are a statistician working

for a company, and are given three problems to solve by different divisions in the company:

� observe X1 ∼ N(θ1, 1) and estimate θ1, a measure of the reliability of a production

process,

� observe X2 ∼ N(θ2, 1) and estimate θ2, a measure of the health of employees,

� observe X3 ∼ N(θ3, 1) and estimate θ3, a measure of the financial return in one de-

partment.

You consult with superiors and these problems are judged to be of equal importance to the

company, and sum of squares error loss is appropriate. Should you use the James-Stein

estimator to analyze these problems, i.e. involve all of the xi in the estimation of each θj?

While unintended, this conundrum gave considerable impetus to the hierarchical Bayes

movement (see Example 12), because hiearchical Bayes is all about shrinkage for problems

that are related (not completely disparate problems as above).

Example 6: Conditioning in testing: Suppose it is desired to test H0 : θ = −1 versus

H1 : θ = 1, based on x ∼ N(θ, 1
4
). The rejection region x ≥ 0 results in a test with

error probabilities (type I and type II) of 0.0228. If x = 0 is observed, the classical testing

conclusion would be that H0 is rejected, and that the error probability is α = 0.0228.

(Alternatively, one could state that the p-value is 0.0228.) Common sense, however, says

that x = 0 completely fails to discriminate between the two hypotheses, since the observation

is equally likely to arise from either hypothesis.

On the other hand, suppose that x = 1 is observed. Then, in classical frequentist testing,

one can still only claim that the error in rejection is α = 0.0228, even though x = 1 is four

standard deviations from H0, which seemingly implies much stronger evidence against H0.

(One could, alternatively report that the p-value is 0.000032, but we will see that this is very

misleadingly small.)

Example 7. Psychokinesis and the Jeffreys-Lindley paradox: The Jeffreys-Lindley

Paradox (Jeffreys (1961); Lindley (1957)) is one of the most famous counterexamples in

statistics (although it is not at all clear whether it is a counterexample against frequentist

or Bayesian statistics or both). I know of only one practical problem where the paradox has

manifested itself, so it will be fun to begin with that example.
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Jahn et al. (1987) reported an experiment involving a search for a psychokinetic effect and

analyzed the data with p-values as indicated below, finding highly significant evidence of

an effect. This was reanalyzed using objective Bayesian testing in Jefferys (1990) (objective

in the sense that the existence and nonexistence of psychokinesis were both given prior

probability of 1
2
) and showed strong evidence for the null hypothesis of no psychokinetic

effect. This is the essence of the Jeffreys-Lindley paradox, that classical and Bayesian testing

can yield dramatically different conclusions.

The experiment involved generating particles that passed through a quantum gate, with

the particles emerging as either type 0 or type 1; quantum theory says that each should

happen with probability 1/2. Experimental subjects were asked to try to mentally affect

the outcome (presumably through some type of psychokinetic effect), either increasing the

number of 0’s or the number of 1’s. Thus we have Bernoulli(θ) random variables, where

θ is the probability of getting a 0, and are testing H0 : θ = 1/2 versus H1 : θ ̸= 1/2.

For convenience in the analysis here, we will assume the Bernoulli trials are independent,

although dependent analyses were also carried out in the above papers.

The Jeffreys-Lindley paradox happens as the sample size n → ∞ and the sample size in

this experiment was n = 104, 490, 000, qualifying as almost infinite. The number of 1′s was

x = 52, 263, 471, so that the proportion of 1′s was θ̂ = 0.5000177. The two-sided p-value

for this data is p = 0.0003, leading the original authors to declare that there was highly

significant evidence in favor of there being a psychokinetic effect.

The objective Bayesian analysis that was performed in Jefferys (1990) assigned prior prob-

abilities Pr(H0) = Pr(H1) = 0.5 to the hypotheses and a uniform prior π(θ) = 1 as the

density of θ under H1. Assigning the alternative hypothesis such a large prior probability

does seem odd, and a subjective Bayesian might well assign much less weight to the alter-

native but, to make the Jeffreys-Lindley point, equal probabilities is best. Choice of the

uniform density for θ will be discussed later.

Letting Bin(x | θ) denote the binomial density of x, the objective posterior probability of

H0 is

Pr(H0 | x) =
Bin(x | 1

2)Pr(H0)

Bin(x | 1
2)Pr(H0) + Pr(H1)

∫ 1
0 Bin(x | θ)π(θ)dθ

= 0.92 ,

after plugging in the value of x and utilizing the objective priors. Thus the objective Bayesian

analysis indicates that the evidence is strong in favor of H0, while the classical analysis

indicates that the evidence is strong in favor of H1, the essence of the Jeffreys-Lindley

paradox.

Both conclusions cannot be right and so we must look for the source of the discrepancy;

indeed, there are issues with both analyses. Looking first at the Bayesian analysis, one cannot

reasonably give H1 higher prior probability than 0.5, but the choice of a uniform prior on θ is
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not really reasonable; if psychokinesis leading to θ near zero or one existed, we probably would

have seen it long before. More reasonable would be to choose π(θ) = Uniform(0.5−r, 0.5+r)

for some small r, indicating that we do not expect to see a huge effect. Here are some

interesting values of r and the resulting posterior probabilities of H0:

r 0 0.00011 0.00024 0.0020 0.25 0.5

Pr(H0 | x, r) 0.5 0.050 0.0063 0.050 0.86 0.92

Table 1: Possible choices of the Uniform(0.5−r, 0.5+r) prior for θ and the resulting posterior

probabilities of the null hypothesis.

� Note that, as r → 0, Pr(H0 | x, r) → 0.5, so that the priors with very small r do not

provide evidence against the null.

� Bayesians feel that P (H0 | x, r) ≤ 0.05 is strong evidence against H0 and this does

happen for r ∈ (0.00011, 0.0020). However, r must be specified before seeing the data

(a subjective Bayesian analysis is being done, and one must pre-specify the prior in

subjective Bayes) and this is a very small target interval to hit. So it is quite unlikely

that a pre-chosen r would have led to strong evidence against H0.

� The choice r = 0.00024 is the choice that gives the smallest value of P (H0 | x, r), and
this would, indeed, correspond to very strong evidence against the null. Thus 0.0063

is the smallest error that it is possible to state in rejecting the null. That the p-value

is .0063/.0003 = 21 times smaller, reveals how much a p-value can underestimate the

actual error, a message reinforced by the following example.

Example 8. A counterexample to interpreting p-values as error rates: We already

saw that p-values cannot be interpreted as error rates in the previous example, where the

lowest possible error rate in rejection was 21 times larger than the p-value. Here is a more

general result from Vovk (1993).

Theorem. A proper p-value, p(·), satisfies H0 : p(X) ∼ Uniform(0, 1) (the definition of a

proper p-value). Thus consider testing this hypothesis versus H1 : p ∼ Beta(1, b), b > 1.

Then, with B01 denoting the Bayes factor of H0 to H1 and f(p |Hi) denoting the density of

p under Hi,

B01 =
f(p |H0)

f(p |H1)
=

1

b(1− p)(b−1)
≥ −e p log(p) for p < e−1 . (3)

This follows from calculus: simply minimize the Bayes factor over b > 1.

Note that p will virtually always have a decreasing density under H1 (small p-values

should have larger probability under H1); hence the choice in Vovk (1993) of the decreasing
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Beta(1, b), b > 1, class of priors. This class can be generalized to the class of all priors

such that Y = − log(p) has a non-increasing failure rate (Sellke et al., 2001), a natural non-

parametric condition that covers most cases of interest, providing considerable additional

support for the lower bound in (3).

An analogous bound can be given on the conditional Type I frequentist error

α(p) ≥ (1 + [−e p log(p)]−1)−1.

Thus, for a reported p, compute the lower bound above and interpret it as the frequentist

Type 1 error probability, conditional on a minimal partition that contains the data (see

Berger et al. (1994) for a full explanation).

p .2 .1 .05 .01 .005 .001 .0001 .00001

−ep log(p) .879 .629 .409 .123 .072 .0189 .0025 .00031

α(p) .465 .385 .289 .111 .067 .0184 .0025 .00031

Table 2: p-values and the associated lowest possible Bayes factors and conditional frequentist

error probabilities.

So p-values are much too small (often orders of magnitude too small) to have any interpre-

tation as error probabilities.

Example 9. A counterexample to non-statisticians understanding p-values: A

common retort to assertions such as those in Example 8 is that everyone knows that a p-

value is not an error probability, and so the difference is irrelevant. An interesting survey,

relevant to this retort, was conducted 50 years ago and reported in Diamond and Forrester

(1983). We quote from the article to report the survey and the results.

“What would you conclude if a properly conducted, randomized clinical trial of a treatment

was reported to have resulted in a beneficial response (p < 0.05)?

1. Having obtained the observed response, the chances are less than 5% that the therapy

is not effective.

2. The chances are less than 5% of not having obtained the observed response if the

therapy is effective.

3. The chances are less than 5% of having obtained the observed response if the therapy

is not effective.

4. None of the above.

11



We asked this question of 24 physicians in the Cedars-Sinai Medical Center Division of

Cardiology. Half of the physicians answered incorrectly, and all had difficulty distinguishing

the subtle differences between the choices. These differences, however, are crucial to any

physician who wishes to understand better the clinical impact of the medical literature.”

In the article, there then ensued a very good and enlightening discussion (aimed at physi-

cians) trying to explain the differences between p-values and Bayesian and frequentist error

probabilities. At the end of this discussion came the statement: “The correct answer to our

test question, then, is 3.” Of course, the actual correct answer to the question is: The chances

are less than 5% of having obtained the observed response or any more extreme response

if the therapy is not effective. Thus even the survey designers, who were out to show that

their colleagues did not understand p-values, themselves did not understand p-values (nor,

presumably, did the reviewers of the article).

5 Counterexamples relevant to subjective Bayesianism

I am a proponent of subjective Bayesian analysis when it is feasible and, especially, when

it is absolutely necessary, as in Andrews et al. (1993), which reports a massive subjective

elicitation performed for unknowns in a problem where no data about the unknowns was

available! I am, however, primarily an advocate of objective Bayesian analysis; here are some

examples indicating why this is so.

The folklore in Bayesian statistics is that, if someone is asked to give their prior estimate

of an unknown quantity and assess the likely error in their estimate (say by stating the

variance of their estimate), they will underestimate the error by at least a factor of 3. The

next example reports an actual study of this.

Example 10. Underestimating variances involving Cepheid variable stars. In

Barnes III et al. (2003), astronomical data was analyzed with the goal of determining the

distance to Cepheid variable stars. As is standard in astronomy, the observations x1, . . . , xn

were assumed to be independent and distributed as N(x |µ, σ2
i ), with the variances σ2

i being

specified; i.e., each observation has its own known variance, arising from extensive knowledge

of the astronomical measuring instruments used and all the systematic errors arising from

interference by the atmosphere. In processing the raw data (photon counts) to produce the

xi and σ2
i , many unknowns are encountered, but the astronomers feel that they know the

distributions of the unknowns and can use them to compute the final σ2
i .

A small part of Barnes III et al. (2003) was devoted to studying the accuracy of these

elicitations, by modeling the observations xi as, instead, being N(xi |µ, τ 2σ2
i ) random vari-

ables, with τ 2 unknown and assigned the objective prior π(τ 2) = 1/τ 2. Unsurprisingly, the
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posterior distribution of τ 2 was centered at about 2 in one study and around 4 in another,

indicating that the elicited σ2
i were, indeed, on the order of three times too small.

These estimated variances arose from some of the most careful subjective elicitations in

science, and yet they prominently underestimated the error. What is one to think about

the many casual elicitations being done in subjective Bayesian analysis? (To be fair, good

subjective Bayesian training points out this common problem, and encourages elicitors to

inflate their variances.)

Example 11. Hidden (bad) impacts of proper multivariate prior distributions

– priors for covariance matrices: In subjective Bayesian analysis, it is common to use

conjugate prior distributions, both for the ease in eliciting the parameters of the distribution

and for the ease of ensuing computations. But conjugate priors can have hidden features

that are detrimental. Here is one example.

Consider i.i.d. multivariate normal data (x1, . . . ,xn), where each k-dimensional column

vector xi ∼ Nk(x |0,Σ), with Σ unknown. The sufficient statistic for Σ is S =
∑n

i=1 xi x
′
i.

By far the most commonly used subjective prior for Σ is the Inverse Wishart prior, for

subjectively specified a and b,

π(Σ) ∝ |Σ|−a/2 exp{−1
2tr[bΣ

−1]}. (4)

To see the concern with these priors, consider the spectral decomposition Σ = ODO
′
,

with O being an orthogonal matrix and D being a diagonal matrix with diagonal entries

d1 > d2 > · · · > dk. Changing variables to O and D yields (see Yang and Berger (1994))

π(Σ) dΣ ∝ |D|−a/2 exp{−1
2tr[bD

−1]}
∏
i<j

(di − dj) · I[d1>···>dk] dD dO,

where I[d1>···>dk] denotes the indicator function on the given set.

Everything on the RHS of this equation seems fine, except for the term
∏

i<j(di − dj).

Indeed, this term is near zero when any eigenvalues are close; it follows that the conjugate

priors try to force apart the eigenvalues of the covariance matrix.

This behavior is contrary to usual prior beliefs. Often in modelling multivariate normal

data, one is deciding between choosing an exchangeable covariance structure (and hence

equal eigenvalues) or a more general structure. When one is deciding whether or not to

assume equal eigenvalues, it seems clearly inappropriate to use a prior distribution that

gives no weight to equal eigenvalues, instead forcing them apart. Using such priors can also

have a detrimental effect on inference, as was shown in Berger et al. (2020)

Objective Bayesian analysis can expose problems like this and allow for development of

better subjective priors. Indeed the problem with the eigenvalues was first found in Yang and
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Berger (1994), during a search for the reference prior for Σ. The ‘fix’ found therein (simply

divide the prior by
∏

i<j(di − dj)), was then used in Berger et al. (2020) for development of

better subjective priors for covariance matrices. Use of the Inverse Wishart distribution as

a prior for Σ has also been criticized by others; see, for instance, ?.

6 A counterexample relevant to empirical Bayes

In Bayesian hierarchical modeling, there are usually unknown hyperparameters. Empirical

Bayes analysis estimates these hyperparameters from the data, while hierarchical Bayesian

analysis assigns them a prior distribution (usually objective) and performs a full Bayesian

analysis. The following basic example illustrates why we have a strong preference for objec-

tive hierarchical Bayesian analysis. Note that the same issues apply to other approaches, such

as random effects modeling, best linear unbiased prediction, variance component modeling,

and multilevel modeling (which are just difference names for the same thing).

Example 12. Failure of empirical Bayes in a basic normal hierarchical model. For

i = 1, . . . , p, suppose xi ∼ N(· | µi, 1) and µi ∼ N(· | ξ, τ 2). The marginal density of xi given

(ξ, τ 2) is found by integrating out the µi from the joint density of the xi and µi, resulting in

xi ∼ N(· | ξ, 1 + τ 2). The marginal density for the full data, x = (x1, . . . , xp), is then

m(x | ξ, τ 2) =
p∏

i=1

1√
2π(1 + τ 2)

e

[
− (xi−ξ)2

2(1+τ2)

]
∝ 1

(1 + τ 2)p/2
exp

{
−p(x̄− ξ)2 + s2

2(1 + τ 2)

}
, (5)

where x̄ is the mean of the xi and s2 =
∑
(xi − x̄)2.

Empirical Bayes analysis proceeds by estimating the hyperparamters ξ and τ 2 from this

marginal liklihood, usually using either maximum likelihood or unbiased estimation. The

obvious estimate of ξ is ξ̂ = x̄, which is both the mle and the unbiased estimate. For τ 2, the

unbiased estimate can be shown to be τ̂ 2U = [s2/(p− 1)− 1], and the mle is

τ̂ 2mle = max

{
0,

s2

p
− 1

}

(replace ξ by x̄ in (5) and then maximize the resulting expression over τ 2). The unbiased

estimate of τ 2 has the unfortunate property that it can be negative, which would be rather

ridiculous to report. Hence we focus on use of the mle, which has become the standard

empirical Bayes estimate (although see Morris (1983)).

Even use of τ̂ 2mle is problematical. This is particularly clear if s2/p < 1, in which case

the mle would be τ̂ 2mle = 0. While a value of s2/p < 1 is somewhat unusual here (if, for
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instance, p = 5 and τ 2 = 1, then Pr(s2/5 < 1) = 0.264), it is quite common in complicated

hierarchical models to have at least one mle variance estimate equal to 0.

The problem with τ̂ 2mle = 0 is most clearly seen by looking at the marginal likelihood for

τ 2 in such a situation. This marginal likelihood is given by integrating (5) over ξ, yielding

p(s2 | τ 2) ∝ (τ 2 + 1)−(p−1)/2 exp
{
− s2

2(τ 2 + 1)

}
. (6)

Figure 1 graphs this marginal likelihood in the ‘borderline’ situation when p = 5 and s2 = 5.

This marginal likelihood of τ 2 is mostly decreasing away from 0, but not quickly and clearly

indicates that there is considerable uncertainty as to the value of τ 2, even though the mle

was τ̂ 2mle = 0. (The mle for the integrated likelihood (6) is slightly bigger than 0, reflecting

the folklore that, in doing empirical Bayes analysis, it is better to use mle’s from marginal

likelihoods.)

0 5 10 15 20

0.02

0.04

0.06

0.08

τ2

Figure 1: Marginal likelihood function of τ2 when p = 5 and s2 = 5 is observed.

It can be dangerous in statistical analysis to simply replace unknown parameters by their

estimates, and this is particularly true in hierarchical settings. In the above example, for

instance, setting τ 2 to 0 is equivalent to stating that all the µi are exactly equal to each other.

This is clearly a terrible conclusion in light of the fact that there is actually great uncertainty

about τ 2, as reflected in Figure 1. And, since 0 is at the boundary of the parameter space,

it is also difficult to utilize likelihood or frequentist techniques to incorporate uncertainty

about τ 2 into the analysis. Thus we strongly prefer full objective hierarchical Bayes analysis

to empirical Bayesian analysis.
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7 Counterexamples relevant to objective Bayes

Example 13. Counterexample to the view that use of improper priors is unsound.

This is a counterexample to this commonly held view, but it would be more accurate to state

that it is an argument for the validity of using certain (but not all) improper priors.

Reality is bounded, so one can argue that the real parameter space should, say, be some

compact set Θ0. Often, however, one only knows that the bounds are quite large, making it

difficult to ascertain which Θ0 to use. It is then tempting to pass to an unbounded space Θ

(if available) – that contains all the possible Θ0 – and do the analysis there. This is justified

if one can show that essentially the same answer is obtained using Θ, as from using any

large compact Θ0.

Thus consider a parametric model, p(x |θ), an improper prior π(θ), θ ∈ Θ, and an

increasing compact sequence {Θi} of subsets of the parameter space whose union is Θ and

for which the restricted priors πi(θ) ∝ π(θ)1Θi
(θ) are all proper. We seek to show that

the corresponding sequence of restricted posteriors {πi(θ |x)}∞i=1 on {Θi} converges to the

unrestricted posterior π(θ |x), which ensures that the restricted posteriors for large compact

sets are close to the unrestricted posterior.

The method of convergence we consider is a version of Kullback-Liebler convergence. In

particular we say that {πi(θ |x)}∞i=1 is KL* convergent to π(θ |x) if

lim
i→∞

∫
πi(θ |x) log πi(θ |x)

π(θ |x)
dx = 0 .

Here is a lemma from Berger et al. (2009).

Lemma: {πi(θ |x)}∞i=1 is KL* convergent to π(θ |x) if
∫
p(x |θ)π(θ) < ∞ almost surely.

The condition in the Lemma is simply the condition that the formal posterior arising from the

improper prior exists. Hence, one simply takes the improper prior, computes the posterior as

one would with a proper prior and, if this posterior exists, all is well; the resulting posterior is

known to be a good approximation to the restricted posterior arising from any large compact

set. The Lemma should also alleviate concerns that something weird might happen when

using Bayes formula with improper priors.

7.1 Counterexamples to use of the multivariate Jeffreys-rule prior

The most commonly used prior in objective Bayesian analysis is the Jeffreys-rule prior (Jef-

freys, 1961), given by

πJ(θ) = |I(θ)|1/2 , (7)
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where I(θ) is the Fisher information matrix. If the parameter is one-dimensional, this is a

great objective prior and is viewed as the optimal prior from almost every objective Bayesian

perspective.

The multiparameter case is a difference story; even Jeffreys himself did not like the outcome

of using this prior for more than one parameter. For instance, if θ = (µ, σ), a normal mean

and standard deviation, (7) gives πJ(µ, σ) = 1/σ2, whereas the standard objective prior is

π(µ, σ) = 1/σ; indeed Jeffreys preferred the latter, and it is called the ‘independence Jeffreys

prior.’

We know of no situation in which use of the Jeffreys-rule prior is optimal in multiparameter

problems. The two counterexamples in this subsection indicate just how bad the use of the

Jeffreys-rule prior can be.

Example 14. Inconsistency in the Neyman-Scott problem. Two observations are

independently obtained from each of m normal distributions; the normal distributions have

differing means µi but a common variance σ2. Thus x = {xij}, i = 1, . . . ,m, j = 1, 2, has

density

p(x |µ1, . . . , µm, σ
2} =

m∏
i=1

2∏
j=1

N(xij |µi, σ
2) .

Of interest is inference about the common variance σ2. This problem was introduced by

Neyman and Scott (1948), who showed that use of maximum likelihood estimation here

results in an inconsistent estimate as m → ∞. The counterexample has since become a test

for all new methods of inference.

The Fisher information matrix can be shown to be

I(µ1, . . . , µm, σ
2) =



2/σ2 0 . . . 0 0

0 2/σ2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 2/σ2 0

0 0 . . . 0 m/σ4


, (8)

so that the Jeffreys-rule prior in (7) is

π(µ1, . . . , µm, σ
2) = |I(µ1, . . . , µm, σ

2)|−1/2 = |m 2mσ−(2m+4)|−1/2 ∝ σ−(m+2) .

The posterior density for this prior can be shown to be

πJ(µ1, . . . , µm, σ
2 |x) ∝ 1

σ3m+2
exp

{
− 1

σ2

[
S2

2
+
∑m

i=1
(xi − µi)

2

]}
, (9)
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where xi = (xi1 + xi2)/2 and S2 =
∑m

i=1

∑2
j=1(xij − xi)

2. Integrating out the nuisance pa-

rameters µi results in the marginal posterior density of σ2 (the parameter of interest)

πJ(σ2 |x) ∝ 1

σ2m+2
exp

{
− S2

2σ2

}
,

which is recognizable as the InverseGamma(m,S2/2) distribution. This distribution has

mean

E[σ2 |x] = S2

(2m− 2)
.

This estimator is inconsistent. The easiest way to establish this is to switch to the fre-

quentist persective, letting σ2
T denote the true value of the variance and noting that the

frequentist mean of S2 is Ex[S2 |σ2
T ] = mσ2

T . By the law of large numbers, S2/m thus

converges to σ2
T , as m increases. It follows that, for the Jeffreys-rule prior,

lim
m→∞

E[σ2 |x] = lim
m→∞

S2

2m− 2
=

σ2
T

2
,

which is only half the true value. It can also be shown that the posterior variance goes to 0

as m grows, so the posterior distribution concentrates, as is usual, but concentrates around

a completely wrong value. The fact that the Jeffreys-rule prior gets worse and worse here, as

the dimension grows, is a clear warning concerning its use for higher dimensional problems.

The correct objective prior to use here is the Jeffreys independence prior πIJ(µ1, . . . , µm, σ
2) ∝

σ−2. This leads to a posterior density of σ2 with mean S2/(m − 2), which converges to σ2
T

as m increases.

Example 15. Underdispersion in the Multinomial Problem. Suppose x = (x1, . . . , xm)

is Multinomial(x |n, θ1, . . . , θm) (suppressing the (m + 1)st cell count, xm+1 = n−∑m
j=1 xj,

and cell probability, θm+1 = 1 − ∑m
j=1 θj, as they are determined by the other counts and

probabilities) so that

p(x |n, θ1, . . . , θm) =
n!∏m

j=1 xj!(n− Σxj)!

m∏
j=1

θ
xj

j (1− Σθj)
n−Σxj .

Computation of the Fisher information matrix yields

I(θ1, . . . , θm) =
n

1− Σθj


P 1+θ1−Σθj

θ1
1 . . . 1

1 1+θ2−Σθj
θ2

. . . 1

. . . . . . . . . . . .

1 1 . . . 1+θm−Σθj
θm

 .

Computation of the determinant of this matrix yields

|I(θ1, . . . , θm)| = nm
[(

1−
∑m

j=1
θj

)∏m

j=1
θj

]−1

.
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Thus, the Jeffreys-rule prior in (7) is

πJ(θ1, . . . , θm) ∝
(
1−

∑m

j=1
θj

)−1/2 m∏
j=1

θ
−1/2
j , (10)

which is recognizable as the (proper) Dirichlet((θ1, . . . , θm) | (12 , . . . , 12)) distribution. Multi-

plying this by the multinomial likelihood shows that the corresponding posterior distribution

is Dirichlet((θ1, . . . , θm) | (x1 +
1
2 , . . . , xm + 1

2)).

That this is a problematical posterior can be seen by considering the case where the sample

size n is small relative to the number of classes m+1. As a specific example, suppose n = 3

and m = 1000, with x240 = 2, x876 = 1, and all the other xi = 0. The posterior means

resulting from using the Jeffreys-rule prior can be shown to be

E[θi |x] =
xi + 1/2∑m

j=1[xj + 1/2]
=

xi + 1/2

n+m/2
=

xi + 1/2

503
,

so that E[θ240 |x] = 2.5/503 = 0.005 and E[θ876 |x] = 1.5/503 = 0.003, with the cells having

no observations yielding E[θi |x] = 0.5/503 = 0.001. Particularly troubling is that cell 240

has two of the three observations, but only has posterior probability of 0.005.

The problem is that the Jeffreys-rule prior effectively added 1/2 to the 998 zero cells,

making them – in concert – more important than the cells with data! That the Jeffreys-rule

prior can encode much more information than is present in the data is not desirable for an

objective analysis; a good objective prior needs to be much more disperse.

An alternative objective prior that is sometimes considered is the uniform prior, but this is

even worse than the Jeffreys-rule prior since it adds 1 to each cell. If the total sample size n

is large compared to the cell count m+ 1, either the Jeffreys-rule or uniform prior will yield

more reasonable answers. But a good objective prior should be able to handle any data.

The prior that adds 0 to each cell is the improper prior
∏m

j=1 θ
−1
j , but this cannot be

used because it results in an improper posterior if any cell has a zero entry. The sim-

plest (of several increasingly better) objective priors suggested in Berger et al. (2015) is

the Dirichlet((θ1, . . . , θm) | ( 1
m
, . . . , 1

m
)) distribution. This only adds a total information of 1

through the prior, which is quite reasonable. The posterior means for the cells are then

E[θi |x] =
xi + 1/m∑m

j=1[xj + 1/m]
=

xi + 1/m

n+ 1
=

xi + 1/1000

4
.

The specific cell probabilities are then E[θ240 |x] = 0.500 and E[θ876 |x] = 0.025, with

the cells having no observations yielding E[θi |x] = 0.00025. These results seem much

more reasonable than those that arose from the Jeffreys-rule prior. Also note that the

recommended objective prior will work equally well when n is large.
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7.2 Counterexamples in objective Bayesian testing

Example 16. The Bartlett counterexample to use of diffuse priors in testing. In

estimation problems, objective priors can be diffuse and even improper. Problems involving

testing and model uncertainty can sometimes utilize diffuse or improper priors, but more

often need to utilize non-diffuse proper priors. Here is the basic version of the Bartlett

(Bartlett, 1957) counterexample.

Suppose x ∼ N(· | θ, 1), denoting the corresponding density p(x | θ). In estimation of the

mean θ, it is fine to use the improper objective estimation prior π(θ) = c, where c is any

constant, since the posterior density of θ is

π(θ |x) = p(x | θ) c∫
p(x | θ) c dθ

= p(x | θ) ,

i.e., the constants cancel.

Consider, instead, testing H0 : θ = 0 versus H1 : θ ̸= 0. The Bayes factor, if π(θ) = c were

used, is

B01(c) =
p(x | 0)∫∞

−∞ p(x | θ) c dθ
=

p(x | 0)
c

,

and, hence, depends on the arbitrary choice of c.

Even worse than use of improper priors here is use of vague proper priors, such as the

Uniform(−K,K) prior for θ, with K large, although many Bayesians erroneously view the

use of vague proper priors to be better than the use of improper priors. But, for this prior,

the Bayes factor becomes

B01(K) =
p(x | 0)∫K

−K p(x | θ)(2K)−1dθ
≈ 2K p(x | 0)∫∞

−∞ p(x | θ)dθ
= 2K p(x | 0) ,

which depends dramatically on the arbitrary choice of K. Indeed, the Bartlett paradox sends

K to infinity (as is often done with vague proper priors), concluding that the Bayes factor

infinitely favors the null hypothesis regardless of the data.

Example 17. A counterexample to the maximum a-posteriori model (MAP)

being optimal. The Hald regression data set, that has been used by several authors (see

Burnham and Anderson (1998) for references), has n = 13 observations y that are regressed

on four possible regressors: x1, x2, x3, x4, the full model being

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ϵ, ϵ ∼ N(0, σ2) ,

with σ2 unknown. The models under consideration are all of the models defined by subsets

of regressors, with the intercept being present in all models. For instance,

Model {1, 3, 4} denotes the model y = β0 + β1x1 + β3x3 + β4x4 + ϵ .
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Table 3: Posterior model probabilities and corresponding excess predictive risks for the Hald

regression example.

Model Pr(Mi | y) ∆R(Mi)

null 0.000003 2652.44

{1} 0.000012 1207.04

{2} 0.000026 854.85

{3} 0.000002 1864.41

{4} 0.000058 838.20

{1,2} 0.275484 8.19

{1,3} 0.000006 1174.14

{1,4} 0.107798 29.73

Model Pr(Mi | y) ∆R(Mi)

{2,3} 0.000229 353.72

{2,4} 0.000018 821.15

{3,4} 0.003785 118.59

{1,2,3} 0.170990 1.21

{1,2,4} 0.190720 0.18

{1,3,4} 0.159959 1.71

{2,3,4} 0.041323 20.42

{1,2,3,4} 0.049587 0.47

Table 3 reports the results of a model uncertainty analysis using the encompassing AIBF

approach of Berger and Pericchi (1996). The posterior probability of each model is reported,

along with ‘excess predictive risk’, ∆R(Mi), which is the difference between the predictive

risk of the model and the predictive risk of the optimal model averaged prediction, assuming

squared error predictive loss.

The posterior inclusion probabilities here (the overall probability that a variable is in a

model) are

p1 =
∑

j:x1∈Mj
Pr(Mj | y) = 0.95, p2 =

∑
j:x2∈Mj

Pr(Mj | y) = 0.73 ,

p3 =
∑

j:x3∈Mj
Pr(Mj | y) = 0.43, p4 =

∑
j:x4∈Mj

Pr(Mj | y) = 0.55. (11)

Thus x1 appears to be the most important regressor.

The maximum a-posterior model here is {1, 2}, but it is not the model with smallest

excess predictive risk. That honor goes to model {1, 2, 4}, which is what is called the median

probability model, defined as the model consisting of those regressors whose posterior inclusion

probability is at least 1/2. Indeed, the median probability model is very often the optimal

single predictive model; see Barbieri and Berger (2004) for conditions under which this is

guaranteed to be so.

8 Counterexamples to the inadequacy of probability

There is an enormous literature claiming that ordinary probability theory is inadequate and

needs to be augmented. Part of this literature is showing that people do not necessarily

process probabilities well; while important to note, this does not mean we should replace
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probability theory with something else. The following counterexamples are really coun-

terexamples to counterexamples that attack probability theory; they thus defend probability

theory and recommend only the most modest augmentations, to deal with issues involving

precise versus imprecise probability.

Example 18. Counterexample to treating epistemic and aleatoric probabilities

differently: Aleatoric probability is probability that arises from some random mechanism,

while epistemic probability is probability used to describe uncertainty about some quantity

that is not known, but is not random. Thus a subjective Bayesian assigning a prior distri-

bution to an unknown – but fixed – quantity would be an example of epistemic probability.

Nearly everyone would agree with the use of probability to deal with random mechanisms,

but many are uneasy with using probability to deal with epistemic uncertainty. For instance,

in dealing with nuclear reactors, there are many fixed but unknown parameters that are

constrained to lie in intervals; a Bayesian would usually assess a probability distribution

over the intervals, whereas nuclear regulators usually do a worst-case analysis, based on

seeing how the quantity of interest varies as the unknown parameters vary over the intervals.

One common misunderstanding that arises is due to use of too-simplistic probabilistic

thinking. Consider the following two scenarios involving missile (or car airbag) production:

� Scenario 1: A production process for missiles randomly produces a faulty missile 10%

of the time. So any particular missile has (aleatoric) probability of 0.1 of failing.

� Scenario 2: There is a 10% chance that the design of the missile is flawed, in which

case all the missiles will fail. Any particular missile still has an (epistemic) probability

of 0.1 of failing.

It is often argued in such situations that, while the probabilities are both 0.1, these are

two very different situations that require one to think differently about the two types of

probability. The problem, however, is in not using a thorough probabilistic analysis. In

Scenario 1, each missile independently has probability 0.1 of failing; this also defines the

Bernoulli joint probability distribution of all missile failures. In Scenario 2, however, the

joint probability distribution of missile failures is that they will all fail with probability 0.1

and will all work with probability 0.9. These are very different joint probability distributions.

The two situations are also very different in terms of learning about reality. There is

nothing to be learned in Scenario 1, while testing one missile in Scenario 2 will reveal whether

all the missiles will work or all will fail.

Thus ordinary probability is capable of handling either aleatoric or epistemic probabil-

ity. Whether or not one chooses to use aleatoric probabilities, as in the nuclear regulator

situation, is a different question.
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Example 19. Counterexample to the notion that Bayesian analysis requires a sin-

gle prior distribution: This perception is reinforced by many of the axiomatic approaches

to uncertainty, which state that a unique assessed probability distribution is needed to avoid

problems like sure loss in betting. Perhaps unfortunately, this is not reality; probability dis-

tributions are themselves typically quite uncertain and there exist many efforts to deal with

this uncertainty. Arguably the most useful formal approach is to attempt specification of the

class of probability distributions that is compatible with beliefs or scientific understanding

(such a class is often called a credal set – Levi (1980)), and then study the range of answers

that follow from consideration of the class. This approach has many names, one of them

being ‘global robust Bayesian analysis’ (Insua and Ruggeri (2000)). There is no space herein

to discuss this in depth, but it is useful to present one example of this.

The Big Surprise: Suppose application of a statistical formalism leads to a predictive prob-

ability distribution p(y) for reality y > 0 (perhaps mean climate temperature in 2040), but

we assess that there is a 20% chance of the ‘Big Surprise,’ (e.g., that climate models are

missing a big source of carbon sequestration that will kick in at higher temperatures). While

this cannot be represented by a single probability distribution, it can be represented by the

class of probability distributions

P = {0.2q(y) + 0.8p(y); q(y) being any distribution} .

There are many ways in which useful conclusions can be reached, even if only knowing P .

In a decision problem, for instance, one might find that a certain decision is fine for all

distributions in P . Or one can make potentially useful statements such as

E[y] ≤ 0.8
∫

yp(y) dy .

Example 20: Counterexample to the notion that Bayesian analysis cannot deal

with imprecise probabilities. The Bayesian paradigm is typically phrased in terms of

precise probabilities, e.g., the probability of rain tomorrow is 0.4 (i.e., 0.4000000000 . . .).

This is clearly not realistic. If a weather forecaster says 0.4, they perhaps mean that the

probability of rain tomorrow is between 0.35 and 0.45. So one should rationally think in

terms of eliciting intervals of probabilities.

The same is true for unknown input or calibration parameters. In climate models, for in-

stance, there are many unknown parameters that are typically constrained to lie in intervals

by the scientists. In high-energy physics, there are many unknown parameters, called ‘sys-

tematic effects,’ which are also generally constrained to lie in intervals. It is typical in both

climate modeling and high-energy physics to deal with this problem by assigning uniform

prior distributions to the unknowns over their intervals.
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To illustrate these possibilities and provide a background for discussion, we consider the

reliability example, in which a system contains m independent components, with component

i having probability pi of properly functioning over some time period of interest. Suppose

that the system functions only if all components function, so the probability that the system

functions is P =
∏m

i=1 pi. A particularly important example of this occurs in the nuclear

regulatory industry, where P is the probability of a reactor malfunction.

Suppose it is possible to restrict the pi to intervals, namely pi ∈ (ai, bi), i = 1, . . . ,m, with

the ai and bi specified. The classical analysis of this situation (used in the nuclear regulatory

context for example) is to observe that, clearly, P ∈ (
∏

i ai,
∏

i bi), i.e., the lower and upper

endpoints of this interval are the worst-case and best-case scenarios. This conclusion is

certainly a true statement but, unless m is very small or the intervals are very tight (billions

of dollars are spent in the nuclear regulatory industry to make sure this is so), the range will

typically be useless, a statement such as P ∈ (0.4, 0.99).

In other disciplines (e.g., high-energy physics and climate modelling), the standard analysis

is to assign uniform prior distributions to pi in each interval. One then computes the density

of P using probability theory, and reports, say, a 99% confidence set for P arising from this

density. This will give a much smaller interval for P than using pointwise range analysis,

e.g. P ∈ (0.93, 0.98).

These are two extreme approaches; the first uses the crudest possible analysis, and the

second specifies a single prior distribution for the unknowns. Robust Bayesian analysis can

adjudicate between these extremes, by forming classes of prior probability distributions over

the intervals, and then finding the range of answers corresponding to varying these priors

over the classes.

In forming the class of priors, typically reasonable assumptions are that values of pi near

the midpoints of the intervals are more likely than values near the endpoints and that beliefs

about the pi are typically symmetric and unimodal in the intervals. One then considers all

the probability distributions compatible with these beliefs, and finds the range of Bayesian

answers over this class. Interestingly, it can be shown that the extremal 99% confidence

interval over this class of prior probabilities happens to be exactly the same as that arising

from use of the uniform priors over the intervals, providing strong support for the second

approach above.
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