
Lectures on Nonparametric Bayesian Statistics

Notes for the course by Bas Kleijn, Aad van der Vaart, Harry van Zanten
(Text partly extracted from a forthcoming book by S. Ghosal and A. van der Vaart)

version 4-12-2012

UNDER CONSTRUCTION





1

Introduction

Why adopt the nonparametric Bayesian approach for inference? The answer lies in the si-
multaneous preference for nonparametric modeling and desire to follow a Bayesian proce-
dure. Nonparametric (and semiparametric) models can avoid the arbitrary and possibly un-
verifiable assumptions inherent in parametric models. Bayesian procedures may be desired
for the conceptual simplicity of the Bayesian paradigm, easy interpretability of Bayesian
quantities or philosopohical reasons.

1.1 Motivation

Bayesian nonparametrics is the study of Bayesian inference methods for nonparametric
and semiparametric models. In the Bayesian nonparametric paradigm a prior distribution
is assigned to all unknown quantities (parameters) involved in the modeling, whether finite
or infinite dimensional. Inference is made from the “posterior distribution”, the conditional
distribution of all parameters given the data. A model completely specifies the conditional
distribution of all observable given all unobserved quantities, or parameters, while a prior
distribution specifies the distribution of all unobservables. From this point of view, random
effects and latent variables also qualify as parameters, and distributions of these quantities,
often considered as part of the model itself from the classical point of view, are considered
part of the prior. The posterior distribution involves an inversion of the order of conditioning.
Existence of a regular version of the posterior is guaranteed under mild conditions on the
relevant spaces (see Section 2).

1.1.1 Classical versus Bayesian nonparametrics

Nonparametric and semiparametric statistical models are increasingly replacing parametric
models, to overcome the latter’s inflexibility to address a wide variety of data. A nonpara-
metric or semiparametric model involves at least one infinite-dimensional parameter and
hence may also be referred to as an “infinite-dimensional model”. Indeed, the nomenclature
“nonparametric” is misleading in that it gives the impression that there is no parameter in
the model, while in reality there are infinitely many unknown quantities. However, the term
nonparametric is so popular that it makes little sense not to use it. The infinite-dimensional
parameter is usually a function or measure. In a canonical example of nonparametric model
the data are a random sample from a completely unknown distribution P . More generally,
functions of interest include the cumulative distribution function, density function, regres-
sion function, hazard rate, transition density of a Markov process, spectral density of a time
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series, response probability of a binary variable as a function of covariates, false discov-
ery rate as a function of nominal level in multiple testing, receiver operating characteristic
function between two distributions. Non-Bayesian methods for the estimation of many of
these functions have been well developed, partly due to the availability of simple, natu-
ral and well respected estimators (e.g. the empirical distribution), and partly driven by the
greater attention historically given to the classical approach. Bayesian estimation methods
for nonparametric problems started receiving attention in the last three decades.

Different people may like Bayesian methods for different reasons. To some the appeal
is mainly philosophical. Certain axioms of rational behavior naturally lead to the conclu-
sion that one ought to follow a Bayesian approach not to irrational (see Bernardo and Smith
(1995)). Although the axioms themselves can be questioned, there is a wide-spread impres-
sion that Bayesian methods are perhaps logically more consistent than non-Bayesian meth-
ods, particularly compared to those which involve integration over the sample space, that is,
methods which “bother about samples that could have but have not realized”. Others jus-
tify the Bayesian paradigm by appealing to exchangeability and de Finetti’s (1937) theorem.
This celebrated theorem concludes the existence of a “random parameter” instead of a “fixed
parameter” based on a “concrete” set of observations and a relatively weak assumption on
distributional invariance (see Schervish (1996)). However, this requires subjectively speci-
fying a prior, which is considered as difficult. Decision theoretists may like to be Bayesians,
because of the complete class theorem, which asserts that for any procedure there is a bet-
ter Bayes procedure, and only the latter procedures are admissible, or essentially so (see
Ferguson (1967)). While this could have been a strong reason for a frequentist to take the
Bayesian route, there are difficulties. First, the complete class theorem is known to hold only
when the parameter space is compact (and the loss function is convex), and secondly, it is
not clear which prior to choose from the class of all the priors. People who believe in asymp-
totic theory could find Bayesian methods attractive because their large sample optimality (in
parametric problems). However, this argument is weak, because many non-Bayesian pro-
cedures (most notably, the maximum likelihood estimator (MLE)) are also asymptotically
optimal.

The specification of a prior distribution may be challenging. Keeping this aside, the
Bayesian approach is extremely straightforward, in principle — the full inference is based
on the posterior distribution only. All inference tools are produced by one stroke — one
need not start afresh when the focus of attention changes from one quantity to another. In
particular, the same analysis produces an estimate as well as an assessment of its accuracy
(in terms of variability or a probable interval of the location of the parameter value). The
Bayesian approach produces a “real probability” on the unknown parameter as a quantifi-
cation of the uncertainty about its value. This comes extremely handy, for instance, in the
construction of intervals and tests. On the other hand, sampling variability is sometimes dif-
ficult to visualize given data, and often leads to logical problems. When the parameter space
is restricted, many of the non-Bayesian methods, including the MLE can be unnatural. The
Bayesian approach also eliminates the problem of nuisance parameter by simply integrating
them out, while classical procedures will often have to find ingenious ways to tackle them
separately for each inference problem. Prediction problems, which are often considered to
be the primary objective of statistical analysis, are solved most naturally if one follows the
Bayesian approach.
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However, these conveniences come at a price. The Bayesian principle is also restricting
in nature, allowing no freedom beyond the choice of the prior. This can put Bayesian meth-
ods at a disadvantage vis-a-vis non-Bayesian methods, particularly when the performance is
evaluated by frequentist principles. For instance, even if only a part of the unknown param-
eter is of interest, a Bayesian still has to specify a prior on the whole parameter, compute the
posterior, and integrate out the irrelevant part, whereas a classical procedure may be able to
target the part of interest only. Another problem is that no corrective measure is allowed in a
Bayesian framework once the prior has been specified. In contrast, the MLE is known to be
non-existent or inconsistent in many infinite-dimensional problems such as density estima-
tion, but one can modify it by penalization, sieves (see Grenander (1981)), partial likelihood
(Cox (1972)) or other devices. In contrast, the Bayesian principle does not allow an honest
Bayesian to change the likelihood, change the prior by looking at the data, or even change
the prior with increasing sample size.

1.1.2 Parametric versus nonparametric Bayes

Parametric models make restrictive assumptions about the data generating mechanism, which
may cause serious bias in inference. In the Bayesian framework a parametric model assump-
tion can be viewed as an extremely strong prior opinion. Indeed, a parametric model spec-
ification X| θ ∼ pθ, for θ ∈ Θ ⊂ Rd, with a prior θ ∼ π, may be considered within a
nonparametric Bayesian framework as X| p ∼ p, for p ∈ P with P a large set of densities
equipped with a prior p ∼ Π with the property that Π

(
{pθ: θ ∈ Θ}

)
= 1. Thus parametric

modelling is equivalent to insisting on a prior that assigns probability one to a thin subset of
all densities. This is a very strong prior opinion indeed.

To some extent the nonparametric Bayesian approach also solves the problem of partial
specification. Often a model is specified incompletely, without describing every detail of
the data generating mechanism. A familiar example is the Gauss-Markov setup of a linear
model, where errors are assumed uncorrelated, mean zero variables with constant variance,
but no further distributional assumptions are imposed. Lacking a likelihood, a parametric
Bayesian approach cannot proceed further. However, a nonparametric Bayes approach can
put a prior on the space of densities with mean zero and consider that as a prior on the
error distribution. More generally, incomplete model assumptions may be complemented
by general assumptions involving infinite-dimensional parameters in order to build a com-
plete model, which a nonparametric Bayesian approach can equip with infinite-dimensional
priors.

1.2 Challenges of Bayesian nonparametrics

This section describes some conceptual and practical difficulties that arise in Bayesian non-
parametrics, along with possible remedies.

1.2.1 Prior construction

A Bayesian analysis cannot proceed without a prior distribution on all parameters. A prior
ideally expresses a quantification of pre-experiment and subjective knowledge. A prior on a
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function requires knowing many aspects of the function, including infinitesimal details, and
the ability to quantify the information in the form of a probability measure. This poses an
apparent conceptual contradiction: a nonparametric Bayesian approach is pursued to mini-
mize restrictive parametric assumptions, but at the same time requires specification of the
minute details of a prior on an infinite-dimensional parameter.

There seems to exist overall agreement that subjective specification of a prior cannot be
expected in complex statistical problems. Instead inference must be based on an objective
prior. This is vaguely understood as a prior that is proposed by some automatic mechanism
that is not in favor of any particular parameter values, and has low information content
compared to the data. Instead of “objective prior” we also use the phrase default prior.

Some of the earliest statistical analyses in history used the idea of inverse probability,
which is nothing but a default Bayesian analysis with respect to a uniform prior. Uniform
priors were strongly criticised for lacking invariance, which led to temporary scrapping of
the idea, but later more invariance-friendly methods such as reference analysis or proba-
bility matching emerged. However, most of these ideas are restricted to finite-dimensional
parametric problems.

An objective prior should be automatically constructed using a default mechanism. It
need not be non-informative, but should be spread all over the parameter space. Some
key hyperparameters regulating the prior may be chosen by the user, whereas other details
must be constructed by the default mechanism. Unlike in parametric situations, where non-
informative priors are often improper, default priors considered in nonparametric Bayesian
inference are almost invariably proper. Large support of the prior means that the prior is
not too concentrated in some particular region. This generally makes that the information
contained in the prior is subdued gradually by the data if the sample size increases, so that
eventually the data override the prior.

The next chapters discuss various methods of prior construction for various problems of
interest. Although a default prior is not unique in any sense, it is expected that over the
years, based on theoretical results and practical experience, a handful of suitable priors will
be short-listed and catalogued for consensus use in each inference problem.

1.2.2 Computation

The property of conjugacy played an important role in parametric Bayesian analysis, as
it enabled the derivation of posterior distributions, in a time that computing resources were
lacking. Later sampling based methods such as the Metropolis-Hastings algorithm and Gibbs
sampling gave Bayesian analysis a tremendous boost. Without modern computing nonpara-
metric Bayesian analysis would hardly be practical.

However, we cannot directly simulate from the posterior distribution of a function unless
it is parameterized by finitely many parameters. We must break up the function of interest
into more elementary finite-dimensional objects, and simulate from their posterior distri-
bution. For this reason the structure of the prior is important. Useful structure may come
from conjugacy or approximation. Often a computational method combines analytic deriva-
tion and Markov chain Monte-Carlo (MCMC) algorithms, and is based on really innovative
ideas. For instance, density estimation with a Dirichlet mixture prior uses an equivalent hi-
erarchical mixture model involving a latent variable for each observation, and integrates out
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the infinite-dimensional parameter given the latent variables. Thus the problem of infinite
dimension has been reduced to one of dimension smaller than the sample size. In another
instance, in a binary response model and a Gaussian process prior, introduction of normal
latent variables brings in conjugacy.

1.2.3 Asymptotic behavior

Putting a prior on a large parameter space makes it easy to be grossly wrong. Therefore
studying robustness is important in Bayesian nonparametrics. Bayesian robustness means
that the choice of the prior does not influence the posterior distribution too much. This is
difficult to study in a general framework. A more manageable task is the study of asymp-
totic properties, as the information in the data increases indefinitely. For example, “posterior
consistency” may be considered an asymptotic form of robustness. Loosely speaking poste-
rior consistency means that the posterior probability eventually concentrates in a (any) small
neighborhood of the actual value of the parameter. This is a weak property, shared by many
prior distributions. Finer properties, such as the rate of convergence or a (functional) limit
theorem, give more insight in the performance of different priors.

The study of asymptotic properties is more complex in the nonparametric than in paramet-
ric context. In the parametric setting good properties are quaranteed under mild conditions,
such as the true value of the parameter being in the support of the prior (provided that the
model satisfies some basic regularity conditions). In the infinite-dimensional context merely
having the true value in the topological support of the prior is not sufficient. Consistency
may fail for very natural priors satisfying the support condition, meaning that even an infi-
nite amount of data may not overcome the pull of a prior in a wrong direction. Consistent
priors may amongst themselves differ strongly in accuracy, depending on their fine details.
For instance, the rate of contraction of the posterior to the true parameter may strongly de-
pend on the prior. Unlike in the parametric setting many priors do not “wash out” as the
information in the data increases indefinitely.

Thus it makes sense to impose posterior consistency and a good rate of contraction as
requirements on a “default prior”. Several chapters are devoted to the study of asymptotic
behavior of the posterior distribution and other related quantities. Attractive is also to com-
bine priors hierarchically into an overall prior, so as to make the posterior “adapt” to a large
class of underlying true parameters.
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Priors, posteriors and Bayes’s rule

In the Bayesian framework the data X follows a distribution determined by a parameter
θ, which is itself considered to be generated from a prior distribution Π. The correspond-
ing posterior distribution is the conditional distribution of θ given X . This framework is
identical in parametric and nonparametric Bayesian statistics, the only difference being the
dimensionality of the parameter. Because the proper definitions of priors and (conditional)
distributions require (more) care in the nonparametric case, we review the basics of condi-
tioning and Bayes’s rule in this section.

The parameter set Θ is equipped with a σ-field B, and the prior Π is a probability measure
on the measurable space (Θ,B). We assume that the distribution Pθ of X given θ is a
regular conditional distribution on the sample space (X,X ) of the data, i.e. a Markov
kernel from (Θ,B) into (X,X ):

(i) The map A 7→ Pθ(A) is a probability measure for every θ ∈ Θ.
(ii) The map θ 7→ Pθ(A) is measurable for every A ∈X .

Then the pair (X, θ) has a well defined joint distribution on the product space (X×Θ,X ×
B), given by

Pr
(
X ∈ A, θ ∈ B

)
=

∫
B

Pθ(A) dΠ(θ).

This gives rise to the marginal distribution of X , defined by

Pr(X ∈ A) =

∫
Pθ(A) dΠ(θ).

By Kolmogorov’s definition the conditional probabilities Pr(θ ∈ B|X), for B ∈ B, are
always well defined, as measurable functions of X such that

E Pr(θ ∈ B|X)1A(X) = Pr(X ∈ A, θ ∈ B), every A ∈X .

If the measurable space (Θ,B) is not too big, then there also exists a regular version of
the conditional distribution: a Markov kernel from (X,X ) into (Θ,B). (See Section 2.1.1
below.) We shall consider the existence of a regular version necessary to speak of a true
posterior distribution. A sufficient condition is that Θ is a Polish topological space 1 and B
its Borel σ-field. More generally, it suffices that (Θ,B) is a standard Borel space, which by

1 A topological space is called Polish if its topology is generated by a metric that makes it complete and
separable.
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definition is a measurable space that is isomorphic to a Polish space with its Borel σ-field.
This condition will be met in all examples.

Even though the posterior distribution can thus usually be defined, some further care may
be needed. It is inherent in the definition that the conditional probabilities Pr(θ ∈ B|X)
are unique only up to null sets under the marginal distribution of X . Using a regular version
(on a standard Borel space) limits these null sets to a single null set that works for every
measurable setB, but does not eliminate them altogether. This is hardly a concern if the full
Bayesian setup is adopted, as this defines the marginal distribution of X as the appropriate
data distribution. However, if the Bayesian framework is viewed as a method for inference
only, and it is allowed that the “true” data X is generated according to some distribution
P0 different from the marginal distribution of X in the Bayesian setup, then the exceptional
“null sets” may well have nonzero mass under this “true” distribution, and it is impossible
to speak of the posterior distribution.

Obviously, this can only happen under serious “misspecification” of the prior. In particu-
lar, no problem arises if

P0 �
∫
Pθ dΠ(θ),

which is guaranteed for instance if P0 is dominated by Pθ for θ in a set of positive prior
probability. In parametric situations the latter condition is very reasonable, but the nonpara-
metric case can be more subtle, particularly if the set of all Pθ is not dominated. Then there
may be a “natural” way of defining the posterior distribution consistently for all X , but it
must be kept in mind that this is not dictated by Bayes’s rule alone. An important example of
this situation arises with the nonparametric Dirichlet prior, where the marginal distribution
is the normalized base measure, which may or may not dominate the distribution of the data.

For a dominated collection of measures Pθ it is generally possible to select densities pθ
relative to some σ-finite dominating measure µ such that the maps (x, θ) 7→ pθ(x) are
jointly measurable. Then a version of the posterior distribution is given by Bayes’s formula

B 7→
∫
B
pθ(X) dΠ(θ)∫
pθ(X) dΠ(θ)

. (2.1)

Of course, this expression is defined only if the denominator
∫
pθ(X) dΠ(θ), which is the

marginal density of X , is positive. Definitional problems arise (only) if this is not the case
under the true distribution of the data. Incidently, the formula also shows that a Polishness
assumption on (Θ,B) is sufficient, but not necessary, for existence of the posterior distri-
bution: (2.1) defines a Markov kernel as soon as it is well defined.

A related issue concerns the supports of prior and posterior. In a vague sense the support
of a measure is a smallest set that contains all its mass. A precise definition is possible only
under assumptions on the measurable space. We limit ourselves to Polish spaces, for which
the following definition of support can be shown to be well posed.

Definition 2.1 [support] The support of a probability measure on the Borel sets of a Polish
space is the smallest closed set of probability one. Equivalently, it is the set of all elements
of the space for which every open neighbourhood has positive probability.

It is clear that a posterior distribution will not recover a “nonparametric” set of true dis-
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tributions unless the prior has a large support. Later this will be made precise in terms of
posterior consistency (at a rate), which of course depends both on the prior and on the way
the data distribution Pθ depends on the parameter θ.

2.0.4 Absolute continuity

Bayes’s formula (2.1) is available if the model (Pθ: θ ∈ Θ) is dominated. This is common in
parametric modelling, but may fail naturally in nonparametric situations. As a consequence,
sometimes we perform Bayesian analysis without Bayes. Mathematically this is connected
to absolute continuity of prior and posterior distributions.

It seems natural that a prior distribution supported on a certain set yields a posterior dis-
tribution supported inside the same set. Indeed, the equality Π(B) = E Pr(θ ∈ B|X)
immediately gives the implication: if Π(B) = 1, then Pr(θ ∈ B|X) = 1 almost surely.
The exceptional null set is again relative to the marginal distribution ofX , and it may depend
on the setB. The latter dependence can be quite serious. In particular, the valid complemen-
tary implication: if Π(B) = 0, then Pr(θ ∈ B|X) = 0 almost surely, should not be taken
as proof that the posterior is always absolutely continuous with respect to the prior. The
nonparametric Dirichlet prior exemplifies this again, as the posterior is typically orthogonal
to the prior.

Again these issues do not arise in the case that the collection of distributions Pθ is domi-
nated. Formula (2.1) immediately shows that the posterior is absolutely continuous relative
to the prior in this case (where it is assumed that the formula is well posed). This can also be
reversed. In the following lemma we assume that the posterior distribution is taken a regular
version, whence it is unique up to a null set.

Lemma 2.2 If both (X,X ) and (Θ,B) are standard Borel spaces, then the set of pos-
terior distributions Pr(θ ∈ B|X = x), where x ∈ X0 for a measurable set X0 ⊂ X
of marginal probability 1, is dominated by a σ-finite measure if and only if the collection
{Pθ: θ ∈ Θ0} is dominated by a σ-finite measure, for some measurable set Θ0 ⊂ Θ with
Π(Θ0) = 1. In this case the posterior distributions are dominated by the prior.

Proof A collection of probability measures {Pθ: θ ∈ Θ} on a standard Borel space is
dominated iff it is separable relative to the total variation distance, and in this case the mea-
sures permit densities x 7→ pθ(x) that are jointly measurable in (x, θ) (e.g. Strasser, 1985,
Lemmas 4.6 and 4.1). Formula (2.1) then gives a version of the posterior distribution, which
is dominated by the prior. Any other version differs from this version by at most a null set
Xc0.

The converse follows by interchanging the roles of x and θ. If the set of posterior dis-
tributions is dominated by a σ-finite measure, then they can be represented by conditional
densities π(θ|x) relative to the dominating measure, measurable in (x, θ), and we can re-
construct a regular version of the conditional distribution of θ given x by (2.1), with the
roles of θ and x interchanged, which is dominated. By assumption the original distributions
Pθ give another regular version of this conditional distribution, and hence agree with the
dominated version on a set of probability one.
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2.1 COMPLEMENTS

2.1.1 Regular versions

Given a random vector (θ,X) in a product space (Θ × X,B × X ) and B ∈ B, the
conditional probability Pr(θ ∈ B|X) is defined as a measurable function g(X) of X such
that Eg(X)1A(X) = E1B(θ)1A(X), for every A ∈X .

The existence of such a function can be proved using the Radon-Nikodym theorem. One
notes that A 7→ E1B(θ)1A(X) defines a measure on (X,X ) that is absolutely continuous
relative to the marginal distribution of X (if Pr(X ∈ A) = 0, then E1B(θ)1A(X) = 0).
Thus there exists a measurable function g:X → R that gives the density of this measure
relative to the marginal distribution of X .

The conditional probability is unique only up to a null set for the marginal distribution of
X , as Eg(X)1A(X) = Eg̃(X)1A(X), for every g̃ such that g(X) = g̃(X), almost surely.
If we define Pr(θ ∈ B|X) for every set B, we thus leave indetermination for many null
sets, whose union may well not be null. We call regular version of the conditional probability
any map (x,B) 7→ G(x,B) such that

(i) G(X,B) is a version of Pr(θ ∈ B|X) for every B.
(ii) B 7→ G(x,B) is a probability measure, for every x ∈ X.

These conditions imply that (x,B) 7→ G(x,B) is a Markov kernel.
Sufficient for existence of such a regular version is that there are “not too many sets” B.

Topological conditions can make this precise. See a book on measure-theoretic probability
for the following two results.

Proposition 2.3 If (Θ,B) is a Polish space with its Borel σ-field, then there exists a
regular version of Pr(θ ∈ B|X).

An equivalent formulation solely in terms of measurable spaces, is as follows.

Proposition 2.4 If Q is a probability distribution on a product measurable space (Θ ×
X,B × X ), where (Θ,B) is a Polish space with its Borel σ-field, then there exists a
Markov kernel (x×B) 7→ Q1|2(x,B) such that Q(A×B) =

∫
A
Q1|2(x,B) dQ2(x), for

Q2 the second marginal distribution of Q.

Exercises
2.1 (Extended Bayes’s rule) Suppose the distribution of X given θ is the convex combination of

two orthogonal distributions with weightsw1 andw2 = 1−w1 not depending on θ and densities
p1(·; θ) and p2(·; θ) relative to dominating measures µ1 and µ2, respectively. Show that the pos-
terior distribution of θ givenX satisfies dΠ(θ|X) ∝

(
w1p1(X; θ)1S1

(X)+w2p2(X; θ)1S2
(X)

)
dΠ(θ),

for S1 and S2 disjoint measurable sets such that
∫
S2
p1(x; θ) dµ1(x) =

∫
S1
p2(x; θ) dµ2(x) = 0.

2.2 (Support) Show that the support of a probability measure on the Borel sets of a Polish space is
well defined: there exists a smallest closed set of mass 1.
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Priors on spaces of probability measures

In the nonparametric setting placing a prior distribution directly on the law of the data is
natural. However, this comes with some technical complications. To limit these as much
as possible we assume that the sample space (X,X ) is a Polish space with its Borel σ-
field (the smallest σ-field containing all open sets), and consider priors on the collection
M = M(X) of all probability measures on (X,X ).

3.1 Random measures, measurability

A prior Π on M is a probabiity measure on a σ-field of subsets of M. Alternatively, it can
be viewed as the law of a random measure P (a map from some probability space into M),
and can be identified with the collection of “random probabilities” P (A) of sets A ∈X . It
is natural to choose the measurability structure on M so that at least each P (A) is a random
variable, i.e. so that

(
P (A):A ∈ X

)
is a stochastic process on the underlying probability

space. We define the σ-field M on M as the minimal one to make this true: M is equal
to the smallest σ-field that makes all maps M 7→ M(A) from M to R measurable, for
A ∈X , and consider priors Π that are measures on (M,M ). Although other measurability
structures are possible, the σ-field M is attractive for two important properties.

First it is identical to the Borel σ-field for the weak topology on M (the topology of
convergence in distribution in this space, see Proposition 3.1 at the end of this section). As
M is Polish under the weak topology (see Proposition 3.2 at the end of this section), this
means that (M,M ) is a standard Borel space. As is noted in Section 2, this is desirable for
the definition of posterior distributions, and also permits to speak of the support of a prior,
called the weak support in this situation. Furthermore, the parameter θ from Section 2 that
indexes the statistical model (Pθ: θ ∈ Θ) can be taken equal to the distribution P itself,
with M (or a subset) as the parameter set, giving a model of the form (P :P ∈ M). With
respect to the σ-field M on the parameter set M the data distributions are trivially “regular
conditional probabilities”:

(i) P 7→ P (A) is M -measurable for every A ∈X ,
(ii) A 7→ P (A) is a probability measure for every P ∈M.

This mathematically justifies speaking of “drawing a measure P from the prior Π and next
sampling observations X from P ”.

Second, the fact that M is generated by all maps M 7→ M(A), for A ∈ X , implies
that a map P : (Ω,U ,Pr) → (M,M ) defined on some probability space is measurable
precisely if the induced measure P (A) of every set A ∈ X is a random variable. (See

10
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Exercise 3.1.) Thus, as far as measurability goes, a random probability measure can be iden-
tified with a random element

(
P (A):A ∈X

)
in the product space RX (or [0, 1]X ).

Proposition 3.1 If X Polish, then the Borel σ-field M for the weak topology is also:

(i) the smallest σ-field on M making all maps P 7→ P (A) measurable, for A ∈X ;
(ii) the smallest σ-field on M making all maps P 7→ P (A) measurable, for A in a gener-

ator X0 for X ;
(iii) the smallest σ-field on M making all maps P 7→

∫
ψ dP measurable, for ψ ∈ Cb(X).

Consequently, a finite measure on (M,M ) is completely determined by the set of distri-
butions induced under the maps P 7→

(
P (A1), . . . , P (Ak)

)
, for A1, . . . , Ak ∈ X0 and

k ∈ N; and also under the maps P 7→
∫
ψ dP , for ψ ∈ Cb(X).

Proposition 3.2 The weak topology W on the set M(X) of Borel measures on a Polish
space X is Polish.

3.2 Discrete random measures

Given a random vector (N,W1,N , . . . ,WN,N , θ1,N , . . . , θN,N), where N ∈ N ∪ {∞},
W1,N , . . . ,WN,N are nonnegative random variables with

∑N
i=1Wi,N = 1, and θ1,N , . . . , θN,N

are random variables taking their values in (X,X ), we can define a random probability
measure by

P =
N∑
i=1

Wi,Nδθi,N .

The realizations of this prior are discrete with finitely or countably many support points,
which may be different for each realization. Given the number N of support points, their
“weights” W1,N , . . . ,WN,N and “locations” θ1,N , . . . , θN,N are often chosen independent.

Lemma 3.3 If the support of N is unbounded and given N the weights and locations are
independent, with given N = n, the weights having full support Sn and the locations full
support Xn, for every n, then P has full support M.

Proof Because the finitely discrete distributions are weakly dense in M, it suffices to
show that P gives positive probability to any weak neighbourhood of a distribution P ∗ =∑k

i=1w
∗
i δθ∗i with finite support. All distributions P ′: =

∑k
i=1wiδθi with (w1, . . . , wk)

and (θ1, . . . , θk) sufficiently close to (w∗1, . . . , w
∗
k) and (θ∗1 , . . . , θ

∗
k) are in such a neigh-

bourhood. So are the measures P ′ =
∑∞

i=1wiδθi with
∑

i>k wi sufficiently small and
(w1, . . . , wk) and (θ1, . . . , θk) sufficiently close to their targets, as before.

If N is not identically infinite, then the assertion follows from the assumed positive prob-
ability of the events

{
N = k′,maxi≤k′ |Wi,k′ − w∗i | ∨ |θi,k′ − θ∗i | < ε

}
for every ε > 0

and some k′ > k, where we define w∗i = 0 and θ∗i arbitrarily for k < i ≤ k′.
IfN is infinite with probability one, then the assertion follows similarly upon considering

the events
{∑

i>kWi,∞ < ε,maxi≤k |Wi,k′ − w∗i | ∨ |θi,k − θ∗i | < ε
}

. These events have
positive probability, as they refer to an open subset of S∞.
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The prior is computationally more tractable ifN is finite and bounded, but its full support
is then not guaranteed. To achieve reasonable large sample properties,N must either depend
on the sample size n, or be given a prior with infinite support.

An important special case is obtained by choosing N ≡ ∞, yielding a prior of the form

P =
∞∑
i=1

Wiδθi .

Further specializations are to choose θ1, θ2, . . . an i.i.d. sequence in X, and to choose the
weights W1,W2, . . . by the stick-breaking algorithm of Section 3.2.1. If the common dis-
tribution of the θi has support the full space X, and the stick-breaking weights are as in
Lemma 3.4, then this prior has full support.

3.2.1 Stick breaking

“Stick-breaking” is a technique to construct a prior on infinite probability vectors (p1, p2, . . .).
The problem in hand is to distribute the total mass 1, which we identify with a stick of length
1, randomly to each element of N. We first break the stick at a point given by the realization
of a random variable 0 ≤ Y1 ≤ 1 and assign mass Y1 to 1 ∈ N. We think of the remaining
mass 1 − Y1 as a new stick, and break it into two pieces of relative lengths Y2 and 1 − Y2

according to the realized value of another random variable 0 ≤ Y2 ≤ 1. We assign mass
(1−Y1)Y2 to the point 2, and are left with a new stick of length (1−Y1)(1−Y2). Continuing
in this way, we assign mass to the point j equal to

pj =
(j−1∏
l=1

(1− Yl)
)
Yj. (3.1)

Clearly, by continuing to infinity, this scheme will attach a random subprobability distribu-
tion to N for any sequence of random variables Y1, Y2, . . . with values in [0, 1]. Under mild
conditions the probabilities pj will sum to one.

Lemma 3.4 The random subprobability distribution (p1, p2, . . .) lies in S∞ almost surely
iff E

[∏j
l=1(1 − Yl)

]
→ 0 as j → ∞. For independent variables Y1, Y2, . . . this condition

is equivalent to
∑∞

l=1 log E(1 − Yl) = −∞. In particular, for i.i.d. variables Y1, Y2, . . . it
suffices that P(Y1 > 0) > 0. If for every k ∈ N the support of (Y1, . . . , Yk) is (0,∞)k,
then the support of (p1, p2, . . .) is the whole space S∞.

Proof By induction, it easily follows that the leftover mass at stage j is equal to 1 −∑j
l=1 pl =

∏j
l=1(1 − Yl). Hence the random subprobability distribution will lie in S∞

a.s. iff
∏j
l=1(1 − Yl) → 0 a.s.. Since the leftover sequence is decreasing, nonnegative and

bounded by 1, the almost sure convergence is equivalent to convergence in mean. If the Yj’s
are independent, then this condition becomes

∏j
l=1(1 − E(Yl)) → 0 as j → ∞, which is

equivalent to the condition
∑∞

l=1 log E(1− Yl) = −∞.
The last assertion follows, because the probability vector (p1, . . . , pk) is a continuous

function of (Y1, . . . , Yk), for every k.
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3.3 Random measures as stochastic processes

A general method of construction a random measure is to start with the stochastic pro-
cess

(
P (A):A ∈ X

)
, constructed using Kolmogorov’s consistency theorem (see Propo-

sition 3.7), and next show that this process can be realized within M, viewed as a subset
of RX . As the properties of measures are much richer than can be described by the finite-
dimensional distributions involved in Kolmogorov’s theorem, this approach is non-trivial,
but it can be pushed through by standard arguments. The detais are as follows.

For every finite collection A1, . . . , Ak of Borel sets in X the vector of probabilities(
P (A1), . . . , P (Ak)

)
obtained from a random measure P is an ordinary random vector

in Rk. The construction of P may start with the specification of the distributions of all
vectors of this type. A simple, important example would be to specify these as Dirichlet
distributions with parameter vector

(
α(A1), . . . , α(Ak)

)
, for a given Borel measure α. For

any consistent specification of the distributions, Kolmogorov’s theorem allows to construct
on a suitable probability space (Ω, U,Pr) a stochastic process

(
P (A):A ∈ X

)
with the

given finite-dimensional distributions. If the marginal distributions correspond to those of a
random measure, then it will be true that

(i) P (∅) = 0, P (X ) = 1, a.s.
(ii) P (A1 ∪A1) = P (A1) + P (A2), a.s., for any disjoint A1, A2.

Assertion (i) follows, because the distributions of P (∅) and P (X ) will be specified to be
degenerate at 0 and 1, respectively, while (ii) can be read off from the degeneracy of the
joint distribution of the three variables P (A1), P (A2) and P (A1 ∪ A2). Thus the process(
P (A):A ∈X

)
will automatically define a finitely-additive measure on (X,X ).

A problem is that the exceptional null sets in (ii) might depend on the pair (A1, A2). If
restricted to a countable subcollection X0 ⊂X there would only be countably many pairs
and the null sets could be gathered in a single null set. Then still when extending (ii) to
σ-additivity, which is typically possible by similar distributional arguments, there would be
uncountably many sequences of sets. This problem can be overcome through existence of a
mean measure

µ(A) = EP (A).

For a valid random measure P , this necessarily defines a Borel measure on X. Existence
of a mean measure is also sufficient for existence of version of

(
P (A):A ∈ X

)
that is a

measure on (X,X ).

Theorem 3.5 Suppose that
(
P (A):A ∈ X

)
is a stochastic process that satisfies (i) and

(ii) and whose mean A 7→ EP (A) is a Borel measure on X. Then there exists a version
of P that is a random measure on (X,X ). More precisely, there exists a measurable map
P̃ : (Ω, U,Pr)→ (M,M ) such that P (A) = P̃ (A) almost surely, for every A ∈X .

Proof Let X0 be a countable field that generates the Borel σ-field X , denumerated arbi-
trarily as A1, A2, . . .. Because the mean measure µ(A): = EP (A) is regular, there exists
for every i,m ∈ N a compact setKi,m ⊂ Ai with µ(Ai−Ki,m) < 2−2i−2m. By Markov’s
inequality

Pr
(
P (Ai −Ki,m) > 2−i−m

)
≤ 2i+mEP (Ai −Ki,m) ≤ 2−i−m.
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Consequently, the event Ωm = ∩i{P (Ai −Ki,m) ≤ 2−i−m} possesses probability at least
1− 2−m, and lim inf Ωm possesses probability 1, by the Borel-Cantelli lemma.

Because X0 is countable, the null sets involved in (i)-(ii) with A1, A2 ∈ X0 can be
aggregated into a single null set N . For every ω /∈ N the process P is a finitely additive
measure on X0, with the resulting usual properties of monotonicity and sub-additivity. By
increasing N if necessary we can also ensure that it is sub-additive on all finite unions of
sets Ai −Ki,m.

Let Ai1 ⊃ Ai2 ⊃ · · · be an arbitrary decreasing sequence of sets in X0 with empty
intersection. Then, for every fixed m, the corresponding compacts Kij ,m possess empty
intersection also, whence there exists a finite Jm such that ∩j≤JmKij ,m = ∅. This implies
that

AiJm = ∩Jmj=1Aij − ∩Jmj=1Kij ,m ⊂ ∪Jmj=1(Aij −Kij ,m).

Consequently, on the event Ωm −N ,

lim sup
j

P (Aij ) ≤ P (AiJm ) ≤
Jm∑
j=1

P (Aij −Kij ,m) ≤ 2−m.

Thus on the event Ω0 = lim inf Ωm − N the limit is zero. We conclude that for every
ω ∈ Ω0, the restriction of A 7→ P (A) to X0 is countably additive. By Carathéodory’s
theorem it extends to a measure P̃ on X .

By construction P̃ (A) = P (A) almost surely, for everyA ∈X0. In particular EP̃ (A) =
EP (A) = µ(A), for every A in the field X0, whence by uniqueness of extension the mean
measure of P̃ coincides with the original mean measure µ on X . For every A ∈ X , there
exists a sequence {Am} ⊂ X0 such that µ(A∆Am) → 0. Then both P (Am ∆A) and
P̃ (Am ∆A) tend to zero in mean. Finite-additivity of P gives that

∣∣P (Am) − P (A)
∣∣ ≤

P (Am ∆A), almost surely, and by σ-additivity the same is true for P̃ . This shows that
P̃ (A) = P (A) almost surely, for every A ∈X .

This also proves that P̃ (A) is a random variable for every A ∈ X , whence P̃ is a
measurable map in (M,M ).

Rather than from the process
(
P (A):A ∈ X

)
indexed by all Borel sets, we may wish

to start from a smaller set
(
P (A):A ∈ X0

)
of variables, for some X0 ⊂ X . As shown

in the proof of the preceding theorem a countable collection X0 suffices, but compact sets
play a special role.

Theorem 3.6 Suppose that
(
P (A):A ∈ X0

)
is a stochastic process that satisfies (i) and

(ii) for a countable field X0 that generates X and is such that for everyA ∈X0 and ε > 0
there exists a compactKε ⊂ X andAε ∈X0 such thatAε ⊂ Kε ⊂ A and µ(A−Aε) < ε,
where µ is the mean µ(A) = EP (A). Then there exists a random measure that extends P
to X .

The proof of the theorem follows the same lines, except that, if the compacts Kε are not
elements of X0, the bigger sets A−Aε must be substituted for A−Kε when bounding the
P -measure of this set.

For instance, for X = Rk we can choose X0 equal to the finite unions of cells (a, b],
with the compacts and Aε equal to the corresponding finite unions of the intervals [aε, b]
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and (aε, b] for aε descending to a. By restricting to rational endpoints we obtain a countable
collection.

3.4 COMPLEMENTS

Proposition 3.7 [Kolmogorov extension theorem] For every finite subset S of an arbi-
trary set T let PS be a probability distribution on RS . Then there exists a probability space
(Ω,U ,Pr) and measurable maps Xt: Ω→ R such that (Xt: t ∈ S) ∼ PS for every finite
set S if and only if for every pair S′ ⊂ S of finite subsets PS′ is the marginal distribution of
PS on RS′ .

For a proof see a book on measure-theoretic probability or stochastic processes.

Exercises
3.1 For each A in an arbitrary index set A let fA:M→ R be an arbitrary map.

(a) Show that there exists a smallest σ-field M such that every map fA is measurable.
(b) Show that a map T : (Ω,U ) → (M,M ) is measurable if and only if fA ◦ T : Ω → R is

measurable for every A ∈ A .

3.2 LetK1,K2, . . . be compact sets in a topological space such that∩iKi = ∅. Show that∩mi=1Ki =

∅ for some m.
3.3 Show that the discrete probability measures with finitely many support points are dense in the

set of all Borel probability measures on a Polish space (or Rk) relative to the weak topology.
3.4 Show that for any Borel set A ⊂ Rk and finite measure µ on the Borel sets, and every ε > 0,

there exists a compact set K with K ⊂ A and µ(A −K) < ε. [Let X0 be the set of all Borel
sets A such that there exists for every ε > 0 a closed set F and open set G with F ⊂ A ⊂ G and
µ(G−F ) < ε. Show that X0 is a σ-field. Show that it is the Borel σ-field. Show that the sets F
can be taken compact without loss of generality.]

3.5 Consider a stick-breaking scheme with independent variables Yk with 1−Pr(Yk = 0) = 1/k2 =

Pr(Yk = 1− e−k). Show that stick is “not finished”:
∑
k pk < 1 almost surely.
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Dirichlet process

The Dirichlet process is the “normal distribution of Bayesian nonparametrics”. It is the de-
fault prior on spaces of probability measures, and a building block for priors on other struc-
tures.

4.1 Finite-dimensonal Dirichlet distribution

A random vector X = (X1, . . . , Xk) with values in the k-dimensional unit simplex Sk: ={
(s1, . . . , sk): sj ≥ 0,

∑k
j=1 sj = 1

}
is said to possess a Dirichlet distribution with pa-

rameters k ∈ N and α1, . . . , αk > 0 if it has density proportional to xα1−1
1 · · ·xαk−1

k with
respect to the Lebesgue measure on Sk.

The unit simplex Sk is a subset of a (k−1)-dimensional affine space, and so “its Lebesgue
measure” is to be understood to be (k − 1)-dimensional Lebesgue measure appropriately
mapped to Sk. The norming constant of the Dirichlet density depends on the precise con-
struction. Alternatively, the vector X may be described through the vector (X1, . . . , Xk−1)
of its first k − 1 coordinates, the last coordinate being fixed by the relationship Xk =
1 −

∑k−1
i=1 Xi. This vector has density proportional to xα1−1

1 · · ·xαk−1−1
k−1 (1 − x1 − · · · −

xk−1)αk−1 with respect to the usual (k−1)-dimensional Lebesgue measure restricted to the
set Dk = {(x1, . . . , xk−1): mini xi ≥ 0,

∑k−1
i=1 xi ≤ 1}. The inverse of the normalizing

constant is given by the Dirichlet form∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xk−2

0

xα1−1
1 xα2−1

2 · · ·xαk−1−1
k−1 (4.1)

× (1− x1 − · · · − xk−1)αk−1 dxk−1 · · · dx2 dx1.

The Dirichlet distribution takes its name from this integral, which was can be evaluated to
Γ(α1) · · ·Γ(αk)/Γ(α1 + · · ·+αk) by successive integrations and scalings to beta integrals.

Definition 4.1 (Dirichlet distribution) The Dirichlet distribution Dir(k;α) with parame-
ters k ∈ N − {1} and α = (α1, . . . , αk) > 0 is the distribution of a vector (X1, . . . , Xk)

such that
∑k

i=1Xi = 1 and such that (X1, . . . , Xk−1) has density

Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)
xα1

1 xα2−1
2 · · ·xαk−1−1

k−1 (1− x1 − · · · − xk−1)αk−1, x ∈ Dk. (4.2)

The Dirichlet distribution with parameters k and α ≥ 0, where αi = 0 for i ∈ I (
{1, . . . , k}, is the distribution of the vector (X1, . . . , Xk) such that Xi = 0 for i ∈ I

16



4.1 Finite-dimensonal Dirichlet distribution 17

and such that (Xi: i /∈ I) possesses a lower-dimensional Dirichlet distribution, given by a
density of the form (4.2).

For k = 2 the vector (X1, X2) is completely described by a single coordinate, where
X1 ∼ Be(α1, α2) and X2 = 1 − X1 ∼ Be(α2, α1). Thus the Dirichlet distribution is a
multivariate generalization of the Beta distribution. The Dir(k; 1, . . . , 1)-distribution is the
uniform distribution on Sk.

Throughout the section we write |α| for
∑k

i=1 αi.

Proposition 4.2 (Gamma representation) If Yi ind∼Ga(αi, 1), then (Y1/Y, . . . , Yk/Y ) ∼
Dir(k;α1, . . . , αk), and is independent of and Y : =

∑k
i=1 Yi.

Proof We may assume that all αi are positive. The Jacobian of the inverse of the transfor-
mation (y1, . . . , yk) 7→ (y1/y, . . . , yk−1/y, y) =: (x1, . . . , xk−1, y) is given by yk−1(1−
x1 − · · · − xk−1). The density of the Ga(αi, 1)-distribution is proportional to e−yiyαi−1

i .
Therefore the joint density of (Y1/Y, . . . , Yk−1/Y, Y ) is, proportional to,

e−yy|α|−1xα1−1
1 · · ·xαk−1−1

k−1 (1− x1 − · · · − xk−1)αk−1.

This factorizes into a Dirichlet density of dimension k − 1 and the Ga(|α|, 1)-density of
Y .

Proposition 4.3 (Aggregation) If X ∼ Dir(k;α1, . . . , αk) and Zj =
∑

i∈Ij Xi for a
given partition I1, . . . , Im of {1, . . . , k}, then

(i) (Z1, . . . , Zm) ∼ Dir(m;β1, . . . , βm), where βj =
∑

i∈Ij αi, for j = 1, . . . ,m.

(ii) (Xi/Zj: i ∈ Ij) ind∼Dir(#Ij;αi, i ∈ Ij), for j = 1, . . . ,m.
(iii) (Z1, . . . , Zm) and (Xi/Zj: i ∈ Ij, j = 1, . . . ,m) are independent.

Conversely, if X is a random vector such that (i)–(iii) hold, for a given partition I1, . . . , Im
and Zj =

∑
i∈Ij Xi, then X ∼ Dir(k;α1, . . . , αk).

Proof In terms of the Gamma representation Xi = Yi/Y of Proposition 4.2 we have

Zj =

∑
i∈Ij Yi

Y
, and

Xi

Zj
=

Yi∑
i∈Ij Yi

.

Because Wj: =
∑

i∈Ij Yi
ind∼Ga(βj, 1) for j = 1, . . . ,m, and

∑
jWj = Y , the Dirich-

let distributions in (i) and (ii) are immediate from Proposition 4.2. The independence in
(ii) is immediate from the independence of the groups (Yi: i ∈ Ij), for j = 1, . . . ,m.
By Proposition 4.2 Wj is independent of (Yi/Wj: iinIj), for every j, whence by the inde-
pendence of the groups the variables Wj, (Yi/Wj: i ∈ Ij), for j = 1, . . . ,m, are jointly
independent. Then (iii) follows, because (Xi/Zj: i ∈ Ij, j = 1, . . . ,m) is a function of
(Yi/Wj: i ∈ Ij, j = 1, . . . ,m) and (Z1, . . . , Zm) is a function of (Wj: j = 1, . . . ,m).

The converse also follows from the Gamma representation.

Proposition 4.4 (Moments) If X ∼ Dir(k;α1, . . . , αk), then Xi ∼ Be(αi, |α| − αi). In
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Figure 4.1 Cumulative distribution functions of 10 draws from the Dirichlet
process with base measures N(0, 2) (left) and 10N(0, 2) (right). (Computations
based on Sethuraman representation truncated to 1000 terms.)

particular, E(Xi) = αi/|α| and var(Xi) = αi(|α| − αi)/(|α|2(|α| + 1)). Furthermore,
cov(Xi, Xj) = −αiαj/(|α|2(|α|+ 1)) and, with r = r1 + · · ·+ rk,

E(Xr1
1 · · ·X

rk
k ) =

Γ(α1 + r1) · · ·Γ(αk + rk)

Γ(α1) · · ·Γ(αk)
× Γ(|α|)

Γ(|α|+ r)
. (4.3)

In particular, if r1, . . . , rk ∈ N, then the expression in (4.3) is equal to α[r1]
1 · · ·α[rk]

k /|α|[r],
where x[m] = x(x+ 1) · · · (x+m− 1), m ∈ N, stands for the ascending factorial.

Proof The first assertion follows from Proposition 4.3 by taking m = 2, Ii = {i}, I2 =
I − {i}, for I = {1, . . . , k}. Next the expressions for expectation and variance follow by
the properties of the beta distribution.

For the second assertion, we take m = 2, I1 = {i, j} and I2 = I − I1 in Proposition 4.3
to see that Xi + Xj ∼ Be(αi + αj, |α| − αi − αj). This gives var(Xi + Xj) = (αi +
αj)(|α| −αi−αj)/

(
|α|2(|α|+ 1)

)
, and allows to obtain the expression for the covariance

from the identity 2 cov(Xi, Xj) = var(Xi +Xj)− var(Xi)− var(Xj).
For the derivation of (4.3), observe that the mixed moment is the ratio of two Dirichlet

forms (4.1) with parameters (α1 + r1, . . . , αk + rk) and (α1, . . . , αk).

4.2 Dirichlet process

Definition 4.5 (Dirichlet process) A random measure P on (X,X ) is said to possess a
Dirichlet process distribution DP(α) with base measure α, if for every finite measurable
partition A1, . . . , Ak of X,(

P (A1), . . . , P (Ak)
)
∼ Dir

(
k;α(A1), . . . , α(Ak)

)
. (4.4)

In this definition α is a given finite positive Borel measure on (X,X ). We write |α| =
α(X) for its total mass and ᾱ = α/|α| for the probability measure obtained by normalizing
α, respectively, and use the notations P ∼ DP(α) and P ∼ DP

(
|α|, ᾱ

)
interchangeably

to say that P has a Dirichlet process distribution with base measure α.
Existence of the Dirichlet process is not obvious, but proved below.
Definition 4.5 specifies the joint distribution of the vector

(
P (A1), . . . , P (Ak)

)
, for any
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measurable partition {A1, . . . , Ak} of the sample space. In particular, it specifies the distri-
bution of P (A), for every measurable set A, and hence the mean measure A 7→ EP (A).
By Proposition 4.4,

E(P (A)) = ᾱ(A).

Thus the mean measure is the normalized base measure ᾱ, which is a valid Borel measure
by assumption. Therefore Theorem 3.5 implies existence of the Dirichlet process DP(α)
provided the specification of distributions can be consistently extended to any vector of the
type

(
P (A1), . . . , P (Ak)

)
, for arbitrary measurable sets and not just partitions, in such a

way that it gives a finitely-additive measure.
An arbitrary collectionA1, . . . , Ak of measurable sets defines a collection of 2k atoms of

the formA∗1∩A∗2∩· · ·∩A∗k, whereA∗ stands forA orAc. These atoms {Bj: j = 1, . . . , 2k}
(some of which may be empty) form a partition of the sample space, and hence the joint
distribution of

(
P (Bj): j = 1, . . . , 2k

)
is defined by Definition 4.5. EveryAi can be written

as a union of atoms, and P (Ai) can be defined accordingly as the sum of the corresponding
P (Bj)’s. This defines the distribution of the vector

(
P (A1), . . . , P (Ak)

)
.

To prove the existence of a stochastic process
(
P (A):A ∈ X

)
that possesses these

marginal distributions, it suffices to verify that this collection of marginal distributions is
consistent in the sense of Kolmogorov’s extension theorem. Consider the distribution of the
vector

(
P (A1), . . . , P (Ak−1)

)
. This has been defined using the coarser partitioning in the

2k−1 sets of the formA∗1∩A∗2∩· · ·∩A∗k−1. Every set in this coarser partition is a union of two
sets in the finer partition used previously to define the distribution of

(
P (A1), . . . , P (Ak)

)
.

Therefore, consistency pertains if the distributions specified by Definition 4.5 for two parti-
tions, where one is finer than the other, are consistent.

Let {A1, . . . , Ak} be a measurable partition and let {Ai1, Ai2} be a further measurable
partition of Ai, for i = 1, . . . , k. Then Definition 4.5 specifies that(

P (A11), P (A12), P (A21), . . . , P (Ak1), P (Ak2)
)

∼ Dir
(
2k;α(A11), α(A12), α(A21), . . . , α(Ak1), α(Ak2)

)
.

In view of the group additivity of finite dimensional Dirichlet distributions given by Propo-
sition 4.3, this implies( 2∑

j=1

P (A1j), . . . ,
2∑
j=1

P (Akj)
)
∼ Dir

(
k;

2∑
j=1

α(A1j), . . . ,
2∑
j=1

α(Akj)
)
.

Consistency follows as the right side is Dir
(
k;α(A1), . . . , α(Ak)

)
, since α is a measure.

That P (∅) = 0 and P (X) = 1 almost surely follow from the fact that {∅,X} is an
eligible partition in Definition 4.5, whence

(
P (∅), P (X),

)
∼ Dir(2; 0, |α|) by (4.4).

That P (A1 ∪ A2) = P (A1) + P (A2) almost surely for every disjoint pair of measur-
able sets A1, A2, follows similarly from consideration of the distributions of the vectors(
P (A1), P (A2), P (Ac1 ∩ Ac2)

)
and

(
P (A1 ∪ A2), P (Ac1 ∩ Ac2)

)
, whose three and two

components both add up to 1.
We have proved the existence of the Dirichlet process distribution DP(α) for every Polish

sample space and every base measure α.
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4.3 The Sethuraman representation

The Sethuraman representation of the Dirichlet process is a random discrete measure of the
type discussed in Section 3.2, with stick-breaking weights, as in Section 3.2.1, based on
the Beta-distribution. The random support points are generated from the normalized base
measure.

The representation gives an easy method to simulate a Dirichlet process, at least approx-
imately. It also proves the remarkable fact that realizations from the Dirichlet measure are
discrete measures, with probability one.

In view of the results of Section 3.2, we also infer that the Dirichlet process is fully
supported relative to the weak topology.

Theorem 4.6 (Sethuraman) If θ1, θ2, . . .
iid∼ ᾱ and Y1, Y2, . . .

iid∼Be(1,M) are indepen-
dent random variables and Vj = Yj

∏j−1
l=1 (1− Yl), then

∑∞
j=1 Vjδθj ∼ DP(Mᾱ).

Proof Because E
(∏j

l=1(1− Yl)
)

= (M/(M + 1))j → 0, the stick-breaking weights Vj
form a probability vector a.s. (c.f. Lemma 3.4), so that P is a probability measure a.s..

For j ≥ 2 define V ′j = Yj
∏j−1
l=2 (1 − Yl) and θ′j = θj+1. Then Vj = (1 − Y1)V ′j−1 for

every j ≥ 1 and hence

P : = V1δθ1 +
∞∑
j=2

Vjδθj = Y1δθ1 + (1− Y1)
∞∑
j=1

V ′j δθ′j .

The random measure P ′: =
∑∞

j=1 V
′
j δθ′j has exactly the same structure as P , and hence

possesses the same distribution. Furthermore, it is independent of (Y1, θ1).
We conclude that P satisfies the distributional equation (4.5) given below, and the theo-

rem follows from Lemma 4.7.

The distributional equation for the Dirichlet process used in the preceding proof is of in-
dependent interest. For independent random variables Y ∼ Be

(
1, |α|

)
and θ ∼ ᾱ, consider

the equation

P =d Y δθ + (1− Y )P. (4.5)

We say that a random measure P that is independent of (Y, θ) is a solution to equation (4.5)
if for every measurable partition {A1, . . . , Ak} of the sample space the random vectors ob-
tained by evaluating the random measures on its left and right sides are equal in distribution
in Rk.

Lemma 4.7 For given independent θ ∼ ᾱ and Y ∼ Be
(
1, |α|

)
, the Dirichlet process

DP(α) is the unique solution of the distributional equation (4.5).

Proof For a given measurable partition {A1, . . . , Ak}, the equation requires that Q: =(
P (A1), . . . , P (Ak)

)
has the same distribution as the vector Y N + (1 − Y )Q, for N ∼

MN(1; ᾱ(A1), . . . , ᾱ(Ak)
)

and (Y,N) independent of Q.
We first show that the solution is unique in distribution. Let (Yn, Nn) be a sequence of

i.i.d. copies of (Y,N), and for two solutionsQ andQ′ that are independent of this sequence
and suitably defined on the same probability space, set Q0 = Q, Q′0 = Q′, and recursively
defineQn = YnNn+(1−Yn)Qn−1,Q′n = YnNn+(1−Yn)Q′n−1, for n ∈ N. Then every
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Qn is distributed as Q and every Q′n is distributed as Q′, because each of them satisfies the
distributional equation. Also

‖Qn −Q′n‖ = |1− Yn| ‖Qn−1 −Q′n−1‖ =
n∏
i=1

|1− Yi| ‖Q−Q′‖ → 0

with probability 1, since the Yi are i.i.d. and are in (0, 1) with probability one. This forces
the distributions of Q and Q′ to agree.

To prove that the Dirichlet process is a solution let W0,W1, . . . ,Wk
ind∼Ga(αi, 1), i =

0, 1, . . . , k, whereα0 = 1. Then by Proposition 4.3 the vector (W0,W ), forW =
∑k

i=1Wi,
is independent of the vector Q: = (W1/W, . . . ,Wk/W ) ∼ Dir(k, α1, . . . , αk). Further-
more, Y : = W0/(W0+W ) ∼ Be(1, |α|) and (Y, (1−Y )Q) ∼ Dir(k+1; 1, α1, . . . , αk).
Thus for any i = 1, . . . , k, merging the 0th cell with the ith, we obtain from Proposition 4.3
that, with ei the ith unit vector,

Y ei + (1− Y )Q ∼ Dir(k;α+ ei), i = 1, . . . , k. (4.6)

This gives the conditional distribution of the vector Y N + (1 − Y )Q given N = ei. It
follows that Y N + (1 − Y )Q given N possesses a Dir(k;α + N)-distribution, just as p
given N in Proposition 4.8. Because also the marginal distributions of N in the two cases
are the same, so must be the marginal distributions of Y N + (1 − Y )N and p, where the
latter is p ∼ Dir(k;α).

Proposition 4.8 (Conjugacy) If p ∼ Dir(k;α) and N | p ∼ MN(n, k; p), then p|N ∼
Dir(k;α+N).

Proof If some coordinate αi of α is zero, then the corresponding coordinate pi of p is zero
with probability one, and hence so is the coordinate Ni of N . After removing these coordi-
nates we can work with densities. The product of the Dirichlet density and the multinomial
likelihood is proportional to

pα1−1
1 · · · pαk−1

k × pN1
1 · · · p

Nk
k = pα1+N1−1

1 · · · pαk+Nk−1
k .

This is proportional to the density of the Dir(k;α1 +N1, . . . , αk +Nk)-distribution.

4.3.1 Self-similarity

For a measure P and measurable set B, let P|B stand for the restriction measure P|B(A) =
P (A∩B), and PB for the conditional measure PB(A) = P (A|B), forB with P (B) > 0.

Theorem 4.9 (Self-similarity) If P ∼ DP(α), then PB ∼ DP(α|B), and the variable and
processes P (B),

(
PB(A):A ∈X

)
and

(
PBc(A):A ∈X

)
are mutually independent, for

any B ∈X such that α(B) > 0.

Proof Because P (B) ∼ Be
(
α(B), α(Bc)

)
the condition that α(B) > 0 implies that

P (B) > 0 a.s., so that the conditional probabilities given B are well defined.
For given partitions A1, . . . , Ar of B and C1, . . . , Cs of Bc, the vector

X: =
(
P (A1), . . . , P (Ar), P (C1), . . . , P (Cs)

)
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possesses a Dirichlet distribution Dir
(
r + s;α(A1), . . . , α(Ar), α(C1), . . . , α(Cs)

)
. By

Proposition 4.3 the four variables or vectors

Z1: =
r∑
i=1

Xi, Z2: =
r+s∑
i=r+1

Xi, (X1/Z1, . . . , Xr/Z1), (Xr+1/Z2, . . . , Zr+s/Z2)

are mutually independent, and the latter two vectors have Dirichlet distributions with the
restrictions of the original parameters. These are precisely the variables P (B), P (Bc), and
vectors with coordinates PB(Ai) and PBc(Ci).

Theorem 4.9 shows that the Dirichlet process “localized” by conditioning to a set B is
again a Dirichlet process, with base measure the restriction of the original base measure. Fur-
thermore, processes at disjoint localities are independent of each other, and also independent
of the “macro level” variable P (B). Within any given locality, mass is further distributed
according to a Dirichlet process, independent of what happens to the “outside world”. This
property may be expressed by saying that locally a Dirichlet process is like itself; in other
words it is self similar.

Exercises
4.1 Show that if P ∼ DP(α) and ψ:X→ Y is a measurable mapping, then P ◦ ψ−1 ∼ DP(β), for

β = α ◦ ψ−1.
4.2 Show that if P ∼ DP(α), then E

∫
ψ dP =

∫
ψ dᾱ, and var

∫
ψ dP =

∫
(ψ−

∫
ψ dᾱ)2 dᾱ/(1+

|α|), for any measurable function ψ for which the integrals make sense (e.g. bounded). [Hint:
proof this first for ψ = 1A.]

4.3 Let 0 = T0 < T1 < T2 < · · · be the events of a standard Poisson process and let θ1, θ2, . . . iid∼ ᾱ
and independent of (T1, T2, . . .). Show that

P =

∞∑
k=1

(e−Tk−1 − e−Tk )δθk

follows a Dirichlet process DP(ᾱ). How can we change the prior precision to M 6= 1?
4.4 Let F ∼ DP(MG) be a Dirichlet process on X = R, for a constant M > 0 and probability

distributionG, identified by its cumulative distribution function x 7→ G(x). So F can be viewed
as a random cumulative distribution function. Define its median as any value mF such that
F (mF−) ≤ 1/2 ≤ F (mF ). Show that

Pr
(
mF ≤ x

)
=

∫ 1

1/2

β
(
u,MG(x),M(1−G(x)

)
du,

where β(·, α, β) is the density of the Beta-distribution.
4.5 Simulate and plot the cumulative distribution function of the Dirichlet processes F ∼ DP(Φ),

F ∼ DP(0.1Φ), and F ∼ DP(10Φ). Do the same with the Cauchy base measure. [Suggestion
use Sethuraman’s presentation. Cut the series at an appropriate point.]
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Tail-free processes

Consider a sequence T0 = {X}, T1 = {A0, A1}, T2 = {A00, A01, A10, A11}, and so on, of
measurable partitions of the sample space X, obtained by splitting every set in the preceding
partition into two new sets. See Figure 5.

With E = {0, 1} and E∗ = ∪∞m=0Em, the set of all finite strings ε1 · · · εm of 0’s and
1’s, we can index the 2m sets in the mth partition Tm by ε ∈ Em, in such a way that
Aε = Aε0 ∪ Aε1 for every ε ∈ E∗. Here ε0 and ε1 are the extensions of the string ε with a
single symbol 0 or 1; the empty string indexes T0. Let |ε| stand for the length of a string ε,
and let εδ be the concatenation of two strings ε, δ ∈ E∗. The set of all finite unions of sets
Aε, for ε ∈ E∗, forms a sub-field of the Borel sets. We assume throughout that the splits are
chosen rich enough that this generates the Borel σ-field.

Because the probability of any Aε must be distributed to its “offspring” Aε0 and Aε1,
a probability measure P must satisfy the tree additivity requirement P (Aε) = P (Aε0) +

X

A0 A1

A00 A01 A10 A11

V0 V1

V00 V01 V10 V11

Figure 5.1 Tree diagram showing the distribution of mass over the first two
partitions X = A0 ∪A1 = (A00 ∪A01)∪ (A10 ∪A11) of the sample space. Mass at
a given node is distributed to its two childeren proportionally to the weights on the
arrows. Every pair of V ’s on arrows originating from the same node add to 1.

23
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P (Aε1). The relative weights of the offspring sets are the conditional probabilities

Vε0 = P (Aε0|Aε), and Vε1 = P (Aε1|Aε). (5.1)

This suggests that, for given set (Vε: ε ∈ E∗) of [0, 1]-valued random variables, we might
define a random measure P by

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ Em. (5.2)

If Vε0 + Vε1 = 1 for every ε, then the stochastic process
(
P (Aε): ε ∈ E∗

)
will satisfy

the tree-additivity condition, and define a finitely additive measure on the field of all finite
unions of sets Aε, for ε ∈ E∗.

Countable additivity is not immediate, but may be established using a mean measure, by
the approach of Theorem 3.6.

Theorem 5.1 Consider a sequence of partitions Tm = {Aε: ε ∈ Em} that generates the
Borel sets in (X,X ) and is such that every Aε is the union of all Aεδ whose closure is
compact and satisfies Aεδ ⊂ Aε, where δ ∈ E∗. If (Vε: ε ∈ E∗) is a stochastic process with
0 ≤ Vε ≤ 1 and Vε0 +Vε1 = 1 for all ε ∈ E∗, and there exists a Borel measure µ such that
µ(Aε) = EVε1Vε1ε2 · · ·Vε1···εm , for every ε = ε1 · · · εm ∈ E∗, then there exists a random
Borel measure P satisfying (5.2).

Proof For fixed ε ∈ E∗ there are at most countably many Aεδ as stated, and their union is
Aε. Thus for any given η > 0 there exists a finite subcollection whose union Bε,η satisfies
µ(Aε − Bε,η) < η. The corresponding union Kε,η of the closures Āεδ is compact and
satisfies Bε,η ⊂ Kε,η ⊂ Aε. Thus we are in the situation of Theorem 3.6, with P defined
by (5.2) as a finitely additive measure on the field consisting of all finite unions of Aε.

5.1 Tail-free processes

Consider a given partitioning tree T1, T2, . . . and a random measure P on the Borel sets, and
define the splitting variables (Vε, ε ∈ E∗) as in (5.1). Write U ⊥ V to denote that random
variables U and V are independent, and U ⊥ V |Z to say that U and V are conditionally
independent given a random variable Z.

Definition 5.2 (Tail-free) The random measure P is a tail-free process with respect to the
sequence of partitions Tm if {V0} ⊥ {V00, V10} ⊥ · · · ⊥ {Vε0: ε ∈ Em} ⊥ · · · .

A degenerate prior is certainly tail-free according to this definition (with respect to any
sequence of partitions), since all its V -variables are degenerate at appropriate values. A
nontrivial example is the Dirichlet process, as is seen in Theorem 5.3.

Theorem 5.3 The DP(α) prior is tail free. All splitting variables Vε0 are independent and
Vε0 ∼ Be

(
α(Aε0), α(Aε1)

)
.

Proof We must show that the vectors (Vε0: ε ∈ Em) defined in (5.1) are mutually indepen-
dent across levelsm. It suffices to show sequentially for everym that this vector is indepen-
dent of the vectors corresponding to lower levels. Because the vectors (Vε: ε ∈ ∪k≤mEk),
and

(
P (Aε): ε ∈ Em

)
generate the same σ-field, it suffices to show that (Vε0: ε ∈ Em) is

independent of
(
P (Aε): ε ∈ Em

)
, for every fixed m.
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This follows by an application of Proposition 4.3 to the vectors
(
P (Aεδ): ε ∈ Em, δ ∈ E

)
with the aggregation of the pairs

(
P (Aε0), P (Aε1)

)
into the sums P (Aε) = P (Aε0) +

P (Aε1).
The beta distributions also follow by Proposition 4.3 (and the fact that the first marginal

of a Dir(2;α, β) is a Be(α, β)-distribution).

The mass P (Aε) of a partitioning set at level m can be expressed in the V -variables up
to level m (see (5.2)), while, by their definition (5.1), the V -variables at higher levels con-
trol conditional probabilities. Therefore, tail-freeness makes the distribution of mass within
every partitioning set in Tm independent of the distribution of the total mass one among the
sets in Tm. Definition 5.2 refers only to masses of partitioning sets, but under the assumption
that the partitions generate the Borel sets, the independence extends to all Borel sets.

Lemma 5.4 If P is a random measure that is tail-free relative to a sequence of partitions
Tm = {Aε: ε ∈ Em} that generates the Borel sets X in X, then for every m ∈ N the
process

(
P (A|Aε):A ∈ X , ε ∈ Em

)
is independent of the random vector

(
P (Aε): ε ∈

Em
)
.

Proof BecauseP is a random measure, its mean measure µ(A) = EP (A) is a well defined
Borel probability measure. As T : = ∪mTm is a field, which generates the Borel σ-field by
assumption, there exists for every A ∈ X a sequence An in T such that µ(An ∆A)→ 0.
Because P is a random measure P (An|Aε) → P (A|Aε) in mean and hence a.s. along
a subsequence. It follows that the random variable P (A|Aε) is measurable relative to the
completion U0 of the σ-field generated by the variables P (C|Aε), for C ∈ T . Every of
latter variables is a finite sum of probabilities of the form P (Aεδ|Aε) = Vεδ1 · · ·Vεδ1···δk ,
for ε ∈ Em, δ = δ1 · · · δk ∈ Ek and k ∈ N. Therefore, by tail-freeness the σ-field U0

is independent of the σ-field generated by the variables P (Aε) = Vε1 · · ·Vε1···εm , for ε =
ε1 · · · εm ∈ Em.

Relative to the σ-field M generated by all mapsM 7→M(A) the process
(
P (A|Aε):A ∈

X
)

contains all information about the conditional random measure P (·|Aε). Thus the pre-
ceding lemma truly expresses that the “conditional measure within partitioning sets is inde-
pendent of the distribution of mass among them”.

Suppose that the data consists of an i.i.d. sample X1, . . . , Xn from a distribution P ,
which is a-priori modelled as a tail-free process. For each ε ∈ E∗, denote the number of
observations falling in Aε by

Nε: = #{1 ≤ i ≤ n:Xi ∈ Aε}. (5.3)

For each m the vector (Nε: ε ∈ Em) collects the counts of all partitioning sets at level
m. The following theorem shows that this vector contains all information (in the Bayesian
sense) about the probabilities

(
P (Aε): ε ∈ Em

)
of these sets: the additional information

about the precise positions of the Xi within the partitioning sets is irrelevant.

Theorem 5.5 If a random measure P is tail-free relative to a given sequence of partitions
Tm = {Aε: ε ∈ Em} that generates the Borel sets, then for every m and n the posterior
distribution of

(
P (Aε): ε ∈ Em

)
given an i.i.d. sample X1, . . . , Xn from P is the same as

the posterior distribution of this vector given (Nε: ε ∈ Em) defined in (5.3), a.s..
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Proof We may generate the variables P,X1, . . . , Xn in four steps:

(a) Generate the vector θ: =
(
P (Aε): ε ∈ Em

)
from its prior.

(b) Given θ generate a multinomial vector N = (Nε: ε ∈ Em) with parameters n and θ.
(c) Generate the process η: =

(
P (A|Aε):A ∈X , ε ∈ Em

)
.

(d) Given (N, η) generate for every ε ∈ Em a random sample of size Nε from the measure
P (·|Aε), independently across ε ∈ Em, and X1, . . . , Xn be the n values so obtained in
a random order.

For a tail-free measure P step (c) is independent of step (a). Furthermore, the fact that step
(b) uses only θ and not η means that N ⊥ η| θ. Finally, that step (d) does not use θ can be
expressed as X ⊥ θ| (N, η). Together these (in)dependencies imply that θ ⊥ X|N , which
is equivalent to the statement of theorem (see Exercise 5.3).

Thus the theorem is proved for this special representation of prior and data. Because the
assertion depends on the joint distribution of (P,X,N) only, it is true in general.

Given P the vector (Nε: ε ∈ Em) possesses a multinomial distribution with parame-
ters n and

(
P (Aε): ε ∈ Em

)
. Finding the posterior distribution of the latter vector of cell

probabilities therefore reduces to the finite dimensional problem of multinomial probabili-
ties. This not only makes computations easy, but also means that asymptotic properties of
the posterior distribution follow those of parametric problems, for instance easily leading
to consistency in an appropriate sense. The result also justifies the term “tail-free” in that
posterior computation can be carried out without looking at the tail of the prior.

Tail-free processes form a conjugate class of priors, in the sense that the posterior process
is again tail-free.

Theorem 5.6 (Conjugacy) The posterior process corresponding to observing an i.i.d. sam-
pleX1, . . . , Xn from a distributionP that is a-priori modelled by a tail-free prior is tail-free
(with respect to the same sequence of partitions as in the definition of the prior).

Proof We must show that the vectors (Vε0: ε ∈ Em) defined in (5.1) are mutually condi-
tionally independent across levels m, given the data. As noted in the proof of Theorem 5.3,
this is the case if (Vε0: ε ∈ Em) is conditionally independent of

(
P (Aε): ε ∈ Em

)
, for every

fixed m.
Together these vectors are equivalent to the vector

(
P (Aε): ε ∈ Em+1

)
. Therefore, by

Theorem 5.5 the joint posterior distribution of the latter vectors depends only on the cell
counts, N = (Nεδ: ε ∈ Em, δ ∈ E), and “conditionally given the data” can be interpreted
as “given this vector N”. Writing V = (Vεδ: ε ∈ Em, δ ∈ E) and θ = (θε: ε ∈ Em), for
θε = P (Aε), we can write the likelihood for (V, θ,N) as(

n

N

) ∏
ε∈Em,δ∈E

(θεVεδ)
Nεδ dΠ1(V ) dΠ2(θ).

Here Π1 and Π2 are the marginal (prior) distributions of V and θ, and we have used that
these vectors are independent under the assumption that P is tail-free. Clearly the likelihood
factorizes in parts involving (V,N) and involving (θ,N). This shows that V and θ are
conditionally independent given N .
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Exercises
5.1 Let G be a given continuous probability measure on R, identified by its cdf. Let the partition

at level m consist of the sets
(
G−1

(
(i − 1)2−m

)
, G−1(i2−m)

]
, for i = 1, 2 . . . , 2m. Let the

variables Vε0 be independent with mean 1/2 and define a random probability measure by (5.2).
Find EP (A), for a given measurable set.

5.2 Suppose that N ∼ MN(1, p1, . . . , pk) and given N = ej let X be drawn from a given proba-
bility measure Pj . Show that X ∼

∑
j pjPj . What is this latter measure if pj = P (Aj) and

Pj = P (·|Aj) for a given measure P and measurable partition X = ∪jAj?
5.3 Let θ, η,N,X be random elements defined on a common probability space with values in Polish

spaces. Show that

(a) η ⊥ θ if and only if Pr(η ∈ A| θ) = Pr(η ∈ A) almost surely, for all measurable sets A.
(b) θ ⊥ X|N if and only if Pr(θ ∈ A|N) = Pr(θ ∈ A|X,N) almost surely for all measurable

sets A.
(c) η ⊥ (θ,N) if and only if (η ⊥ θ|N and η ⊥ N ).
(d) if X ⊥ θ| (N, η) and θ ⊥ η|N , then θ ⊥ X|N .

Conclude that if η ⊥ (N, θ) and X ⊥ θ| (N, η), then θ ⊥ X|N . [The Polish assumptions
guarantee that conditional distributions are well defined. Conditional independence of X and
Y given Z means that Pr(X ∈ A, Y ∈ B|Z) = Pr(X ∈ A|Z) Pr(Y ∈ B|Z) almost surely,
for every measurable sets A,B. The conditional expectation Pr(X ∈ A|Z) is a measurable
function of Z such that E Pr(X ∈ A|Z)1C(Z) = Pr(X ∈ A,Z ∈ C) for every measurable
sets A,C.]
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Dirichlet process (2)

Consider observations X1, X2, . . . , Xn sampled independently from a distribution P that
was drawn from a Dirichlet prior distribution, i.e.

P ∼ DP(α), X1, X2, . . . |P iid∼P.

By an abuse of language, which we shall follow, such observations are often termed a sample
from the Dirichlet process.

6.1 Posterior distribution

One of the most remarkable properties of the Dirichlet process prior is that the posterior
distribution is again Dirichlet.

Theorem 6.1 (Conjugacy) The posterior distribution ofP given an i.i.d. sampleX1, . . . , Xn

from a DP(α) process is DP(α+
∑n

i=1 δXi).

Proof Because the Dirichlet process is tail free for any sequence of partitions by Theo-
rem 4.9, and a given measurable partition {A1, . . . , Ak} of X can be viewed as part of
a sequence of successive binary partitions, the posterior distribution of the random vector(
P (A1), . . . , P (Ak)

)
given X1, . . . , Xn is the same as the posterior distribution of this

vector given the vector N = (N1, . . . , Nk) of cell counts, defined by Nj = #(1 ≤ i ≤
n:Xi ∈ Aj). Given P the vector N possesses a multinomial distribution with parame-
ter
(
P (A1), . . . , P (Ak)

)
, which has a Dir

(
k;α(A1), . . . , α(Ak)

)
prior distribution. The

posterior distribution can be obtained using Bayes’ rule applied to these finite-dimensional
vectors, as in Proposition 4.8.

Theorem 6.1 can be remembered as the updating rule α 7→ α +
∑n

i=1 δXi for the base
measure of the Dirichlet distribution. In terms of the parameterization α ↔

(
M = |α|, ᾱ)

of the base measure, this rule takes the form

M 7→M + n and ᾱ 7→ M

M + n
ᾱ+

n

M + n
Pn, (6.1)

where Pn = n−1
∑n

i=1 δXi is the empirical distribution of X1, . . . , Xn. Because the mean
measure of a Dirichlet process is the normalized base measure, we see that

E
(
P (A)|X1, . . . , Xn

)
=

|α|
|α|+ n

ᾱ(A) +
n

|α|+ n
Pn(A). (6.2)

Thus the posterior mean (the “Bayes estimator” of P ) is a convex combination of the prior

28
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Figure 6.1 Cumulative distribution functions of 10 draws (black) from the Dirichlet
process with base measure 5N(0, 2), and of 10 draws (red) from the realization of
the posterior distribution based on a sample of size 100 from a N(2, 1) distribution.

mean ᾱ and the empirical distribution, with weights M/(M + n) and n/(M + n), re-
spectively. For a given sample it is close to the prior mean if M is large, and close to the
empirical distribution (which is based only on the data) if M is small. Thus M determines
the extent to which the prior controls the posterior mean — a Dirichlet process prior with
precision M contributes information equivalent to a sample of size M (although M is not
restricted to integer values). This invites to view M as the prior sample size, or the “number
of pre-experiment samples”. In this interpretation the sum M + n is the “posterior sample
size”.

For a fixed prior (i.e. fixed M ) the posterior mean (6.2) behaves asymptotically as n →
∞ like the empirical distribution Pn to the order O(n−1), a.s.. Thus it possesses the same
asymptotic properties as the empirical distribution. In particular, if X1, X2, . . . are sampled
from a “true distribution”P0, then the posterior mean will tend a.s. to P0.

In addition the full posterior distribution will contract to its mean, whenever the posterior
sample size tends to infinity. Indeed, by combining Theorem 6.1 and the formula for the
variance of a Dirichlet variable, we see, for P̃n the posterior mean (6.2),

var
(
P (A)|X1, . . . , Xn

)
=

P̃n(A)P̃n(Ac)

1 +M + n
≤ 1

4(1 +M + n)
. (6.3)

Consequently, if the data are sampled from a true distribution P0, then the posterior distri-
bution of P converges weakly to the measure degenerate at P0. Formally, we can can state
this as follows.

Corollary 6.2 For any set A the posterior distribution of P (A) given a random sample
X1, . . . , Xn of size n from a Dirichlet process tends in distribution to δP0(A) as n→∞ for
a.e. sequence X1, X2, . . . generated independently from a given distribution P0.
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6.2 Predictive distribution

The joint distribution of a sequence X1, X2, . . . generated from a Dirichlet process, has
a complicated structure, but can be conveniently described by its sequence of predictive
distributions: the laws of X1, X2|X1, X3|X1, X2, etc.

Because Pr(X1 ∈ A) = E Pr(X1 ∈ A|P ) = EP (A) = ᾱ(A), the marginal distribu-
tion of X1 is ᾱ.

BecauseX2| (P,X1) ∼ P and P |X1 ∼ DP(α+δX1
), we can apply the same reasoning

again, but now conditionally given X1, to see that X2|X1 follows the normalization of
α + δX1

. This is a mixture of α and δX1
with weights |α|/(|α| + 1) and 1/(|α| + 1),

respectively.
Repeating this argument, using that P |X1, . . . , Xi−1 ∼ DP(α +

∑i−1
j=1 δXj ), we find

that

Xi|X1, . . . , Xi−1 ∼


δX1

, with probability 1
|α|+i−1

,
...

...
δXi−1

, with probability 1
|α|+i−1

,

ᾱ, with probability |α|
|α|+i−1

.

(6.4)

Being a mixture of a product of identical distributions, the joint distribution of X1, X2, . . .
is exchangeable, so re-labeling does not affect the structure of (6.4).

The recipe (6.4) is called the generalized Polya urn scheme, and can be viewed as a
continuous analog of the familiar Polya urn scheme. Consider balls which can carry a con-
tinuum X of “colors”. Initially the “number of balls” isM = |α|, which may be any positive
number, and the colors are distributed according to ᾱ. We draw a ball from the collection,
observe its color X1, and return it to the urn along with an additional ball of the same
color. The total number of balls is now M + 1, and the colors are distributed according to
(Mᾱ + δX1

)/(M + 1). We draw a ball from this updated urn, observe its color X2, and
return it to the urn along with an additional ball of the same color. The probability of pick-
ing up the ball that was added after the first draw is 1/(M + 1), in which case X2 = X1;
otherwise, with probability M/(M + 1), we make a fresh draw from the original urn. This
process continues indefinitely, leading to the conditional distributions in (6.4).

6.3 Number of distinct values

It is clear from the preceding description that a realization of (X1, . . . , Xn) will have ties
(equal values) with positive probability. For instance, with probability at least

1

M + 1

2

M + 2
· · · n− 1

M + n− 1

allXi will even be identical. For simplicity assume that the base measureα is non-atomic, so
that the ith value Xi in the Polya scheme (6.4) is different from the previous X1, . . . , Xi−1

if it is drawn from ᾱ. The vector (X1, . . . , Xn) then induces a random partition {P1, . . . ,PKn}
of the set of indices {1, 2, . . . , n}, corresponding to the ties, and given this partition the Kn

distinct values are an i.i.d. sample from ᾱ.
The number of distinct values is remarkably small.
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For i ∈ N define Di = 1 if the ith observation Xi is a “new value”, i.e. if Xi 6∈
{X1, . . . , Xi−1}, and setDi = 0 otherwise. ThenKn =

∑n
i=1Di is the number of distinct

values among the first n observations.

Proposition 6.3 If the base measure α is nonatomic and of strength |α| = M , then
the variables D1, D2, . . . are independent Bernoulli variables with success probabilities
Pr(Di = 1) = M/(M + i− 1). Consequently, for fixed M , as n→∞,

(i) E(Kn) �M log n � var(Kn).
(ii) Kn/ log n→M , a.s.

(iii) (Kn − EKn)/ sd(Kn)→d Nor(0, 1).

Proof The first assertion follows, because given X1, . . . , Xi−1 the variable Xi is “new”
if and only if it is drawn from ᾱ, which happens with probability M/(M + i − 1). Then
assertion (i) can be derived from the exact formulas

E(Kn) =
n∑
i=1

M

M + i− 1
, var(Kn) =

n∑
i=1

M(i− 1)

(M + i− 1)2
.

Furthermore, assertion (ii) follows from Kolmogorov’s strong law of large numbers for in-
dependent variables, since

∞∑
i=1

var(Di)

(log i)2
=
∞∑
i=1

M(i− 1)

(M + i− 1)2(log i)2
<∞.

Next (iii) is a consequence of the Lindeberg central limit theorem.

Thus the number of distinct values in a (large) sample from a distribution taken from a
fixed Dirichlet prior is logarithmic in the sample size. Furthermore, the fluctuations of this
number around its mean are of the order

√
log n.

The following proposition gives the distribution of the partition {P1, . . . ,PKn} induced
by (X1, . . . , Xn). (This can be more formally defined as the equivalence classes under the
relation i ≡ j iff Xi = Xj .)

Proposition 6.4 A random sample X1, . . . , Xn from a Dirichlet process with nonatomic
base measure of strength |α| = M induces a given partition of {1, 2, . . . , n} into k sets of
sizes n1, . . . , nk with probability equal to

MkΓ(M)
∏k
j=1 Γ(nj)

Γ(M + n)
. (6.5)

Proof By exchangeability the probability depends on the sizes of the partitioning sets only.
The probability that the partitioning set of size n1 consists of the first n1 variables, the one
of size n2 of the next n2 variables, etc. can be obtained by multiplying the appropriate
conditional probabilities for the consecutive draws in the Polya urn scheme in their natural
order of occurrence. For rj =

∑j
l=1 nl, it is given by

M

M

1

M + 1

2

M + 2
· · · n1 − 1

M + n1 − 1

M

M + n1

1

M + n1 + 1
× · · ·

· · · × M

M + rk−1

1

M + rk−1 + 1
· · · nk − 1

M + rk−1 + nk − 1
.
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This can be rewritten as in the proposition.

6.4 Mixtures of Dirichlet processes

Application of the Dirichlet prior requires a choice of a base measureα. It is often reasonable
to choose the center measure ᾱ from a specific family such as the normal family, but then
the parameters of the family must still be specified. It is natural to give these a further prior.
Similarly, one may put a prior on the precision parameter |α|.

For a base measure αξ that depends on a parameter ξ the Bayesian model then consists of
the hierarchy

X1, . . . , Xn|P, ξ iid∼ ∼ P, P | ξ ∼ DP(αξ), ξ ∼ π. (6.6)

We denote the induced (marginal) prior on P by MDP(αξ, ξ ∼ π). Many properties of this
mixture Dirichlet prior follow immediately from those of a Dirichlet process. For instance,
any P following an MDP is almost surely discrete. However, unlike a Dirichlet process, an
MDP is not tail free.

Given ξ we can use the posterior updating rule for the ordinary Dirichlet process, and
obtain that

P | ξ,X1, . . . , Xn ∼ DP(αξ + nPn).

To obtain the posterior distribution of P given X1, . . . , Xn, we need to mix this over ξ
relative to its posterior distribution given X1, . . . , Xn. By Bayes’s theorem the latter has
density proportional to

ξ 7→ π(ξ) p(X1, . . . , Xn| ξ). (6.7)

Here the marginal density of X1, . . . , Xn given ξ (the second factor) is described by the
generalized Polya urn scheme (6.4) with αξ instead of α. In general, this has a somewhat
complicated structure due to the ties between the observations. However, for a posterior
calculation we condition on the observed data X1, . . . , Xn, and know the partition that
they generate. Given this information the density takes a simple form. For instance, if the
observations are distinct (which happens with probability one if the observations actually
follow a continuous distribution), then the Polya urn scheme must have simply generated a
random sample from the normalized base measure ᾱξ, in which case the preceding display
becomes

π(ξ)
n∏
i=1

dαξ(Xi)
n∏
i=1

1

|αξ|+ i− 1
,

for dαxi a density of αξ. Further calculations depend on the specific family and its parame-
terization.

Typically the precision parameter M and center measure G in α = MG will be mod-
elled as independent under the prior. The posterior calculation then factorizes in these two
parameters. To see this, consider the following scheme to generate the parameters and ob-
servations:

(i) Generate M from its prior.
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(ii) Given M generate a random partition P = {P1, . . . ,PKn} according to the distribu-
tion given in Proposition 6.4.

(iii) Generate G from its prior, independently of (M,P).
(iv) Given (P, G) generate a random sample of size Kn from G, independently of M , and

set Xi with i ∈ Pj equal to the jth value in this sample.

By the description of the Polya urn scheme this indeed gives a sample X1, . . . , Xn from
the mixture of Dirichlet processes MDP(MG,M ∼ π,G ∼ π). We may now formally
write the density of (M,P, G,X1, . . . , Xn) in the form, with π abusively denoting prior
densities for both M and G and p conditional densities of observed quantities,

π(M) p(P|M)π(G) p(X1, . . . , Xn|G,P).

Since this factorizes in terms involving M and G, these parameters are also independent
under the posterior distribution, and the computation of their posterior distributions can be
separated.

The term involving M depends on the data through Kn only (the latter variable is suffi-
cient for M ). Indeed, by Proposition 6.4 it is proportional to,

M 7→ π(M)
MKnΓ(M)

Γ(M + n)
∝ π(M)MKn

∫ 1

0

ηM−1(1− η)n−1 dη.

Rather than by (numerically) integrating this expression, the posterior density is typically
computed by simulation. xsSuppose that M ∼ Ga(a, b) a priori, and consider a fictitious
random vector (M,η) with 0 ≤ η ≤ 1 and joint (Lebesgue) density proportional to

π(M)MKnηM−1(1− η)n−1 ∝Ma+Kn−1e−M(b−log η)η−1(1− η)n−1.

Then by the preceding display the marginal density of M is equal to its posterior density
(given Kn, which is fixed for the calculation). Thus simulating from the distribution of
(M,η) and dropping η simulates M from its posterior distribution. The conditional distri-
butions are given by

M | η,Kn ∼ Ga(a+Kn, b− log η), η|M,Kn ∼ Be(M,n). (6.8)

We can use these in a Gibbs sampling scheme: given an arbitrary starting value η0 we gen-
erate a sequence M1, η1,M2, η2,M3, . . ., by repeatedly generating M from its conditional
distribution given (η,Kn) and η from its conditional distribution given (M,Kn), each time
setting the conditioning variable (η or M ) equal to its last value. After an initial burn-in the
valuesMk,Mk+1, . . .will be approximately from the posterior distribution ofM givenKn.

6.5 Dirichlet process mixtures

Because the Dirichlet process is discrete, it is a useless prior when we wish to estimate a
density. This can be remedied by convolving it with a kernel. For each θ in a parameter set
Θ let x 7→ ψ(x, θ) be a probability density function, measurable in its two arguments. For
a measure F on Θ define a mixture density by

pF (x) =

∫
ψ(x, θ) dF (θ).
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By equipping F with a prior, we obtain a prior on densities. Densities pF with F following
a Dirichlet process prior are known as Dirichlet mixtures. If the kernel also depends on
an additional parameter ϕ ∈ Φ, giving mixtures pF,ϕ(x) =

∫
ψ(x, θ, ϕ) dF (θ), it is more

appropriate to call the result a “mixture of Dirichlet mixture”, but the nomenclature Dirichlet
mixture even for this case seems more convenient.

In this section we discuss methods of posterior computation for these mixtures. For x 7→
ψ(x; θ, ϕ) a probability density function (relative to a given σ-finite dominating measure
ν), consider

Xi
iid∼ pF,ϕ(x) =

∫
ψ(x; θ, ϕ) dF (θ), i = 1, . . . , n, (6.9)

We equip F and ϕ with independent priors F ∼ DP(α) and ϕ ∼ π. The resulting model
can be equivalently written in terms of n latent variables θ1, . . . , θn as

Xi| θi, ϕ, F ind∼ψ(·; θi, ϕ), θi|F,ϕ iid∼F, F ∼ DP(α), ϕ ∼ π. (6.10)

The posterior distribution of any object of interest can be described in terms of the posterior
distribution of (F,ϕ) given X1, . . . , Xn. The latent variables θ1, . . . , θn help to make the
description simpler, since F | θ1, . . . , θn ∼ DP(α +

∑n
i=1 δθi), and given θ1, . . . , θn, the

observations X1, . . . , Xn and F are independent. Hence the conditional distribution of F
given θ1, . . . , θn, X1, . . . , Xn is free of the observations. In particular, for any measurable
function ψ, in view of Exercise 4.1,

E
(∫

ψ dF |ϕ, θ1, . . . , θn, X1, . . . , Xn

)
=

1

|α|+ n

[∫
ψ dα+

n∑
j=1

ψ(θj)
]
. (6.11)

The advantage of this representation is that the infinite-dimensional parameter F has been
eliminated. To compute the posterior expectation it now suffies to average out the right hand
side of (6.11) with respect to the posterior distribution of (θ1, . . . , θn), and that of ϕ.

Example 6.5 (Density estimation) The choice ψ(θ) = ψ(x, θ, ϕ) in (6.11) gives the
density

∫
ψ(x, θ, ϕ) dF (θ) = pF,ϕ(x). Thus the posterior mean density satisfies

E
(
pF,ϕ(x)|ϕ,X1, . . . , Xn

)
=

1

|α|+ n

[∫
ψ(x; θ, ϕ) dα(θ)+E

( n∑
j=1

ψ(x; θj, ϕ)|X1, . . . , Xn

)]
.

This consists of a part attributable to the prior and a part due to observations. In practice the
latter is computed by simulating many samples (θ1 . . . , θn) from its posterior distribution.

Analytical formulas for the posterior distribution corresponding to a Dirichlet mixture
are possible, but too unwieldy for practical implementation. Computation is typically done
by simulation. The next theorem explains a Gibbs sampling scheme to simulate from the
posterior distribution of (θ1, . . . , θn), based on a weighted generalized Polya urn scheme.
Inclusion of a possible parameter ϕ and other hyperparameters is tackled in the next section.

A Gibbs sampler in general is a method for simulating from the joint distribution of a
number of variables. It simply updates the variables one-by-one by simulating a new variable
from its conditional distribution given the other variables. By repeating this indefinitely a
sequence of vectors is created that after an initial “burn-in period” can be viewed as sampled
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from the target distribution. More precisely, the sequence of vectors forms a Markov chain
with the target distribution as its stationary distribution.

We use the subscript −i to denote every index j 6= i, and θ−i = (θj: j 6= i).

Theorem 6.6 (Gibbs sampler) The conditional posterior distribution of θi is given by:

θi| θ−i, ϕ,X1, . . . , Xn ∼
∑
j 6=i

qi,jδθj + qi,0Gb,i, (6.12)

where (qi,j: j ∈ {0, 1, . . . , n} − {i}) is the probability vector satisfying

qi,j ∝
{
ψ(Xi; θj, ϕ), j 6= i, j ≥ 1,∫
ψ(Xi; θ, ϕ) dα(θ), j = 0,

(6.13)

and Gb,i is the “baseline posterior measure” given by

dGb,i(θ|ϕ,Xi) ∝ ψ(Xi; θ, ϕ) dα(θ). (6.14)

Proof Since the parameter ϕ is fixed throughout, we suppress it from the notation. For
measurable sets A and B,

E
(
1lA(Xi)1lB(θi)| θ−i, X−i

)
= E

(
E
(
1lA(Xi)1lB(θi)|F, θ−i, X−i

)
| θ−i, X−i

)
.

Because (θi, Xi) is conditionally independent of (θ−i, X−i) given F , the inner conditional
expectation is equal to E

(
1lA(Xi)1lB(θi)|F

)
=
∫ ∫

1lA(x)1lB(θ)ψ(x; θ) dµ(x) dF (θ).
In the outer layer of conditioning the variables X−i are superfluous, by the conditional
independence of F and X−i given θ−i. Therefore, by Exercise 4.1 the preceding display is
equal to

1

|α|+ n

∫ ∫
1lA(x)1lB(θ)ψ(x; θ) dµ(x) d

(
α+

∑
j 6=i

δθj

)
(θ).

This determines the joint conditional distribution of (Xi, θi) given (θ−i, X−i). By Bayes’s
rule (applied to this joint law conditionally given (θ−i, X−i)) we infer that

Pr
(
θi ∈ B|Xi, θ−i, X−i

)
=

∫
B
ψ(Xi; θ) d(α+

∑
j 6=i δθj )(θ)∫

ψ(Xi; θ) d(α+
∑

j 6=i δθj )(θ)
.

This in turn is equivalent to the assertion of the theorem.

6.5.1 MCMC method

In this section we present an algorithm to simulate from the posterior distribution in the
MDP model:

Xi| θi, ϕ,M, ξ, F ind∼ψ(·; θi, ϕ), θi|F,ϕ,M, ξ iid∼F, F |M, ξ ∼ DP(M,Gξ),

where ϕ, M and ξ are independently generated hyperparameters. The basic algorithm uses
the Gibbs sampling scheme of Theorem 6.6 to generate θ1, . . . , θn given X1, . . . , Xn in
combination with the Gibbs sampler for the posterior distribution ofM given in Section 6.4,
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and/or additional Gibbs steps. The prior densities of the hyperparameters are denoted by a
generic π.

Algorithm Generate samples by sequentially executing steps (i)–(iv) below:

(i) Given the observations andϕ,M and ξ, update each θi sequentially using (6.12) inside
a loop i = 1, . . . , n.

(ii) Update ϕ ∼ p(ϕ| θ1, . . . , θn, X1, . . . , Xn) ∝ π(ϕ)
∏n
i=1 ψ(Xi; θi, ϕ).

(iii) Update ξ ∼ p(ξ| θ1, . . . , θn) ∝ π(ξ)p(θ1, . . . , θn| ξ), where the marginal distribution
of (θ1, . . . , θn) is as in the Polya scheme (6.4).

(iv) Update M and next the auxiliary variable η using (6.8), for Kn the number of distinct
values in {θ1, . . . , θn}.

Exercises
6.1 Letψ be a given bounded measurable function. Show that if P ∼ DP(α) andX1, . . . , Xn|P iid∼P ,

then the posterior distribution of
∫
ψ dP given X1, . . . , Xn tends in distribution to a Dirac mea-

sure at
∫
ψ dP0 for a.e. sequence X1, X2, . . . generated iid from P0.

6.2 In the model (6.6) assume that the total mass |αξ| is bounded uniformly in ξ. Show that the
posterior distribution of P (A) is consistent.

6.3 Simulate and plot the cumulative distribution functions of realizations of some posterior Dirich-
let processes. First use several fixed prior strengths. Second put a Gamma prior on the prior
strength.
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Consistency

7.1 Definition

For every n ∈ N letX(n) be an observation in a sample space (X(n),X (n)) with distribution
P

(n)
θ indexed by a parameter θ belonging to a metric space Θ. For instance X(n) may be

sample of size n from a given distribution Pθ, and (X(n),X (n), P
(n)
θ ) the corresponding

product probabiity space. Given a prior Π on the Borel sets of Θ, let Πn(·|X(n)) be a
version of the posterior distribution.

Definition 7.1 (Posterior consistency) The posterior distribution Πn(·|X(n)) is said to be
(weakly) consistent at θ0 ∈ Θ if Πn

(
θ: d(θ, θ0) > ε|X(n)

)
→ 0 in P (n)

θ0
-probability, as

n → ∞, for every ε > 0. The posterior distribution is said to be strongly consistent at
θ0 ∈ Θ if the convergence is in the almost sure sense.

Both forms of consistency are of interest. Naturally, strong consistency is more appealing
as it is stronger, but it may require more assumptions. To begin with it presumes that the
observations X(n) are defined on a common underlying probability space (with for each n
the measure P (n)

θ equal to the image P (∞)
θ ◦ (X(n))−1 of the probability measure P (∞)

θ

on this space), or at least that their joint distribution is defined, whereas weak consistency
makes perfect sense without any relation between the observations across n.

Consistency entails that the full posterior distribution contracts to within arbitrarily small
distance ε to the true parameter θ0. It can also be summarized as saying that the posterior
distribution converge weakly to a Dirac measure at θ0, in probability or almost surely.

Naturally an appropriate summary of its location should provide a point estimator that is
consistent in the usual sense of consistency of estimators. The following proposition gives
a summary that works without further conditions. (The value 1/2 could be replaced by any
other number between 0 and 1.)

Proposition 7.2 (Point estimator) Suppose that the posterior distribution Πn(·|X(n)) is
consistent (or strongly consistent) at θ0 relative to the metric d on Θ. Then θ̂n defined as
the center of a (nearly) smallest ball that contains posterior mass at least 1/2 satisfies
d(θ̂n, θ0)→ 0 in P (n)

θ0
-probability (or almost surely [P

(∞)
θ0

], respectively).

Proof For B(θ, r) = {s ∈ Θ: d(s, θ) ≤ r} the closed ball of radius r around θ ∈ Θ, let
r̂n(θ) = inf{r: Πn

(
B(θ, r)|X(n)

)
≥ 1/2}, where the infimum over the empty set is∞.

Taking the balls closed ensures that Πn

(
B(θ, r̂n(θ))|X(n)

)
≥ 1/2, for every θ. Let θ̂n be

a near minimizer of θ 7→ r̂n(θ) in the sense that r̂n(θ̂n) ≤ infθ r̂n(θ) + 1/n.

37
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By consistency Πn

(
B(θ0, ε)|X(n)

)
→ 1 in probability or almost surely, for every ε > 0.

As a first consequence r̂n(θ0) ≤ ε with probability tending to one, or eventually almost
surely, and hence r̂n(θ̂n) ≤ r̂n(θ0) + 1/n is bounded by ε + 1/n with probability tend-
ing to one, or eventually almost surely. As a second consequence the balls B(θ0, ε) and
B
(
θ̂n, r̂n(θ̂n)

)
cannot be disjoint, as their union would contain mass nearly 1 + 1/2. This

shows that d(θ0, θ̂n) ≤ ε + r̂n(θ̂n) with probability tending to one, or eventually almost
surely, which is further bounded by 2ε+ 1/n.

An alternative point estimator is the posterior mean
∫
θ dΠn(θ|X(n)) (available when

Θ has a vector space structure). This is attractive for computational reasons, as it can be
approximated by the average of the output of a simulation run. Usually the posterior mean is
also consistent, but in general this may require additional assumptions. For instance, weak
convergence to a Dirac measure on a Euclidean space does not imply convergence of mo-
ments.

7.2 Doob’s theorem

Doob’s theorem basically says that for any fixed prior, the posterior distribution is consistent
at every θ except those in a “bad set” that is “small” when seen from the prior point of view.
We first present the theorem, and next argue that the message is not as positive as it may first
seem. Because then it is not as useful after all, we state only the result for i.i.d. observations
and omit the proof. (See e.g. the book Asymptotic Statistics, Chapter 10, by van der Vaart.)

Theorem 7.3 (Doob) Let (X,X , Pθ: θ ∈ Θ) be experiments with (X,X ) a standard
Borel space and Θ a Borel subset of a Polish space such that θ 7→ Pθ(A) is Borel mea-
surable for every A ∈ X and the map θ 7→ Pθ is one-to-one. Then for any prior Π on
the Borel sets of Θ the posterior Πn(·|X1, . . . , Xn) in the model X1, . . . , Xn| θ iid∼ pθ and
θ ∼ Π is strongly consistent at θ, for Π-almost every θ.

Doob’s theorem is remarkable in many respects. Virtually no condition is imposed on
the model or the parameter space, but nevertheless a Bayesian will “almost always” have
consistency, as long as she is certain of her prior. Since null sets are negligibly small, a
troublesome value of the parameter “will not obtain”.

However, such a view is very dogmatic. No one in practice can be certain of the prior, and
troublesome values of the parameter may really obtain. In fact, the Π-null set could be very
large if not judged from the point of view of the prior. To see an extreme example, consider a
prior that assigns all its mass to some fixed point θ0. The posterior then also assigns mass one
to θ0 and hence is inconsistent at every θ 6= θ0. Doob’s theorem is still true, of course; the
point is that the set {θ: θ 6= θ0} is a null set under the present prior. Thus Doob’s theorem
should not create a false sense of satisfaction about Bayesian procedures in general. It is
important to know, for a given “reasonable” prior, at which parameter values consistency
holds. Consistency at every parameter in a set of prior probability one is not enough.

An exception is the case that the parameter set Θ is countable. Then Doob’s theorem
shows that consistency holds at θ as long as Π assigns positive mass to it. More generally,
consistency holds at any atom of a prior. Howeer, even in these cases the theorem is of
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“asymptopia” type only, in that at best it gives convergence without quantification of the
approximation error, or uniformity in the parameter.

7.3 Schwartz’s theorem and its extensions

In this section we take the parameter equal to a density, relative to a given dominating mea-
sure ν on the sample space (X,X ). We denote this parameter by p rather than θ, and the
corresponding parameter set by P . We consider estimating p based on a random sample
X1, . . . , Xn of observations, with true density p0. As notational convention we denote a
density by a lower case letter p and the measure induced by it by the uppercase letter P . The
parameter set is equipped with a metric that is unspecified for the moment.

A key condition for posterior consistency is that the prior assigns positive probability
to any Kullback-Leibler (or KL) neighborhood of the true density. The Kullback-Leibler
divergence between two densities p0 and p is defined as

K(p0; p) =

∫
p0 log(p0/p) dν.

Note that it is asymmetric in its arguments. For a set P0 of densities we write K(p0;P0) =
infp∈P0

K(p0; p) for the minimum divergence.

Definition 7.4 A density p0 is said to possess the Kullback-Leibler property relative to
a prior Π if Π

(
p:K(p0; p) < ε

)
> 0 for every ε > 0. This is denoted p0 ∈ KL(Π).

Alternatively, we say that p0 belongs to the Kullback-Leibler support of Π.1

Schwartz’s theorem is the basic result on posterior consistency for dominated models. It
has two conditions: the true density p0 should be in the KL-support of the prior, and the
hypothesis p = p0 should be testable against complements of neighborhoods of p0. The first
is clearly a Bayesian condition, but the second may be considered a condition to enable re-
covery of p0 by any statistical method. Although in its original form the theorem has limited
applicability, extensions go far deeper, and lead to a rich theory of posterior consistency.
Also the theory of convergence rates, developed in Chapter 9, uses similar arguments.

In the present context tests φn are understood to refer both to measurable mappings
φn:Xn → [0, 1], and to the corresponding statistics φn(X1, . . . , Xn). The interpretation
of a test φn is that a null hypothesis is rejected with probability φn, whence P nφn is the
probability of rejection if the data are sampled from P . It follows that P n

0 φn is the proba-
bility of a type I error for testing H0:P = P0, and P n(1− φn) is the probability of a type
II error if P 6= P0.

Theorem 7.5 (Schwartz) If p0 ∈ KL(Π) and for every neighbourhood U of p0 there exist
tests φn such that P n

0 φn → 0 and supp∈Uc P
n(1−φn)→ 0, then the posterior distribution

Πn(·|X1, . . . , Xn) in the model X1 . . . , Xn| p iid∼ p and p ∼ Π is strongly consistent at p0.

Proof It must be shown that Πn(U c|X1, . . . , Xn) → 0 almost surely, for every given
neighborhood U of p0. We shall show that it is not a loss of generality to assume that the
1 The Kullback-Leibler divergence is typically measurable in its second argument, and then Kullback-Leibler

neighborhoods are measurable in the space of densities. If not, then we interpret the KL-property in the sense
of inner probability: it suffices that there exists measurable sets B ⊂

{
p:K(p0; p) < ε

}
with Π(B) > 0.
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tests φn as in the theorem have exponentially small error probabilities in the sense that, for
some positive constant C,

P n
0 φn ≤ e−Cn, sup

p∈Uc
P n(1− φn) ≤ e−Cn.

Then the theorem follows from an application of Theorem 7.8 below, with Pn = P for
every n.

There exists n0 such that P n0
0 φn0

< 1/4 < 3/4 < Qn0φn0
, for every Q ∈ U c. For a

given n divide the observations in l: = bn/n0c � n groups of size n0, and a remainder. The
variables Y1, . . . , Yl obtained by applying the test φn0

to these n0 groups are independent
with mean smaller than 1/4 under P and bigger than 3/4 under every Q. Consider the test
that rejects if their average Ȳn0

is bigger than 1/2. Because 0 ≤ Yi ≤ 1, we can apply
Hoeffding’s inequality, Lemma 7.10, to see that this has error probabilities of the desired
type, first to the events {Ȳn > 1/2} ⊂ {Ȳn − E0Ȳn > 1/4} under P n

0 , and a second time
to the events {Ȳn < 1/2} ⊂ {Ȳn − EQȲn < −1/4} under Qn.

Example 7.6 (Finite-dimensional models) If the model is smoothly parameterized by a
finite-dimensional parameter that varies over a bounded set, then consistent tests as required
in Schwartz’s theorem, Theorem 7.5, exist under mere regularity conditions on the model.
For unbounded Euclidean sets some minor conditions are needed.

Example 7.7 (Consistency for weak topology) The weak topology on the set of probabil-
ity measures can also be viewed as a topology on the corresponding densities P . For this
topology consistent tests as in Schwartz’s theorem, Theorem 7.5, always exist. Therefore,
the posterior distribution is consistent for the weak topology at any density p0 that has the
Kullback-Leibler property for the prior.

To construct the tests observe that finite intersections of sets of the type U =
{
p:Pψ <

P0ψ+ ε
}

form a base for the weak neighborhood system at a probability measure P0, when
ψ varies over the continuous functions ψ:X→ [0, 1] and ε > 0 (see Lemma 7.11). Given a
test for any neighbourhood of this type, we can form a test for finite intersections by rejecting
P0 as soon as P0 is rejected for one of the finitely many neighbourhoods. The resulting error
probabilities are bounded by the sum of the error probabilities of the finitely many tests, and
hence will tend to zero.

Now by Hoeffding’s inequality, Lemma 7.10, for ψ:X→ [0, 1] the test

φn = 1l
{ 1

n

n∑
i=1

ψ(Xi) > P0ψ + ε/2
}

has type I error satisfying P n
0 φn ≤ e−nε

2/2. Furthermore, since P0ψ−Pψ < −ε whenever
P ∈ U c, we have P n(1− φn) ≤ P n

(
n−1

∑n
i=1(ψ(Xi)− Pψ) < −ε/2

)
for P ∈ U c and

this is bounded by e−nε
2/2, by a second application of Hoeffding’s inequality.

In its original form Schwartz’s theorem requires that the complement of every neighbour-
hood of p0 can be “tested away”. For strong metrics, such as the L1-distance, such tests may
not exist, even though the posterior distribution may be consistent. The following extension
of the theorem is useful for these situations. The idea is that the posterior distribution will
always give vanishing mass to sets of very small prior mass. Such sets need not be tested.
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Theorem 7.8 (Extension of Schwartz’s theorem) If p0 ∈ KL(Π) and for every neighbour-
hood U of p0 there exist a constant C > 0, measurable sets Pn ⊂ P and tests φn such
that

Π(P − Pn) < e−Cn, P n
0 φn ≤ e−Cn, sup

p∈Pn∩Uc
P n(1− φn) ≤ e−Cn,

then the posterior distribution Πn(·|X1, . . . , Xn) in the model X1 . . . , Xn| p iid∼ p and p ∼
Π is strongly consistent at p0.

Proof We first show that for any ε > 0 eventually a.s. [P∞0 ]:∫ n∏
i=1

p

p0

(Xi) dΠ(p) ≥ Π
(
p:K(p0; p) < ε)e−nε. (7.1)

For any set P0 ⊂ P the integral is bounded below by Π(P0)
∫ ∏n

i=1(p/p0)(Xi) dΠ0(p),
for Π0 the renormalized restriction Π(· ∩ P0)/Π(P0) to P0. Therefore the logarithm of the
integral is bounded below by

log Π(P0) + log

∫ n∏
i=1

p

p0

(Xi) dΠ0(p) ≥ log Π(P0) +

∫
log

n∏
i=1

p

p0

(Xi) dΠ0(p),

by Jensen’s inequality applied to the logarithm (which is concave). The second term is n
times the average

1

n

n∑
i=1

∫
log

p

p0

(Xi) dΠ0(p)→ P0

∫
log

p

p0

dΠ0(p), a.s.

by the strong law of large numbers. The right side is −
∫
K(p0; p) dΠ0(p), and is strictly

bigger than −ε for P0 =
{
p:K(p0; p) < ε}. This implies (7.1).

Next fix a neighbourhood U of p0, and let C, Pn and the tests φn be as in the statement
of the theorem. We shall show separately that Πn(Pn ∩ U c|X1, . . . , Xn) → 0 and that
Πn(Pcn|X1, . . . , Xn)→ 0, almost surely.

In view of Bayes’s rule (2.1),

Πn(Pn ∩ U c|X1, . . . , Xn) ≤ φn +
(1− φn)

∫
Pn∩Uc

∏n
i=1(p/p0)(Xi) dΠ(p)∫ ∏n

i=1(p/p0)(Xi) dΠ(p)
.

The expectation of the first term is bounded by e−Cn by assumption, whence
∑

n P
n
0 (φn >

δ) <
∑

n δ
−1e−Cn <∞, by Markov’s inequality. This implies that φn → 0 almost surely,

by the Borel-Cantelli lemma.
By (7.1) and the fact that p0 is in the Kullback-Leibler support of Π the denominator of

the second term is bounded below by a constant times e−nε eventually a.s., for every given
ε. Thus the left side of the display tends to zero if enε times the numerator tends to zero. By
Fubini’s theorem,

P n
0

(
(1− φn)

∫
Pn∩U

n∏
i=1

p

p0

(Xi) dΠ(p)
)

=

∫
Pn∩Uc

P n
0

[
(1− φn)

n∏
i=1

p

p0

(Xi)
]
dΠ(p)

≤
∫
Pn∩Uc

P n(1− φn) dΠ(p) ≤ e−Cn.
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Since
∑

n e
nεe−Cn < ∞ if ε < C, the desired convergence of enε times the numerator

follows by Markov’s inequality.
Finally we apply the argument of the preceding paragraph with Pn ∩ U c replaced by Pcn

and the tests φn = 0 instead of the given tests. The “power” P n(1 − φn) of this test is
equal to one, but the final term of the preceding display can be bounded by Π(Pcn), which is
also of the order e−Cn, by assumption. This shows that Πn(Pcn|X1, . . . , Xn)→ 0, almost
surely.

The construction of appropriate tests is deferred to a later chapter. For a strong metric,
such as the L1-distance, their existence is not automatic, but they do exist for models that
are not too big. We close this section by stating a theorem in this direction; its proof will be
derived later.

We write N(ε,P, d) for the minimal number of d-balls of radius ε needed to cover a set
P . This is called the covering number of P and is discussed in Chapter 8.

Theorem 7.9 (Consistency in total variation) The posterior distribution is strongly consis-
tent relative to theL1-distance at every p0 ∈ KL(Π) if for every ε > 0 there exist a partition
P = Pn,1 ∪ Pn,2 (which may depend on ε) such that, for constants C > 0, ξ < 1/2, and
sufficiently large n,

(i) Π(Pn,2) ≤ e−Cn.
(ii) logN

(
ε,Pn,1, ‖ · ‖1

)
≤ ξnε2.

7.4 COMPLEMENTS

Lemma 7.10 (Hoeffding) For any independent random variables X1, . . . , Xn such that
a ≤ Xi ≤ b for every i, and any t > 0,

P
(
X̄n − EX̄n ≥ t

)
≤ e−2nt2/(b−a)2 .

Proof By Markov’s inequality applied to the variable ehn(X̄n−EX̄n), for h > 0 to be chosen
later, we obtain

P

(
n∑
i=1

(Xi − E(Xi)) ≥ t
)
≤ e−hntE

n∏
i=1

eh(Xi−E(Xi)).

By independence of the Xi the order of expectation and product on the right side can be
swapped. By convexity of the exponential function ehX ≤ ((b−X)eha+(X−a)ehb)/(b−
a) whenever a ≤ X ≤ b, whence, by taking expectation,

E(ehX) ≤ eha b− E(X)

b− a
+ ehb

E(X)− a
b− a

= eg(ξ),

where g(ξ) = log(1− p+ peξ)− pξ, for ξ = (b− a)h and p = (E(X)− a)/(b− a).
Now g(0) = 0, g′(0) = 0 and g′′(ξ) = (1− p)peξ/(1− p+ peξ)2 ≤ 1

4
for all ξ, so that

a second order Taylor’s expansion gives g(ξ) ≤ ξ2/8. Combining this with the preceding
displays, we obtain, for any h > 0,

P
( n∑
i=1

(Xi − E(Xi)) ≥ t
)
≤ exp(−hnt+ h2n(b− a)2).
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The result follows upon choosing h = 4t/(b− a)2.

Lemma 7.11 The neighbourhoods {P :
∫
ψ dP <

∫
ψ dP0 + c} for ψ ranging over the

bounded, continuous functions ψ:X→ R and c > 0 form a subbasis for the weak topology
on the set M(X) of probability measures on a Polish space X. In other words, every open
ball around P0 is the union of finite intersections of neighbourhoods of this type.

Proof This is general topology applied to the definition of the weak topology as the topol-
ogy generated by the maps P 7→

∫
ψ dP , for the given set of ψ.

Exercises
7.1 Show that the posterior distribution Πn(·|X(n)) is consistent (or strongly consistent, respec-

tively) at θ0 if and only if Πn(·|X(n)) →d δθ0 in P (n)
θ0

-probability (or almost surely [P
(∞)
θ0

],
respectively), as n→∞.

7.2 Suppose that the posterior distribution Π(·|X(n)) of a probability density is consistent relative
to the L1-distance on the parameter set of densities. Show that the posterior mean density x 7→∫
p(x) dΠn(p|X(n)) is consistent in L1, as a point estimator for a density.
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Tests and metric entropy

This chapter presents results on the construction of exponentially powerful hypothesis tests.
Such tests play an important role in consistency and rate theorems for posterior distributions.

8.1 Minimax theorem

Let P be a probability measure and let Q be a collection of probability measures on a
measurable space (X,X ). The minimax risk for testing P versusQ is defined by

π(P,Q) = inf
φ

(
Pφ+ sup

Q∈Q
Q(1− φ)

)
, (8.1)

where the infimum is taken over all tests, i.e. measurable functions φ:X → [0, 1]. The
problem is to give a manageable bound on this risk, or equivalently on its two components,
the probabilities of errors of the first kind Pφ and of the second kind Q(1− φ). We assume
throughout that P and Q are dominated by a σ-finite measure µ, and denote by p and q the
densities of the measures P and Q. Let conv(Q) denote the convex hull ofQ: the set of all
finite convex combinations

∑k
i=1 λiQi of elements Qi ∈ Q, where (λ1, . . . , λk) ∈ Sk.

The Hellinger affinity of two densities p and q is defined as

ρ1/2(p, q) =

∫ √
p
√
q dµ.

It is related to the Hellinger distance h(p, q) between p and q, whose square is defined by

h2(p, q) =

∫ (√
p−√q)2 dµ = 2− 2ρ1/2(p, q). (8.2)

Proposition 8.1 (Minimax theorem for testing) For dominated probability measures P
andQ

π(P,Q) = 1− 1
2
‖P − conv(Q)‖1 ≤ sup

Q∈conv(Q)

ρ1/2(p, q).

Proof The set of test-functions φ can be identified with the nonnegative functions in the
unit ball Φ of L∞(X,X , µ), which is dual to L1(X,X , µ), since µ is σ-finite. The set Φ is
compact and Hausdorff with respect to the weak∗-topology, by the Banach-Alaoglu theorem
(cf. Theorem 3.15 of Rudin (1973)) and weak-* closure of the set of positive functions.
Because the map (φ,Q) 7→ Pφ + Q(1 − φ) from L∞(X,X , µ) × L1(X,X , µ) to R is

44
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convex and weak∗-continuous in φ and linear inQ, the minimax theorem (see Theorem 8.11)
gives

inf
φ∈Φ

sup
Q∈conv(Q)

(
Pφ+Q(1− φ)

)
= sup

Q∈conv(Q)

inf
φ∈Φ

(
Pφ+Q(1− φ)

)
.

The expression on the l.h.s. is the minimax testing risk π(P,Q), as replacingQ by its convex
hull does not change the minimax testing risk.

For fixed p, q the expression Pφ + Q(1 − φ) = 1 +
∫
φ(p − q) dµ is minimized over

all test functions by choosing φ the minimal possible value 0 if p− q > 0 and equal to the
maximal value 1 if p−q < 0. In other words, the infimum in the right side is attained for φ =
1l{p < q}, and the minimal value is equal to P (p < q) +Q(p ≥ q) = 1−

∫
(p− q)− dµ.

Because 0 =
∫

(p− q) dµ =
∫

(p− q)+ dµ−
∫

(p− q)− dµ, the latter can be rewritten as
1− 1

2
‖p− q‖1.

For the inequality we write

P (p < q) +Q(p ≥ q) =

∫
p<q

p dµ+

∫
p≥q

q dµ,

and bound p in the first integral and q in the second by
√
p
√
q.

The proposition shows the importance of the convex hull of Q. Not the separation of Q
from the null hypothesis, but the separation of its convex hull drives the error probabilities.

8.2 Product measures

We shall be interested in tests based on n i.i.d. observations. In other words, we shall apply
Proposition 8.1 with the general P and Q replaced by product measures P n and Qn. Be-
cause the L1-distance between product measures is difficult to handle, the further bound by
the Hellinger affinity is useful. By Fubini’s theorem this is multiplicative in product mea-
sures:

ρ1/2(p1 × p2, q1 × q2) = ρ1/2(p1, q1)ρ1/2(p2, q2).

When we take the supremum over sets of densities, then this multiplicativity is lost, but the
following lemma shows that the Hellinger affinity is still “sub-multiplicative”.

For i = 1, . . . , n let Pi andQi be a probability measure and a set of probability measures
on an arbitrary measurable space (Xi,Xi), and consider testing the product⊗iPi versus the
set ⊗iQi of products ⊗iQi with Qi ranging over Qi. For simplicity write ρ1/2(P,Q) for
supQ∈Q ρ1/2(P,Q).

Lemma 8.2 For any probability measures Pi and convex classes Qi of probability mea-
sures

ρ1/2

(
⊗iPi, conv(⊗iQi)

)
≤
∏
i

ρ1/2(Pi,Qi).

Proof If suffices to give the proof for n = 2; the general case follows by repetition. Any
measure Q ∈ conv(Q1 × Q2) can be represented by a density of the form q(x, y) =
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j κjq1j(x)q2j(y), for nonnegative constants κj with

∑
j κj = 1, and qij densities of

measures belong toQi. Then ρ1/2(p1 × p2, q) can be written in the form∫
p1(x)1/2

(∑
j

κjq1j(x)
)1/2[∫

p2(y)1/2
(∑

j κjq1j(x)q2j(y)∑
j κjq1j(x)

)1/2

dµ2(y)
]
dµ1(x).

(If
∑

j κjq1j(x) = 0, the quotient in the inner integral is interpreted as 0.) The inner integral
is bounded by ρ1/2(P2,Q2) for every fixed x ∈ X, since Q2 is convex by assumption
and the function of y within the brackets is for every fixed x a convex combination of the
densities q2j (with weights proportional to κjq1j(x)). After substitution of this upper bound
the remaining integral is bounded by ρ1/2(P1,Q1), sinceQ1 is convex.

Combining the preceding lemma with Proposition 8.1, we see that, for every convex set
Q of measures:

π(P n,Qn) ≤ ρ1/2(P n,Qn) ≤ ρ1/2(P,Q)n.

Thus any convex set Q with Hellinger affinity to P smaller than 1 can be tested with expo-
nential error probabilities.

Theorem 8.3 For any probability measure P and convex set of dominated probability
measuresQ with h(p, q) > ε for every q ∈ Q and any n ∈ N, there exists a test φ such that

P nφ ≤ e−nε
2/2, sup

Q∈Q
Qn(1− φ) ≤ e−nε

2/2.

Proof By (8.2) we have ρ1/2(P,Q) = 1 − 1
2
h2(P,Q), which is bounded above by

1 − ε2/2 by assumption. Combined with the display preceding the theorem we see that
π(P n,Qn) ≤ (1− ε2/2)n ≤ e−nε2/2, since 1− x ≤ e−x, for every x.

8.3 Tests and entropy

The alternatives that we need to test are complements of balls and are not convex. We handle
these by covering them with convex sets, and combining the corresponding tests into a single
overall test. The power will then depend on the number of sets needed in a cover.

Definition 8.4 (Covering number) Given a semi-metric d on a setQ and ε > 0 the covering
number N(ε,Q, d) is defined as the minimal number of balls of radius ε needed to coverQ.
The logarithm of the covering number is called (metric) entropy.

The covering number increases as ε decreases to zero. Except in trivial cases, they increase
to infinity. The rate of increase is a measure of the size ofQ. Section 8.4 contains examples
of covering numbers.

Proposition 8.5 Let d be a metric whose balls are convex and which is bounded above
by the Hellinger distance h. If N(ε/4,Q, d) ≤ N(ε) for every ε > εn > 0 and some
nonincreasing function N : (0,∞) → (0,∞), then for every ε > εn and n there exists a
test φ such that, for all j ∈ N,

P nφ ≤ N(ε)
e−nε

2/2

1− e−nε2/8
, sup

Q∈Q:d(P,Q)>jε

Qn(1− φ) ≤ e−nε
2j2/8.
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Proof For a given j ∈ N, choose a maximal set of points Qj,1, . . . , Qj,Nj in the setQj: ={
Q ∈ Q: jε < d(P,Q) < 2jε

}
such that d(Qj,k, Qj,l) ≥ jε/2 for every k 6= l. Because

every ball in a cover ofQj by balls of radius jε/4 then contains at most one Qj,l, it follows
that Nj ≤ N(jε/4,Qj, d). Furthermore, the Nj balls Bj,l of radius jε/2 around the Qj,l

coverQj , as otherwise this set was not maximal. Since Qj,l ∈ Qj , the distance of Qj,l to P
is at least jε and hence h(P,Bj,l) ≥ d(P,Bj,l) > jε/2 for every ballBj,l. By Theorem 8.3
there exists a test φj,l of P versus Bj,l with error probabilities bounded above by e−nj

2ε2/8.
Let φ be the supremum of all the tests φj,l obtained in this way, for j = 1, 2, . . . , and
l = 1, 2, . . . , Nj . Then

P nφ ≤
∞∑
j=1

Nj∑
l=1

e−nj
2ε2/8 ≤

∞∑
j=1

N(jε/4,Qj, d)e−nj
2ε2/8 ≤ N(ε)

e−nε
2/8

1− e−nε2/8

and, for every j ∈ N,

sup
Q∈∪l>jQl

Qn(1− φ) ≤ sup
l>j

e−nl
2ε2/8 ≤ e−nj

2ε2/8,

since for every Q ∈ Qj there exists a test φj,l with 1− φ ≤ 1− φj,l, by construction.

One may note from the proof that it suffices that N(ε) upper bounds the smaller covering
numbers N

(
ε/4, {Q ∈ Q: ε < d(P,Q) < 2ε

}
, d). The logarithms of the latter numbers

are called Le Cam dimension. For genuinely nonparametric applications these are rarely
essentially smaller than the numbers N(ε/4,Q, d), but for finite-dimensional models they
may be.

8.4 Examples of entropy

Lemma 8.6 For the norm ‖x‖1 =
∑

i |xi| on the d-dimensional unit simplex Sd, for
0 < ε ≤ 1,

N
(
ε, Sd, ‖ · ‖1

)
≤
(

5

ε

)d−1

. (8.3)

Lemma 8.7 For ‖x‖p =
(∑

i |xi|p
)1/p

and p ≥ 1, for any M and ε > 0,

N
(
ε, {x ∈ Rd: ‖x‖p ≤M}, ‖ · ‖p

)
≤
(

3M

ε

)d
. (8.4)

The preceding lemma shows, in particular, that the Le Cam dimension of a ball in d-
dimensional Euclidean space satisfies

logN
(
ε, {x ∈ Rd: ‖x‖p ≤ kε}, ‖ · ‖p

)
≤ d log(3k).

The bound is independent of ε, for any fixed k. Thus on Euclidean space this quantity be-
haves essentially as the dimension.

The preceding bounds show that entropy numbers of sets in Euclidean spaces grow log-
arithmically. For infinite-dimensional spaces the growth is much faster, as is illustrated by
the following examples.
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Lemma 8.8 For ‖θ‖2 =
(∑∞

i=1 θ
2
i

)1/2
the norm of `2, for all ε > 0,

logN
(
ε,
{
θ ∈ `2:

∞∑
i=1

i2qθ2
i ≤ B2

}
, ‖ · ‖2

)
≤ log(4(2e)2q)

(3B

ε

)1/q

. (8.5)

The Hölder norm of order α of a continuous function f :X → R on a bounded subset
X ⊂ Rd is defined as

‖f‖α = max
k:|k|≤m

sup
x∈D
|Dkf(x)|+ max

k:|k|=m
sup

x,y∈D:x 6=y

|Dkf(x)−Dkf(y)|
‖x− y‖α−m

. (8.6)

Here m is the biggest integer strictly smaller than α, and for a vector k = (k1, . . . , kn) of
integers, Dk is the partial differentiable operator

Dk =
∂|k|

∂xk11 · · · ∂xkdd
.

Lemma 8.9 There exists a constant K depending only on d and α such that

logN
(
ε, {f : ‖f‖α ≤M}, ‖ · ‖∞

)
≤ Kmeas(X)

(M
ε

)d/α
.

Lemma 8.10 The collection F of monotone functions f :X → [−M,M ] on an interval
X ⊂ R satisfies, for ‖ · ‖r,Q the Lr(Q) norm relative to a probability measureQ, any r ≥ 1
and a constant K that depends on r only,

logN
(
ε,F, ‖ · ‖r,Q

)
≤ KM

ε
.

8.5 COMPLEMENTS

Theorem 8.11 (Minimax theorem) Let T be a compact, convex set of a locally convex
topological vector space (for instance a normed linear space) and S a convex subset of a
linear space. Let f :T × S → R be a function such that

(i) t 7→ f(t, s) is continuous and concave for all s ∈ S;
(ii) s 7→ f(t, s) is convex for all s ∈ S.

Then

inf
s∈S

sup
t∈T

f(t, s) = sup
t∈T

inf
s∈S

f(t, s). (8.7)

For a proof, see Strasser (1985), pages 239–241.

Exercises
8.1 Prove Lemma 8.7. [Hint: given N points x1, . . . , xN in U = {x: ‖x‖ < kε} with ‖xi−xj‖ > ε,

the balls {x: ‖x−xi‖ < ε/2} are disjoint and their union is contained in {x: ‖x‖ < (k+1/2)ε}.
Now use a volume argument to bound N .]
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8.2 Consider the set F of functions f : [0, 1] → [0, 1] such that
∣∣f(x) − f(y)

∣∣ ≤ |x − y|, for every
x, y ∈ [0, 1]. Show that there exists a constant K such that logN

(
ε,F , ‖ · ‖∞

)
≤ K(1/ε), for

ε < 1. [This is a special case of Lemma 8.9. Give a direct proof. Use balls around piecewise
constant (or linear) functions.]

8.3 Suppose d1 and d2 are metrics with d1 ≤ d2. Show that N(ε,Q, d1) ≤ N(ε,Q, d2), for every
ε > 0.
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Rate of contraction

9.1 Definition

For every n ∈ N letX(n) be an observation in a sample space (X(n),X (n)) with distribution
P

(n)
θ indexed by a parameter θ belonging to a metric space Θ. Given a prior Π on the Borel

sets of Θ, let Πn(·|X(n)) be a version of the posterior distribution.

Definition 9.1 (Posterior rate of contraction) The posterior distribution Πn(·|X(n)) is said
to contract at rate εn → 0 at θ0 ∈ Θ if Πn

(
θ: d(θ, θ0) > Mnεn|X(n)

)
→ 0 in P (n)

θ0
-

probability, for every Mn →∞ as n→∞.

A rough interpretation of the rate εn is that the posterior distribution concentrates on balls
of radius “of the order εn” around θ0. The somewhat complicated construction using the
additional sequence Mn expresses the “of the order” part of this assumption. For “every
Mn → ∞” must be read as “whenever Mn → ∞, no matter how slowly”. Actually, in
most nonparametric applications the fixed sequence Mn = M for a large constant M also
works. (In many parametric applications, the posterior distribution tends after scaling to a
distribution that is supported on the full space, and the Mn →∞ is important.)

If εn is a rate of contraction, then every sequence that tends to zero at a slower rate is
also a contraction rate, according to the definition. Saying that contraction rate is at least εn
would be appropriate. Naturally we are interested in the fastest contraction rate, but we are
typically satisfied with knowing some rate that is valid for every θ0 in a given class of true
parameters.

We may view the rate of contraction as the natural refinement of consistency. Consis-
tency requires that the posterior distribution contracts to within arbitrarily small distance ε
to the true parameter θ0; the rate as defined here quantifies “arbitrarily small”. Typically
contraction rates are much more informative about the quality of a Bayesian procedure than
is revealed by mere consistency.

An appropriate summary of the location of the posterior distribution inherits its rate of
contraction. The same summary as used in Proposition 7.2 also works for rates. The proof
is also very similar.

Proposition 9.2 (Point estimator) Suppose that the posterior distribution Πn(·|X(n)) con-
tracts at rate εn at θ0 relative to the metric d on Θ. Then θ̂n defined as the center of a (nearly)
smallest ball that contains posterior mass at least 1/2 satisfies d(θ̂n, θ0) = OP (εn) under
P

(n)
θ0

.

In particular, the posterior distribution cannot contract faster than the best point estimator.
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This makes it possible to connect the theory of posterior contraction rates to the theory of
“optimal” rates of estimation, which are typically defined by the minimax criterion.

9.2 Basic contraction theorem

Let the observations be a random sample X1, . . . , Xn from a density p that belongs to a set
of densities P , relative to a given σ-finite measure ν. Let Πn be a prior on P , and let p0

denote the true density of the observations.
Let d be a distance on P that is bounded above by the Hellinger distance, and set

K(p0; p) = P0 log
p0

p
, V (p0; p) = P0

(
log

p0

p

)2

. (9.1)

The first is the Kullback-Leibler divergence, the second a corresponding second moment.

Theorem 9.3 The posterior distribution contracts at rate εn at P0 for any εn such that
nε2n →∞ and such that, for positive constants c1, c2 and sets Pn ⊂ P ,

logN(εn,Pn, d) ≤ c1nε
2
n, (9.2)

Πn

(
p:K(p0; p) < ε2n, V (p0; p) < ε2n

)
≥ e−c2nε

2
n , (9.3)

Πn(P − Pn) ≤ e−(c2+4)nε2n . (9.4)

Proof For every ε > 4εn we have logN(ε/4,Pn, d) ≤ logN(εn,Pn, d) ≤ c1nε
2
n, by

assumption (9.2). Therefore, by Proposition 8.5 applied withN(ε) = exp(c1nε
2
n) (constant

in ε) and ε = Mεn and j = 1 in its assertion, whereM ≥ 4 is a large constant to be chosen
later, there exist tests φn with errors

P n
0 φn ≤ ec1nε

2
n

e−nM
2ε2n/8

1− e−nM2ε2n/8
, sup

p∈Pn:d(p,p0)>Mεn

P n(1− φn) ≤ e−nM
2ε2n/8.

For M2/8 > c1 the first tends to zero. For An the event
{∫ ∏n

i=1(p/p0)(Xi) dΠn(p) ≥
e−(2+c2)nε2n

}
we can bound Πn

(
p: d(p, p0) > Mεn|X1, . . . , Xn

)
by

φn + 1l{Acn}+ e(2+c2)nε2n

∫
d(p,p0)>Mεn

n∏
i=1

p

p0

(Xi) dΠn(p)(1− φn).

The expected values under P n
0 of the first terms tends to zero. The same is true for the second

term, by Lemma 9.4 (below). We split the integral in the third term in parts over Pn and its
complement.

The first is

P n
0

∫
p∈Pn:d(p,p0)>Mεn

n∏
i=1

p

p0

(Xi) dΠn(p) ≤
∫
p∈Pn:d(p,p0)>Mεn

P n(1− φn) dΠn(p),

which is bounded by e−nM
2ε2n/8, by the construction of the test. The second is bounded by

P n
0

∫
P−Pn

n∏
i=1

p

p0

(Xi) dΠn(p) ≤ Πn(P − Pn).

This is bounded above by (9.4). For M2/8 > 2 + c2 all terms tend to zero.
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The condition nε2n → ∞ excludes the parametric rate εn = n−1/2, and merely says
that we are considering the nonparametric situation, where slower rates obtain. Besides, the
theorem characterizes the rate by three conditions.

The last one (9.4) is trivially satisfied by choosing Pn = P for every n. Similar as in
the consistency theorems the condition expresses that a subset P −Pn of the model Pn that
receives very little prior mass does not play a role in the rate of contraction.

The remaining pair (9.2)-(9.3) of conditions is more structural. For given Pn and c1, c2

each of the two conditions on its own determines a minimal value of εn (as their left sides
decrease and their right sides increase if εn is replaced by a bigger value). The rate of con-
traction is the slowest one defined by the two inequalities. Condition (9.3) involves the prior,
whereas condition (9.2) does not.

Condition (9.3) gives a lower bound on the amount of mass that the prior puts near the
true density p0. The posterior would not contract to p0 at all if this mass were zero. “Near-
ness” to p0 is measured by the Kullback-Leibler divergence K(p0; p) and a correspond-
ing variance V (p0; p). Both quantities should be thought of as “quadratic” discrepancies,
and {p:K(p0; p) < ε2, V (p0; p) < ε2} as a neighbourhood of “size” ε. (For instance, if
the likelihood ratios p0/p are bounded away from zero and infinity, then these neighbour-
hoods are like Hellinger balls of radius ε. See Lemmas 9.8 and 9.9.) For nonparametric rates
εn � n−1/2, the exponent nε2n will tend to infinity, and the lower bound on the prior mass
in (9.3) will be exponentially small.

Condition (9.2) involves the model Pn, and not the prior. It gives an error bound on the
complexity of this model, and may be viewed as bound on the precision of recovery of p0 for
any statistical procedure, not only Bayesian. Indeed, for d the Hellinger distance, and under
some conditions, the solution to inequality (9.2) can be shown to give the minimax rate of
estimating p0 given the model Pn. It goes back to non-Bayesian results by Le Cam (1973,
1986) and Birgé (1983) (also see Yang and Barron (??)). As shown in the proof, technically
condition (9.2) ensures existence of tests, as discussed in Chapter 8.

The two conditions (9.2)-(9.3) can be connected, and then send the message that a
good prior spreads “uniformly” over the model. Consider placing a maximal set of points
p1, . . . , pN in Pn with d(pi, pj) ≥ εn. Maximality implies that the balls of radius εn around
the points cover Pn, whence N ≥ N(εn,Pn, d) ≥ ec1nε

2
n , under (9.2). The balls of radius

εn/2 around the points are disjoint and hence the sum of their prior masses will be less than
1. If the prior mass were evenly distributed over these balls, then each would have no more
mass than e−c1nε

2
n . This is of the same order as the lower bound in (9.3).

The neighbourhood in (9.3) is not a d-ball, and different constants are involved in the two
conditions . However, the argument suggests that (9.3) can only be satisfied for every p0 in
the model if the prior “distributes its mass uniformly, at discretization level εn”. This is a
heuristic argument only. Refinements of the theorem show that condition (9.3) is stronger
than needed.

Lemma 9.4 For any probability measure Π on P , and positive constant ε, with P n
0 -

probability at least 1− (nε2)−1,∫ n∏
i=1

p

p0

(Xi) dΠ(p) ≥ Π
(
p:K(p0; p) < ε2, V (p0; p) < ε2

)
e−2nε2 .



9.3 Refinements 53

Proof The integral becomes smaller by restricting it to the set B: =
{
p:K(p0; p) <

ε2n, V (p0; p) < ε2n
}

. By next dividing the two sides of the inequality by Π(B), we can
rewrite the inequality in terms of the prior Π restricted and renormalized to a probability
measure on B. Thus we may without loss generality assume that Π(B) = 1. By Jensen’s
inequality applied to the logarithm,

log

∫ n∏
i=1

p

p0

(Xi) dΠ(P ) ≥
n∑
i=1

∫
log

p

p0

(Xi) dΠ(P ) =:Z.

The right side has mean−n
∫
K(p0; p) dΠ(p) > −nε2 by the definition ofB, and variance

bounded above by

nP0

(∫
log

p0

p
dΠ(p)

)2

≤ nP0

∫ (
log

p0

p

)2

dΠ(p) ≤ nε2,

by Jensen’s inequality, Fubini’s theorem, and again the definition of B. It follows that

P n
0

(
Z < −2nε2

)
≤ P n

0

(
Z − EZ < −nε2

)
≤ nε2

(nε2)2
,

by Chebyshev’s inequality.

9.3 Refinements

[To be skipped at first reading!]

Theorem 9.5 (Almost sure contraction) If condition (9.3) of Theorem 9.3 is strengthened
to

Πn

(
p:h2(p, p0)

∥∥∥p0

p

∥∥∥
∞
≤ ε2n

)
≥ e−c2nε

2
n , (9.5)

and
∑∞

n=1 e
−βnε2n <∞ for every β > 0, then Πn(p: d(p, p0) ≥Mεn|X1, . . . , Xn)→ 0,

almost surely [P n
0 ], for every sufficiently large M .

Let B(ε) =
{
p:K(p0; p) < ε2, V (p0; p) < ε2}.

Theorem 9.6 The posterior distribution contracts at rate εn at P0 for any εn ≥ n−1/2

such that, for every sufficiently large j and sets Pn ⊂ P ,

sup
ε>εn

logN
( ε

2
, {p ∈ Pn: ε ≤ d(p, p0) ≤ 2ε}, d

)
≤ nε2n, , (9.6)

Πn(P − Pn)

Πn

(
B(εn)

) = o
(
e−2nε2n

)
, (9.7)

Πn

(
P : jεn < d(P, P0) ≤ 2jεn

)
Πn

(
B(εn)

) ≤ enε
2
nj

2/8. (9.8)

Theorem 9.7 The posterior distribution contracts at rate εn at P0 for any εn with nε2n →
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∞ that satisifes (9.3) such that there exist Pn ⊂ P with Πn(Pcn|X1, . . . , Xn) → 0 in
P n

0 -probability and partitions Pn = ∪∞j=−∞Pn,j in sets such that
∞∑

j=−∞

√
N(εn,Pn,j, d)

√
Πn(Pn,j)e−nε

2
n → 0.

9.4 COMPLEMENTS

The following results show among others that the Kullback-Leibler always dominates the
square Hellinger distance, and the converse is true if the likelihood ratios are bounded.

Lemma 9.8 For any pair of probability densities p, q,

(i) ‖p− q‖1 ≤ h(p, q)
√

4− h2(p, q) ≤ 2h(p, q).
(ii) h2(p, q) ≤ ‖p− q‖1.

(iii) ‖p− q‖21 ≤ 2K(p; q). (Kemperman’s inequality).
(iv) h2(p, q) ≤ K(p; q).
(v) h(p, q) ≤

∥∥(√p+
√
q)−1

∥∥
∞‖p− q‖2.

(vi) ‖p− q‖2 ≤
∥∥√p+

√
q
∥∥
∞h(p, q).

(vii) ‖p− q‖r ≤ ‖p− q‖∞ν(X)1/r, for r ≥ 1.

Lemma 9.9 For every b > 0, there exists a constant εb > 0 such that for all probability
densities p and q with 0 < h2(p, q) < εbP (p/q)b,

K(p, q) . h2(p, q)
(

1 + b−1 log− h(p, q) + b−1 log+ P
(p
q

)b)
,

V (p, q) . h2(p, q)
(

1 + b−1 log− h(p, q) + b−1 log+ P
(p
q

)b)2

.

Consequently, for every pair of probability densities p and q,

K(p; q) . 2h2(p, q)
(

1 + log
∥∥∥p
q

∥∥∥
∞

)
≤ 2h2(p, q)

∥∥∥p
q

∥∥∥
∞
,

V (p; q) . h2(p, q)
(

1 + log
∥∥∥p
q

∥∥∥
∞

)2

≤ 2h2(p, q)
∥∥∥p
q

∥∥∥
∞
.
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Gaussian process priors

Gaussian processes are widely used in Bayesian nonparametrics as building blocks for prior
models for unknown functional parameters. In this chapter we define such processes, study
basic properties and give important examples.

10.1 Stochastic process priors

We start with recalling the general definition of a stochastic process.

Definition 10.1 Let T be a set and (E, E) a measurable space. A stochastic process in-
dexed by T , taking values in (E, E), is a collection X = (Xt: t ∈ T ) of measurable maps
Xt from a probability space (Ω,U ,Pr) to (E, E). The space (E, E) is called the state
space of the process.

Although in Bayesian nonparametrics applications it is usually purely artificial, we think
of the index t as a time parameter, and view the index set T as the set of all possible time
points. The state space (E, E) will most often simply be the real line R, endowed with its
Borel σ-algebra.

For every fixed t ∈ T the stochastic process X gives us an E-valued random element Xt

on (Ω,U ,Pr). We can also fix ω ∈ Ω and consider the map t 7→ Xt(ω) on T . These maps
are called the trajectories, or sample paths of the process. The sample paths are functions
from T to E, i.e. elements of ET . Hence, we can view the process X as a random element
of the function space ET . Quite often, the sample paths are in fact elements of a nice subset
Θ ⊂ ET , for instance a space of continuous functions, or functions with a certain degree
of smoothness. The process X can then be viewed as a measurable map X: (Ω,U ,Pr)→
(Θ,B), where B is some natural σ-algebra on Θ. In that case the distribution, or law ofX is
the probability measure on (Θ,B) defined byB 7→ Pr(X ∈ B) forB ∈ B. If a statistical
model is indexed by a function θ ∈ Θ, and the likelihood is appropriately measurable, then
the law of the process X can be used as a prior distribution.

Definition 10.2 A prior distribution arising from a stochastic process in this manner is
called a stochastic process prior.

Random measures can be viewed as stochastic process priors, cf. Section 3.3. A stochastic
process that is also often used to construct priors is the Brownian motion process, which is
defined as follows.

Definition 10.3 The stochastic process W = (Wt: t ≥ 0) is called a (standard) Brownian
motion, or Wiener process, if
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(i) W0 = 0 a.s.,
(ii) Wt −Ws is independent of (Wu:u ≤ s) for all s ≤ t,

(iii) Wt −Ws has a N(0, t− s)-distribution for all s ≤ t,
(iv) almost all sample paths of W are continuous.

Property (i) says that a standard Brownian motion starts in 0. A process with property (ii)
is called a process with independent increments. Property (iii) implies that that the distribu-
tion of the increment Wt −Ws only depends on t− s. This is called the stationarity of the
increments. A stochastic process which has property (iv) is called a continuous process.

It is not clear from the definition that the Brownian motion actually exists. Observe how-
ever that items (i)–(iii) of the definition are equivalent to the requirement that for every
n ∈ N and all 0 ≤ t1 ≤ · · · ≤ tn, the vector (Wt1 , . . . ,Wtn) has an n-dimensional normal
distribution with mean 0 and covariance matrix with elements

EWtiWtj = ti ∧ tj
(check!). Proposition 3.7 then implies that there exists a stochastic process W that satisfies
properties (i)–(iii) (see Exercise 10.1).

Item (iv) of the definition requires more care. Given a process W that satisfies (i)–(iii),
the set {ω: t 7→ Wt(ω) is continuous} is not necessarily measurable, hence the probability
thatW has continuous sample paths is not necessarily well defined. However, the continuity
criterion of Kolmogorov, Theorem 10.20, implies that the process W that satisfies (i)–(iii)
admits a continuous modification, i.e. there exists a continuous process W̃ on the same
underlying probability space such that for every t ≥ 0, Wt = W̃t, almost surely. Note that
the process W̃ still satisfies (i)–(iii).

The continuity theorem actually says more, namely that the continuous version is locally
Hölder continuous of every order strictly less than 1/2. Recall that we call a real-valued
function f on an interval T Hölder continuous of order α ∈ (0, 1] if there exists a constant
C > 0 such that |f(t) − f(s)| ≤ C|t − s|α for all s, t ∈ T . A function on an unbounded
interval is called locally Hölder continuous of orderα > 0 if the restriction to every bounded
interval is Hölder continuous of order α.

Putting everything together, we arrive at the following existence result (see Exercise 10.2).

Theorem 10.4 Brownian motion exists. Moreover, there exists a version with sample paths
that are locally Hölder continuous of order α, for every α ∈ (0, 1/2).

It can be proved that the sample paths of Brownian motion are not locally Hölder of
order exactly equal to 1/2. (In particular, they are non-differentiable functions.) However,
although strictly speaking it is inaccurate (in the Hölder sense), we say that the sample paths
of Brownian motion have “regularity 1/2”.

Figure 10.1 shows an example of a typical Brownian sample path.

10.2 Gaussian processes

Given a real-valued stochastic process X indexed by a set T , we can consider the collection
of all distributions of vectors of the the form (Xt1 , . . . , Xtn) for n ∈ N and t1, . . . , tn ∈ T .
These distributions are called the finite-dimensional distributions (fdds) of the process. Two
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Figure 10.1 A sample path of one-dimensional Brownian motion

processes with the same fdds (not necessarily defined on the same probability space) are
called versions of each other.

In the preceding section we remarked that the fdds of Brownian motion are all Gaussian.
Processes with this property get the obvious name.

Definition 10.5 A real-valued stochastic process is called Gaussian if all its fdds are Gaus-
sian.

In other words, a real-valued process X = (Xt: t ∈ T ) is Gaussian if every linear
combination

∑
aiXti , for real numbers a1, . . . , an and t1, . . . , tn ∈ T , has a Gaussian

distribution.
If X is a Gaussian process indexed by the set T , the mean function of the process is the

function m on T defined by m(t) = EXt. The covariance function of the process is the
function r on T × T defined by r(s, t) = Cov(Xs, Xt). Note that the functions m and
r determine the fdds of the process X , and hence two Gaussian processes with the same
mean function and covariance function are versions of each other. We saw that the mean
function m and covariance function r of the Brownian motion are given by m(t) = 0 and
r(s, t) = s ∧ t. In general, a Gaussian process X with EXt = 0 for all t ∈ T is called
centered.

The covariance function r of a Gaussian processX is a symmetric, positive definite func-
tion. Indeed, for a1, . . . , an ∈ R and t1, . . . , tn ∈ T ,∑∑

aiajr(ti, tj) = Var
∑

aiXti ≥ 0.

Conversely, if T is a set,m is a function on T and r is a symmetric, positive definite function
on T × T , then Kolmogorov’s extension theorem (Proposition 3.7) implies there exists a
Gaussian process X indexed by T , with mean function m and covariance function r.

As mentioned already in connection with the existence of Brownian motion, the question
whether the sample paths of a Gaussian process with a given mean and covariance structure
have a certain regularity may not be well posed. However, we can give conditions under



58 Gaussian process priors

which a version or modification exists with a certain regularity. A minimal condition on a
Gaussian process X indexed by a metric space (T, d) is that it is mean-square continuous,
which means that for all s ∈ T , E(Xt − Xs)

2 → 0 as d(t, s) → 0. By Theorem 10.19,
a centered, mean-square continuous Gaussian process indexed by a separable metric space
has a modification with Borel measurable sample paths.

Stronger assumptions on the second order structure of Gaussian pricess allow to draw
stronger conclusions regarding the regularity of sample paths. Suppose for instance that a
centered Gaussian process X indexed by a subinterval T of the real line satisfies, for some
K > 0 and p ∈ (0, 1], the condition

E(Xs −Xt)
2 ≤ K|t− s|2p

for all s, t ∈ T . By Gaussianity Xt −Xs has the same distribution as (E(Xs −Xt)
2)1/2Z

with Z standard normal and hence, for every a > 0,

E|Xt −Xs|a = E|Z|a(E(Xs −Xt)
2)a/2 ≤ Ka/2E|Z|a|t− s|ap.

By Theorem 10.20 it follows that X admits a modification with sample paths that are a.s.
locally Hölder continuous of order α, for every α ∈ (0, p). (Brownian motion corresponds
to the case p = 1/2.)

10.3 Examples of Gaussian processes

Brownian motion is a fundamental example of a Gaussian process and we can use it as a
building block to construct many more examples.

10.3.1 Wiener integrals

One way to construct new processes from a Brownian W motion is to integrate functions
relative to W , that is, to consider integrals of the form

∫
f dW . However, since the sample

paths of W are very rough, these integrals can not be defined pathwise in the ordinary
Lebesgue-Stieltjes sense. The way out is to define them via a Hilbert space isometry. In
general this leads to integrals that are not defined pathwise, but only in an L2-sense.

To have more flexibility we define integrals with respect to a two-sided Brownian motion.
Let W 1 and W 2 be two independent Brownian motions. Construct a two-sided Brownian
motion W = (Wt: t ∈ R), emanating from 0, by setting

Wt =

{
W 1
t if t ≥ 0,

W 2
−t if t < 0.

For real numbers t0 < · · · < tn and a1, . . . , an, consider the simple function f =∑
ak1(tk−1,tk]. We define the “integral” of f relative to W in the obvious way by setting∫

f dW =
∑

ak(Wtk −Wtk−1
).

Using the basic properties of the Brownian motion it is straightforward to verify that for two
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simple functions f, g, we have

E
( ∫

f dW
)( ∫

g dW
)

=

∫
R
f(x)g(x) dx. (10.1)

In other words, the linear map f 7→
∫
f dW is an isometry from the collection of simple

functions in L2(R) into L2(Pr). Since the simple functions are dense in L2(R), the map
can be extended to the whole space L2(R). This defines

∫
f dW for all f ∈ L2(R).

Note that by construction the integral is almost surely unique. It is a centered Gaussian
random variable and the isometry relation (10.1) holds for all f, g ∈ L2(R).

Definition 10.6 We call
∫
f dW the Wiener integral of f relative toW . If f ∈ L2(R) and

t ≥ s, we write
∫ t
s
f(u) dWu for

∫
1(s,t]f dW .

Under appropriate conditions, some of the usual calculus rules still hold for the Wiener
integral, in particular a version of Fubini’s theorem and the integration by parts formula.
Recall that we say that f : [s, t]→ R is of bounded variation if

var(f) = sup
∑
|f(tk)− f(tk−1)|

is finite, where the supremum is over all finite partitions of [s, t]. Note that such a function
is necessarily square integrable on [s, t].

Proposition 10.7

(i) (Fubini for Wiener integrals) Let (S,Σ, µ) be a finite measure space and f ∈ L2(Leb×
µ). Then it almost surely holds that∫ ( ∫

f(u, v) dWu

)
µ(dv) =

∫ ( ∫
f(u, v)µ(dv)

)
dWu.

(ii) (Integration by parts) If t ≥ s and f : [s, t]→ R is of bounded variation, then∫ t

s

f(u) dWu = Wtf(t)−Wsf(s)−
∫ t

s

Wu df(u)

almost surely.

Proof (i). If f is a simple function of the form f =
∑
ai1Ii×Ei , for real numbers ai,

intervals Ii andEi ∈ Σ, the statement is trivially true. For a general f ∈ L2(Leb×µ), there
exists a sequence of simple fn of the form just described such that fn → f in L2(Leb×µ).
Then by Jensen’s inequality,∫ ( ∫

fn(u, v)µ(dv)−
∫
f(u, v)µ(dv)

)2

du ≤ ‖fn − f‖2L2 → 0.

Hence, by definition of the Wiener integral,∫ ( ∫
fn(u, v)µ(dv)

)
dWu →

∫ ( ∫
f(u, v)µ(dv)

)
dWu

in L2(Pr). On the other hand, the convergence ‖fn − f‖2L2 → 0 implies that there exists a
subsequence n′ such that and a set S′ ⊂ S of full µ-measure such that∫

(fn(u, v)− f(u, v))2 du→ 0
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for all v ∈ S′. Again by definition of the Wiener integral it follows that for v ∈ S′,∫
fn′(u, v) dWu →

∫
f(u, v) dWu

in L2(Pr). First, this implies that there is a further subsequence along the convergence takes
place almost surely. Hence, since the left-hand side is a measurable function of v, so is the
right-hand side. Second, by Jensen and the ordinary Fubini theorem we have

E
( ∫ ( ∫

fn′(u, v) dWu

)
µ(dv)−

∫ ( ∫
f(u, v) dWu

)
µ(dv)

)2

→ 0.

(ii). The function f can be written as the difference of two non-decreasing, cadlag func-
tions on [s, t]. Hence it suffices to prove the statement under the assumption that f itself is
such a non-decreasing function, so that df is an ordinary Lebesgue-Stieltjes measure. By (i),
we then have, a.s.,∫ t

s

Wu df(u) =

∫ t

s

( ∫ s

0

dWv

)
df(u) +

∫ t

s

( ∫ u

s

dWv

)
df(u)

= (f(t)− f(s))Ws +

∫ t

s

(f(t)− f(u)) dWu.

Rearranging gives the equality we have to prove.

10.3.2 Riemann-Liouville processes

Brownian motion is a Gaussian processes with “regularity” 1/2 (cf. Theorem 10.4). A nat-
ural way to construct processes with different regularities is to integrate the sample paths of
the process one or more times.

Let W be a Brownian motion By Fubini and integration by parts (Proposition 10.7),∫ t

0

∫ tn−1

0

· · ·
∫ t1

0

Wt0 dt0dt1 · · · tn−1 =
1

n!

∫ t

0

(t− s)n dWs (10.2)

almost surely (see Exercise 10.3). As a process in t, this obviously has regularity n + 1/2.
Now we observe that the right-hand side of (10.2) is not just well defined for n ∈ N, but for
every n ∈ R such that s 7→ (t − s)n belongs to L2[0, t], i.e. for every n > −1/2. This
leads to the definition of the following process, which can be viewed as the (α− 1/2)-fold
iterated integral of Brownian motion.

Definition 10.8 For α > 0 and W a Brownian motion, the process Rα defined by

Rα
t =

1

Γ(α+ 1/2)

∫ t

0

(t− s)α−1/2 dWs, t ≥ 0,

is called a Riemann-Liouville process with parameter α > 0.

Similar as in (10.2), one has for a suitably integrable function f : [0, T ] → R and t ∈
[0, T ] that∫ t

0

∫ tn−1

0

· · ·
∫ t1

0

f(t0) dt0dt1 · · · tn−1 =
1

(n− 1)!

∫ t

0

(t− s)n−1f(s) ds.
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Again the right-hand side is well defined for non-integer n as well. For α > 0, the operator
that maps f to the function Iα0+f defined by

(Iα0+f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds,

is called the Riemann-Liouville operator of order α. The Riemann-Liouville process derives
its name from the fact that for α > 1/2, it holds that Rα = I

α−1/2
0+ W .

We indeed have that the parameter α describes the regularity of the sample paths of Rα.

Proposition 10.9 Let α > 0. There exists a modification of the process Rα with sample
paths that are locally Hölder continuous of the order β, for every β ∈ (0, α).

Proof We give the proof for α ∈ (0, 1). Consider the processes X and Y defined by

Xt =

∫
((t−s)α−1/2

+ − (−s)α−1/2
+ ) dWs, Yt =

∫ 0

−∞
((t−s)α−1/2− (−s)α−1/2) dWs,

where x+ = max{x, 0}. Note that (t− s)α−1/2
+ − (−s)α−1/2

+ ∼ (α−1/2)t(−s)α−3/2 for
s → −∞ and (t− s)α−1/2

+ − (−s)α−1/2
+ ∼ (t− s)α−1/2

+ for s → t, so that X and Y are
well defined. Since, up to constants, Rα is the difference of X and Y , it is enough to show
that these two processes have the required regularity.

For the process X we have

E(Xt −Xs)
2 =

∫
((t− u)

α−1/2
+ − (s− u)

α−1/2
+ )2 du

=

∫
((t− s− u)

α−1/2
+ − (−u)

α−1/2
+ )2 du = EX2

t−s.

Moreover, it is easy to see that for t ≥ 0, EX2
t = t2αEX2

1 . Combining these two facts we
find that for all s, t,

E(Xt −Xs)
2 = |t− s|2αEX2

1 .

Kolmogorov’s continuity criterion thus implies that X has the required modification.
As for Y , we have for t > s > 0,

E(Yt − Ys)2 =

∫ 0

−∞
((t− u)α−1/2 − (s− u)α−1/2)2 du

= (α− 1/2)2

∫ 0

−∞

( ∫ t

s

(v − u)α−3/2 dv
)2

du

≤ (α− 1/2)2(t− s)2

∫ ∞
0

(s+ u)2α−3 du

= (α− 1/2)2(t− s)2s2α−2

∫ ∞
0

(1 + u)2α−3 du.

It follows that there exists a constantC > 0 such that for t > s > 0 such that |t−s| ≤ s, we
have E(Yt − Ys)2 ≤ C|t− s|2α. Since it also holds that EY 2

t = t2αEY 2
1 for all t ≥ 0, we

see that for every T > 0 there exists a constantCT > 0 such that E(Yt−Ys)2 ≤ CT |t−s|2α
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for all s, t ∈ [0, T ]. We can then apply Theorem 10.20 again and conclude that the process
Y has a modification with the required regularity as well.

The process X appearing in the proof of Proposition 10.9 is also a well known process,
it is the so-called fractional Brownian motion with Hurst index α. The process Y is in fact
more regular than the process X . One can show that there exists a version of Y which is
differentiable on (0,∞) (see Exercise 10.4).

For completeness we remark that the case α ≥ 1 in the proof of the preceding proposition
can be dealt with by using the properties of the Riemann-Liouville operators. Consider the
case α = 1 for instance. If W is a Brownian motion, then I1/2

0+ W is a Riemann-Liouville
process with parameter 1. It can be proved that for all p, q > 0 such that p+q 6∈ N, we have
Ip0+(Cq[0, 1]) ⊂ Cp+q[0, 1]. Since there exists a version of W taking values in Cβ[0, 1] for
every β < 1/2, this implies that there exists a version of R1 taking values in Cβ[0, 1] for
every β < 1. Larger α’s can be dealt with similarly.

10.3.3 Stationary Gaussian processes

In addition to (multiply) integrated Brownian motions, so-called stationary Gaussian pro-
cesses are widely used in the construction of priors on functions. We begin with an example.

Example 10.10 (Ornstein-Uhlenbeck process) Let W be a two-sided Brownian motion
and θ, σ > 0. Define a new process X by setting

Xt = σ

∫ t

−∞
e−θ(t−s) dWs, t ∈ R.

The process X is called the Ornstein-Uhlenbeck process (OU process) with parameters
θ, σ > 0. By the isometry property of the Wiener integral we have

EXsXt = σ2

∫ s∧t

−∞
e−θ(s−u)e−θ(t−u) du =

σ2

2θ
e−θ|t−s|.

In particular, the OU process is stationary. Using Kolmogorov’s continuity criterion it can
be seen that the process admits a version that is locally Hölder continuous of every order
strictly less than 1/2 (see Exercise 10.6).

Using the Fourier transform the covariance function of the OU process can be written in
a different way. For f ∈ L2(R) the Fourier transform f̂ is defined as

f̂(λ) =
1√
2π

∫
R
f(t)eiλt dt, λ ∈ R.

If f ∈ L1(R) this integral exists in the ordinary sense, if not, its convergence has to be under-
stood in L2-sense. The Parseval identity for the Fourier transform asserts that the transform
is an isometry on L2(R), that is, for f, g ∈ L2(R),

〈f, g〉2 =
〈
f̂ , ĝ

〉
2
,

where 〈f, g〉2 =
∫
f(t)ḡ(t) dt is the usual inner product on L2(R).
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Example 10.11 (Ornstein-Uhlenbeck process, continued) We have

σ√
2π

∫ t

−∞
e−θ(t−u)eiλu du =

1√
2π

σeiλt

θ + iλ
.

Hence, by Parseval, we have the relation

EXsXt =

∫
eiλ(t−s) σ2

2π(θ2 + λ2)
dλ

for the OU process. We say that the OU process has spectral density λ 7→ σ2/((2π)(θ2 +
λ2)).

The notions encountered in the example of the OU process extend to more general pro-
cesses and fields, i.e. stochastic processes indexed by higher-dimensional spaces.

Definition 10.12 Let T ⊂ Rd. A centered process X = (Xt: t ∈ T ) with finite second
moments is called (wide sense) stationary is its covariance function satisfies EXsXt =
r(t− s) for some function r:T → R.

There is a one-to-one correspondence between mean-square continuous, stationary Gaus-
sian processes indexed by Rd and the class of finite Borel measures µ on Rd that are symmet-
ric, in the sense that

∫
f(λ)µ(dλ) =

∫
f(−λ)µ(dλ) for all bounded measurable functions

f .

Theorem 10.13 The process X is a mean-square continuous stationary process indexed
by Rd if and only if there exists a finite, symmetric Borel measure µ on Rd such that

EXsXt =

∫
ei〈λ,t−s〉 µ(dλ) (10.3)

for all s, t ∈ Rd.

Proof If the covariance function of a process X is given by (10.3), then clearly X is sta-
tionary. Moreover, we have

E(Xt −Xs)
2 =

∫
|ei〈λ,t〉 − ei〈λ,s〉|2 µ(dλ)→ 0

as t → s, by dominated convergence for instance. Hence, the process is mean-square con-
tinuous.

On the other hand, suppose thatX is mean-square continuous and stationary. There exists
a function r:Rd → R such that EXsXt = r(t− s) for all s, t ∈ Rd. By Cauchy-Schwarz
we have

|r(t)− r(s)|2 = |E(Xt −Xs)X0|2 ≤ E(Xt −Xs)
2EX2

0 .

Hence, the fact that X is mean-square continuous implies that r is a continuous function. It
is also a positive-definite function, in the sense that for a1, . . . , an ∈ R and t1, . . . , tn ∈ Rd,∑∑

aiajr(ti − tj) = Var
∑

aiXti ≥ 0.

The conclusion of the theorem thus follows from Bochner’s theorem (Theorem 10.21).
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Since a finite measure is completely determined by its characteristic function, the measure
µ in (10.3) is necessarily unique.

Definition 10.14 The measure µ in (10.3) is called the spectral measure of the process X .
If it admits a Lebesgue density, this is called the spectral density.

The spectral representation (10.3) shows that we have a linear isometry between the clo-
sure of the linear span of the random variables {Xt: t ∈ R} in L2(Pr) and the closure of
the linear span of the functions {λ 7→ et(λ) = exp(iλt): t ∈ R} in L2(µ). The isometry
is completely determined by linearity and the association Xt ↔ et. We call this isometry
the spectral isometry. It can often be used to translate probabilistic problems concerning the
process X into analytic problems regarding the functions et in L2(µ).

Any symmetric, finite Borel measure µ on Rd is the spectral measure of a stationary
Gaussian process. Indeed, given µ, the map

(s, t) 7→
∫
ei〈λ,t−s〉 µ(dλ)

is a symmetric, positive definite function. Hence, by Kolmogorov’s extension theorem, there
exists a centered Gaussian process X which has this function as its covariance function.

The regularity of a stationary Gaussian processX is determined by the tails of its spectral
measure µ. Intuitively, heavier tails means “more high frequencies”, which implies that the
sample paths of the process are less regular. Suppose for simplicity that d = 1. It is not
difficult to see that if µ has a finite second moment, then the map t 7→ et is differentiable in
L2(µ). Indeed, we have that λ 7→ iλet(λ) belongs to L2(µ) in this case and for t ∈ R,∫ ∣∣∣et+h(λ)− et(λ)

h
− iλet(λ)

∣∣∣2 µ(dλ)→ 0

as h→∞, by dominated convergence (check!). In view of the spectral isometry this means
there exist random variables X ′t for every t, such that

Xt+h −Xt

h
→ X ′t

in L2(Pr) as h → 0. In other words, the process X is differentiable in mean-square sense,
with derivative X ′. Note that the derivative is again a stationary process, with spectral mea-
sure |λ|2 µ(dλ).

We give two examples of stationary Gaussian processes often used in Bayesian nonpara-
metrics and that can be defined through their spectral measures.

Example 10.15 (Matérn process) For d ∈ N and α > 0, the Matérn process on Rd with
parameter α is defined as the centered stationary process with spectral density

λ 7→ 1(
1 + ‖λ‖2

)α+d/2
.

As before, the parameter α describes the regularity of the process, we illustrate this in the
case d = 1. Let k be the smallest integer strictly smaller than α. Then the spectral measure
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of the Matérn process X has a finite moment of order 2k, hence it is k times differentiable
in mean-square sense and its kth derivativeX(k) is a stationary process with spectral density

λ 7→ λ2k(
1 + λ2

)α+1/2
.

By the spectral representation of X(k),

E(X
(k)
t −X(k)

s )2 =

∫
|eiλ(t−s) − 1|2 λ2k(

1 + λ2
)α+1/2

dλ

= |t− s|2(α−k)

∫
|eiλ − 1|2 λ2k(

(t− s)2 + λ2
)α+1/2

dλ

≤ |t− s|2(α−k)

∫
|eiλ − 1|2|λ|−1−2(α−k) dλ.

If α is not an integer, then α − k ∈ (0, 1) and hence the last integral is a finite constant
(check!). Then by Kolmogorov’s continuity criterion, X(k) admits a version that is locally
Hölder of every order less than α− k. Hence, by integration, the original process X admits
a version that is locally Hölder of every order strictly less than α. If α is an integer (then
k = α − 1) the preceding upper bound remains true with α replaced by α − ε for small
enough ε > 0. By the same reasoning we conclude that X then has a version that is locally
Hölder of every order less than α− ε. Since ε > 0 can be chosen arbitrarily small, we reach
the same conclusion.

Note that the Ornstein-Uhlenbeck process is a special instance of the Matérn process,
corresponding to the choices d = 1, α = 1/2.

Example 10.16 (Squared exponential process) The squared exponential process is the
zero-mean Gaussian process with covariance function

EWsWt = e−‖s−t‖
2

, s, t ∈ Rd.

Like the Matérn process the squared exponential process is stationary. Its spectral measure
is easily found using the well-known fact that the Fourier transform of the Gaussian density
is Gaussian again. Specifically, we have that the spectral density of the squared exponential
process is given by

λ 7→ 1

2dπd/2
e−‖λ‖

2/4.

This density has finite moments of every order, hence the sample paths of the square expo-
nential process are infinitely often differentiable (in mean-square sense). Figure 10.16 shows
examples of sample paths of the process, which indeed are very smooth.

10.4 Illustration: Gaussian process regression

Suppose we have observations Y = (Y1, . . . , Yn) satisfying a regression relation

Yi = θ(ti) + εi,
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Figure 10.2 Three realizations of the squared exponential process.

where the ti are fixed, known elements of [0, 1], the εi are independent standard normal
variables, and the unknown regression function θ: [0, 1] → R is the object of interest. We
wish to make Bayesian inference about the function θ, which means we have to choose a
prior distribution. We take the law Π of an integrated Brownian motion, which we can view
as a measure on the space C[0, 1] of continuous functions on [0, 1].

Under the prior the vector θ = (θ(t1), . . . , θ(tn)) (slight abuse of notation!) has a Gaus-
sian distribution with a density equal to a multiple of θ 7→ exp(−(1/2)θTΣ−1θ), for Σ
an invertible covariance matrix. The likelihood for this model is given by a multiple of
exp(− 1

2

∑n
i=1(Yi − θ(ti))2). It then follows from Bayes’ formula that the posterior density

of v is given by a multiple of θ 7→ e−
1
2‖Y−θ‖

2

e−
1
2 θ
TΣ−1θ. Clearly this is again, up to a mul-

tiple, a Gaussian density. We conclude that the posterior distribution of (θ(t1), . . . , θ(tn))
is Gaussian process.

Similarly we can show that for any sequence s1, . . . , sm ∈ [0, 1], the posterior distri-
butions of (θ(s1), . . . , θ(sm)) is Gaussian. We conclude that for this Gaussian regression
model with known error variances, Gaussian process priors for the regression function are
conjugate in the sense that the posterior distribution of the regression function is Gaussian
as well.

By completing the square, the preceding shows in particular that the posterior distribu-
tion of the vector (θ(t1), . . . , θ(tn)) is Gaussian, with mean vector (I + Σ−1)−1Y and
covariance matrix (I + Σ−1)−1, for Σ the prior covariance matrix of the vector (check!, see
Exercise 10.8). For the integrated Brownian motion X we have that for s ≤ t,

EXsXt =

∫ s

0

∫ t

0

(u ∧ v) dudv =
1

2
s2t− 1

6
t3.
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This gives explicit expression for the matrix Σ and hence the posterior can be computed
explicitly.

In Figure 10.4 we show a simulation example. We simulated n = 200 observations, with
ti = i/n. The black curve depicts the true regression function used in the simulations, the
black dots are the simulated noisy data points. In the left panel, 10 draws from the prior are
shown. In the right panel, 10 draws from the corresponding posterior are plotted.

In more realistic situations the errors εi have an unknown variance σ. This additional
parameter then has to be endowed with a prior distribution as well. This typically means that
the resulting posterior for θ (and for σ) can not be calculated explicitly anymore. There are
however numerical methods available that allow us to generate (approximate) draws from
the posterior in that case.
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Figure 10.3 Left: 10 draws from the integrated Brownian motion prior (gray), the
true regression function and the data. Right: 10 draws from the posterior (gray) and
the true regression function and the data.

10.5 COMPLEMENTS

10.5.1 Regular versions of stochastic processes

A minimal regularity property of a stochastic process is separability. Roughly speaking, the
behaviour of a separable process over the whole index set is determined by its behaviour on
a countable subset.

Definition 10.17 Let (Xt: t ∈ T ) be a process indexed by a topological space T , with state
space (E, E), whereE is a topological space and E is its Borel σ-field. The process is called
separable if there exists an event N with Pr(N) = 0 and a countable set S ⊂ T such that
for all open U ⊂ T and closed F ⊂ E, the subsets

⋂
t∈U{Xt ∈ F} and

⋂
t∈S∩U{Xt ∈ F}

of the underlying outcome space differ by at most a subset of N . Any countable set S with
the stated property is called a separability set.
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The definition immediately implies that for a separable process X indexed by T and
defined on a complete probability space, the set

⋂
t∈U{Xt ∈ F} is a measurable event for

every open U ⊂ T and closed F ⊂ E. If the process is real-valued we have in particular
that for every b ∈ R, {

sup
t∈T

Xt ≤ b
}

=
⋂
t∈T

{Xt ≤ b}

is measurable, and hence supt∈T Xt is a well-defined random variable. Moreover, it is a.s.
equal to supt∈T∩SXt. Similarly, the variables inf Xt, sup |Xt| and inf |Xt| are measurable
as well.

Another useful consequence of separability is that to show that a real-valued separable
process X vanishes identically with probability one, it suffices to show that Xt = 0 a.s.
for every t in a separability set S. Indeed, suppose that Xt = 0 a.s., for all t ∈ S. Then⋂
t∈S{Xt = 0} has probability one. By separability the event

⋂
t∈T{Xt = 0} is measurable

and has probability one as well, i.e. Pr(Xt = 0 for all t ∈ T ) = 1.
In addition to separability it is useful to know whether a stochastic process X is mea-

surable as function of the pair (ω, t). By Fubini’s theorem this implies for instance that the
sample paths of the process are measurable functions.

Definition 10.18 LetX be a real-valued process indexed by a metric space (T, d), defined
on (Ω,U ,Pr). Let B(T ) be the Borel σ-field of T . The process X is called (Borel) mea-
surable, if the map from (Ω × T,U × B(T )) to (R,B(R)) given by (ω, t) 7→ Xt(ω) is
measurable.

A processX indexed by a metric space (T, d) is called continuous in probability if for all
s ∈ T , Xt → Xs in probability if d(t, s) → 0. The following theorem says that a process
admits a measurable and separable modification if it is continuous in probability. Note that
this property only depends on the fdds of the process X .

Theorem 10.19 Let X be a real-valued process indexed by a separable metric space
(T, d). If the process is continuous in probability, it admits a Borel measurable, separable
version, which may take the value∞. Any countable, dense subset of (T, d) is a separability
set.

Theorem 10.20 (Kolmogorov’s continuity criterion) Let X be a real-valued process in-
dexed by a compact interval T ⊂ R. Suppose there exist constants p, q, C > 0 such that

E|Xt −Xs|p ≤ C|t− s|1+q (10.4)

for all s, t ∈ T . ThenX admits a continuous modification with sample paths that are almost
surely Hölder continuous of order α for every α < q/p.

10.5.2 Bochner’s theorem

A function f :Rd → R is called positive definite if for all a1, . . . , an ∈ R and t1, . . . , tn ∈
Rd, ∑∑

aiajf(ti − tj) ≥ 0.
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Bochner’s theorem asserts that among the continuous functions on Rd, the positive definite
ones are precisely the Fourier transforms of finite measures.

Theorem 10.21 (Bochner) A continuous function f on Rd is positive definite if and only if
it is given by

f(t) =

∫
ei〈λ,t〉 µ(dλ), t ∈ Rd,

for a finite Borel measure µ.

Exercises
10.1 Prove that there exists a stochastic process W that satisfies conditions (i)–(iii) of Definition

10.3.
10.2 Give the details of the proof of Theorem 10.4.
10.3 Verify (10.2).
10.4 Show that there exists a version of the process Y appearing in the proof of Proposition 10.9

which is differentiable on (0,∞).
10.5 Show that the Riemann-Liouville process Rα with parameter α > 0 is self-similar: for c > 0,

the process (c−αRct: t ≥ 0) is again a Riemann-Liouville process with parameter α.
10.6 Prove that the Ornstein-Uhlenbeck process admits a version that is locally Hölder continuous

of every order strictly less than 1/2.
10.7 Show that the Ornstein-Uhlenbeck process satisfies the integral equation

Xt −X0 = −θ
∫ t

0

Xs ds+ σWt, t ≥ 0,

almost surely.
10.8 Verify the posterior computations in Section 10.4.
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Gaussian random elements in Banach spaces

A continuous process X = (Xt: t ∈ [0, 1]d) defined on (Ω,U ,Pr) can also be viewed as
a map from Ω to C[0, 1]d, where the latter is the space of continuous functions on [0, 1]d.
Slightly abusing notation this map is denoted by X as well, i.e. X: Ω → C[0, 1]d. The
space C[0, 1]d becomes a separable Banach space when endowed with the uniform norm
‖f‖∞ = supt∈[0,1]d |f(t)|. We denote its Borel σ-field, i.e. the σ-field generated by the
open sets, by B(C[0, 1]d).

Proposition 11.1 For the continuous processX , the mapX: (Ω,U )→ (C[0, 1]d,B(C[0, 1]d))
is measurable.

Proof By translation invariance of the topology it suffices to show that for all a > 0, it
holds that {ω: ‖X(ω)‖∞ < a} ∈ U . For a countable, dense subsetD ⊂ [0, 1]d, continuity
implies that

{ω: ‖X(ω)‖∞ < a} =
⋂
t∈D

{ω: |Xt(ω)| < a}.

Every set appearing on the right is in U , since every Xt is a random variable. Since the
intersection is countable, it follows that the left-hand side belongs to U as well.

The proposition asserts that a continuous process X indexed by [0, 1]d can be viewed
as a (C[0, 1]d,B(C[0, 1]d))-valued random element. More generally, it can be shown that
a process X taking values in a separable Banach space can be viewed as a (measurable)
random element in that space if every bounded linear functional of X is a random variable.
In this chapter we will restrict our attention to the case of continuous processes, but the
concepts and results we treat can all be extended to the more general Banach space setting.

11.1 Reproducing kernel Hilbert space

LetX = (Xt: t ∈ [0, 1]d) be a centered, continuous Gaussian process defined on (Ω,U ,Pr).
We first define the associated space of linear functionals of the process. This is, by defini-
tion, the closure in L2(Pr) of the collection of linear combinations of the form

∑
aiXti ,

for n ∈ N, t1, . . . , tn ∈ [0, 1]d and a1, . . . , an ∈ R. This space, which we denote by L ,
is called the first chaos of the process X . Note that every element of the first chaos is a
centered Gaussian random variable.

ForL ∈ L we define the function hL on [0, 1]d by setting hL(t) = EXtL. We define the
reproducing kernel Hilbert space (RKHS) H associated to the process X by H = {hL:L ∈
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L }. For hL in H, the RKHS-norm is defined by ‖hL‖2H = EL2. Note that if hL1
= hL2

,
then L1 − L2 is orthogonal to every Xt in L2(Pr). But then L1 − L2 is orthogonal to
the whole space L , hence L1 = L2, almost surely. This shows that the RKHS-norm is
well defined and that the map L 7→ hL defines a Hilbert space isometry between the first
chaos L and the RKHS H. In particular, we see that the RKHS is a separable Hilbert space
(Exercise 11.3).

Denote the covariance function of the process X by K, so that K(s, t) = EXsXt =
hXt(s) for s, t ∈ [0, 1]d. Then for h = hL ∈ H, we have

〈h,K(·, t)〉H = 〈hL, hXt〉H = ELXt = h(t), (11.1)

for every t ∈ [0, 1]d. The fact that functions in H can be evaluated at the point t by taking the
inner product with K(·, t) is called the reproducing property. In this context the covariance
function K is also called the reproducing kernel.

Since the process X is continuous, it is also mean-square continuous (Exercise 11.2). By
the reproducing property and Cauchy-Schwarz it follows that for h ∈ H and tn → t in
[0, 1]d we have

|h(tn)− h(t)|2 = | 〈h,K(·, tn)−K(·, t)〉H |
2 = ‖h‖2HE(Xtn −Xt)

2 → 0.

Hence every function in the RKHS is continuous, i.e. H ⊂ C[0, 1]d. Moreover, similar as in
the preceding display, we have

‖h‖2∞ ≤ σ2(X)‖h‖2H, (11.2)

where σ2(X) = supt∈[0,1]d EX2
t . In other words, the norm of the inclusion map i:H →

C[0, 1]d is bounded by σ(X).
The unit ball in H is denoted by H1 = {h ∈ H: ‖h‖H ≤ 1}. This space is always

precompact in C[0, 1]d, i.e. it has compact closure.

Theorem 11.2 The RKHS unit ball H1 is precompact in C[0, 1]d.

Proof By (11.2) the RKHS unit ball H1 is uniformly bounded. The function (s, t) 7→
E(Xt−Xs)

2 is continuous, hence uniformly continuous on the compact set [0, 1]d× [0, 1]d.
Since the function vanishes on the diagonal, it follows that for every ε > 0 there exists a
δ > 0 such that if ‖s− t‖ < δ, then E(Xt −Xs)

2 < ε. Hence for h ∈ H, the reproducing
property and Cauchy-Schwarz imply that if ‖t− s‖ < δ, then

|h(s)− h(t)|2 ≤ ‖h‖2HE(Xt −Xs)
2 < ε.

In other words, the unit ball H1 of the RKHS is uniformly equicontinuous as well. The
assertion of the theorem thus follows from the Arzelà-Ascoli theorem (Theorem 11.11).

11.2 Absolute continuity

The law, or distribution PX of the centered, continuous Gaussian process X indexed by
[0, 1]d is the probability measure on the Borel sets of C[0, 1]d defined by PX(B) =
Pr(X ∈ B) for B ∈ B(C[0, 1]d). A function h ∈ H is continuous, so the shifted pro-
cess X +h induces a distribution PX+h on C[0, 1]d as well. The following theorem asserts
that these distributions are equivalent probability measures. The Radon-Nikodym derivate
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dPX+h/dPX , which is a measurable function on C[0, 1]d can be expressed in terms of the
Hilbert space isometry between the RKHS H and the first chaos L ⊂ L2(Ω,U ,Pr). We
denote this map by U , so U :H→ L2(Ω,U ,Pr) is defined by UhL = L.

Theorem 11.3 (Cameron-Martin) If h ∈ H then PX and PX+h are equivalent Borel
measures on C[0, 1]d and

dPX+h

dPX
(X) = eUh−

1
2‖h‖

2
H

almost surely.

Sketch of proof The process X can be written as X =
∑
Zihi, for Zi = Uhi inde-

pendent, standard normal variables and the hi an orthonormal basis of the RKHS H. The
convergence of the series takes place in C[0, 1]d almost surely. The function h ∈ H admits
an expansion h =

∑
cihi for some c ∈ `2. The series converges in H, but then by (11.2)

it converges in C[0, 1]d as well. We can thus write X + h =
∑

(Zi + ci)hi, convergence
taking place in C[0, 1]d.

It can be proved that X and X + h are measurable functions of the sequences Z and
Z + c, respectively. This implies that to prove the equivalence of the laws PX and PX+h it
suffices to show that the laws of the sequences Z and Z + c are equivalent measures on the
sequence space R∞. Now for a fixed i, the squared Hellinger distance (see (8.2)) between
the laws of Zi and Zi + ci equals

1− e− 1
8 c

2
i ≤ 1

8
c2
i .

Since c ∈ `2, Theorem 11.13 yields the equivalence of the laws.
The ratio of the densities of Zi and Zi+ci at the point zi is given by exp((zici − c2

i /2)).
Therefore, the Radon-Nikodym derivative of the law of Z + c relative to the law of Z at the
point Z = (Z1, Z2, . . .) is given by

∞∏
i=1

eciZi−
1
2 c

2
i = e

∑
ciZi− 1

2

∑
c2i .

This completes the proof, since Uh =
∑
ciZi and

∑
c2
i = ‖h‖2H.

The converse of the Cameron-Martin theorem can be proved as well: if h 6∈ H, then the
laws PX and PX+h are singular.

11.3 Support and concentration

Recall that the support of the centered, continuous Gaussian process X on [0, 1]d is defined
to be the smallest closed subset F ⊂ C[0, 1]d such that Pr(X ∈ F ) = 1 (Definition
2.1). By Exercise 2.2 such a set exists. The following theorem asserts that the support is
determined by the RKHS H of the process.

Theorem 11.4 (Kallianpur) The support of the process X is the closure of its RKHS H in
C[0, 1]d.
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Proof Observe that by definition, f ∈ C[0, 1]d is in the support F of X if and only if for
all ε > 0, it holds that Pr(‖X − f‖∞ < ε) > 0.

Let Y be an independent copy of X and ε > 0. Since C[0, 1]d is countable union of balls
of radius ε, there exists an f ∈ C[0, 1]d such that Pr(‖X − f‖∞ < ε) > 0. By the triangle
inequality and independence,

Pr(‖X − Y ‖∞ < 2ε) ≥ Pr(‖X − f‖∞ < ε) Pr(‖Y − f‖∞ < ε) > 0.

But the process (X − Y )/
√

2 has the same law as X (check!), hence the preceding shows
that for all ε > 0, Pr(‖X‖∞ < ε) > 0. By the Cameron-Martin theorem it follows that
every element of H belongs to the support. Since the support is closed by definition, the
closure of H is included in the support as well.

To show that H is dense in the support F , let b∗ be a bounded linear functional onC[0, 1]d

that vanishes on H. By Hahn-Banach (see Theorem 11.12) we are done once we have shown
that b∗ vanishes on F . The random variable b∗X belongs to the first chaos L and hence
h(t) = EXtb

∗X belongs to H. By the fact that b∗ vanishes on H and linearity we have
0 = b∗h = b∗(EX·b

∗X) = E(b∗X)2, hence b∗X = 0 on an event Ω′ with probability 1.
Now take f ∈ F . Then for every n ∈ N we have

Pr(Ω′ ∩ {ω: ‖X(ω)− f‖∞ < ε}) > 0,

hence f is the uniform limit of sample paths of X(ωn) of X for ωn ∈ Ω′. By definition of
Ω′, we have b∗X(ωn) = 0 for every n. By continuity of b∗, we conclude that b∗f = 0 as
well.

The theorem implies that for H1 the unit ball of the RKHS, B1 the unit ball of C[0, 1]d

and ε > 0, it holds that

Pr(X ∈MH1 + εB1)→ 1

as M → ∞. The following theorem refines this considerably by quantifying the amount
mass that the law of X places on neighborhoods of RKHS balls.

We denote the standard normal distribution function by Φ, that is, Φ(x) = Pr(Z ≤ x),
for Z a standard normal random variable.

Theorem 11.5 (Borell-Sudakov) For all ε > 0 and M ≥ 0,

Pr(X ∈MH1 + εB1) ≥ Φ(Φ−1(Pr(‖X‖∞ < ε)) +M).

For x ≥ 0, we have the inequality 1−Φ(x) ≤ exp(−x2/2). Hence the Borell-Sudakov
theorem implies in particular that for fixed ε > 0 and large enough M > 0,

Pr(X 6∈MH1 + εB1) . e−
1
2M

2

.

Hence if M is only moderately large, the bulk of the mass of the law of X lies in the
set MH1 + εB1. This should be viewed as the infinite-dimensional analogue of the fact
that for a d-dimensional Nd(0,Σ)-distribution, the bulk of the mass lies in the ellipsoid
{x ∈ Rd:xTΣ−1x ≤M} for M large enough.
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11.4 Small ball probabilities

We saw in the preceding section that for a centered, continuous Gaussian process X and
ε > 0, the small ball probability Pr(‖X‖∞ < ε) is strictly positive. The fact that the process
X is centered suggests that for a fixed ε > 0, the probability Pr(‖X − f‖∞ < ε) of a ball
centered at some function f is maximal for f = 0. It can be proved that this is indeed the
case (this is the content of a result called Anderson’s lemma). The following results describe
how the probability decreases when the ball is centered at a non-zero function.

Lemma 11.6 For h ∈ H and ε > 0,

Pr(‖X − h‖∞ < ε) ≥ e− 1
2‖h‖

2
H Pr(‖X‖∞ < ε).

Proof SinceX and−X have the same distribution, Pr(‖X+h‖ < ε) = Pr(‖X−h‖ <
ε). By the Cameron-Martin formula,

Pr(‖X + h‖ < ε) = EeUh−
1
2‖h‖

2
H1‖X‖<ε.

This is true with −h in the place of h as well. Combining these two facts we get

Pr(‖X − h‖ < ε) =
1

2
EeUh−

1
2‖h‖

2
H1‖X‖<ε +

1

2
EeU(−h)− 1

2‖−h‖
2
H1‖X‖<ε

= e−
1
2‖h‖

2
HE cosh(Uh)1‖X‖<ε,

where cosh(x) = (exp(x)+exp(−x))/2. The proof is finished by noting that cosh(x) ≥ 1
for all x.

Any f ∈ C[0, 1]d in the support of X can be uniformly approximated by an element of
the RKHS (Theorem 11.4). By the triangle inequality, the preceding lemma implies that for
every such f and ε > 0,

− log Pr(‖X − f‖∞ < 2ε) ≤ 1

2
inf

h∈H:‖f−h‖∞≤ε
‖h‖2H − log Pr(‖X‖∞ < ε)

The quantity on the right plays an important role later on and therefore gets a special name.

Definition 11.7 For f ∈ C[0, 1]d we define the concentration function φf by

φf (ε) =
1

2
inf

h∈H:‖f−h‖∞≤ε
‖h‖2H − log Pr(‖X‖∞ < ε) (11.3)

In this notation the inequality in the lemma above states that for f in the support of X
and ε > 0, − log Pr(‖X − f‖∞ < 2ε) ≤ φf (ε). The following theorem asserts that we
have a reversed inequality as well.

Theorem 11.8 For f ∈ C[0, 1]d in the support of X and ε > 0,

φf (2ε) ≤ − log Pr(‖X − f‖∞ < 2ε) ≤ φf (ε).

Sketch of proof The proof of the second inequality was given above.
For the first inequality, it can first be observed using convexity considerations that the
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map h 7→ ‖h‖2H attains a minimum on the set {h ∈ H: ‖f − h‖∞ ≤ ε} at some point hε,
say. By the Cameron-Martin formula,

Pr(‖X − f‖∞ < ε) = Pr(‖(X − hε)− (f − hε)‖∞ < ε)

= Ee−Uhε−
1
2‖h

2
ε‖H1‖X−(f−hε)‖∞<ε.

Using series expansions for instance, it can be proved that Uhε ≥ 0 on the event {‖X −
(f − hε)‖∞ < ε}. Since X is centered, it then follows that

Pr(‖X−f‖∞ < ε) ≤ e− 1
2‖h

2
ε‖H Pr(‖X−(f−hε)‖∞ < ε) ≤ e− 1

2‖h
2
ε‖H Pr(‖X‖∞ < ε).

This is exactly the inequality that needs to be derived.

The asymptotic behavior for ε→ 0 of the centered small ball probability Pr(‖X‖∞ < ε)
on the logarithmic scale turns out to be closely related to the “size” of the RKHS unit ball
H1. More precisely, it is determined by the asymptotic behavior for ε → 0 of the metric
entropy logN(ε,H1, ‖ ·‖∞). (Note that by Theorem 11.2 these entropy numbers are finite.)

To explain the connection between these two quantities, suppose we have N elements
h1, . . . , hN of H1 that are 2ε-separated in C[0, 1]d. Then the balls of radius ε around the hj
are disjoint and hence, by Lemma 11.6,

√
e ≥
√
e

N∑
j=1

Pr(‖X − hj‖∞ < ε)

≥
√
e

N∑
j=1

e−
1
2‖hj‖

2
H Pr(‖X‖∞ < ε)

≥ N Pr(‖X‖∞ < ε).

Since the maximal number of ε-separated points in H1 is bounded from below by the ε-
covering number of H1 (check!), we see that large metric entropy of H1 implies a small
probability P(‖X‖∞ < ε) and vice versa.

More careful analysis allows to establish a much more precise relation between the asymp-
totic behavior of the small ball probability and that of the metric entropy of the RKHS unit
ball.

Theorem 11.9 We have the following equivalences of asymptotic behaviors for ε→ 0:

logN(ε,H1, ‖ · ‖∞) � ε− 2α
2+α ⇐⇒ − log Pr(‖X‖∞ < ε) � ε−α (11.4)

logN(ε,H1, ‖ · ‖∞) � logγ
1

ε
⇐⇒ − log Pr(‖X‖∞ < ε) � logγ

1

ε
. (11.5)

11.5 Examples

11.5.1 Brownian motion

Let W = (Wt: t ∈ [0, 1]) be a Brownian motion. The first chaos of the process is given by
the collection of Wiener integrals L = {

∫ 1

0
f(u) dWu: f ∈ L2[0, 1]} (see Exercise 11.1).
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For f ∈ L2[0, 1] and t ≥ 0, the isometry (10.1) implies that

EWt

∫ 1

0

f(u) dWu =

∫ t

0

f(u) du.

Hence, the RKHS of W is the space

H = {t 7→
∫ t

0

f(u) du: f ∈ L2[0, 1]}

of absolutely continuous functions starting in 0, with square integrable derivatives. This is
the so-called Cameron-Martin space. Using (10.1) again we see that the RKHS inner product
is given by 〈

t 7→
∫ t

0

f(u) du, t 7→
∫ t

0

g(u) du

〉
H

= 〈f, g〉2 .

Using this explicit description of the RKHS it can be seen that the support of the Brownian
motion is the space C0[0, 1] of all continuous functions f on [0, 1] satisfying f(0) = 0
(Exercise 11.4).

Note that the RKHS consists of functions with “regularity” 1, i.e. the functions are smoother
than the sample paths of the process W . The unit ball H1 of the RKHS is a Sobolev-type
ball of regularity 1 of which it is known that the metric entropy is of the order ε−1 (compare
with Lemma 8.9). According to the relation (11.4) this implies that for ε→ 0 the small ball
probabilities of the Brownian motion behave like

− log Pr(‖W‖∞ < ε) � ε−2.

In fact, this probability estimate can also be proved directly, for instance using known facts
about the distribution of first time that |W | hits the level ε. Then using (11.4) in the other
direction we then find the entropy estimate logN(ε,H1, ‖ · ‖∞) � ε−1.

11.5.2 Stationary processes

The RKHS of a stationary process can be described in spectral terms. Let X = (Xt: t ∈
[0, 1]d) be a centered, continuous, stationary Gaussian process with spectral measure µ. As
before, we define et:Rd → C by et(λ) = exp(i 〈λ, t〉).

Lemma 11.10 The RKHS of X is the set of (real parts of) the functions (from [0, 1]d to C)

t 7→
∫
ei〈λ,t〉ψ(λ)µ(dλ),

where ψ runs through the complex Hilbert space L2(µ). The RKHS-norm of the displayed
function equals the norm in L2(µ) of the projection of ψ on the closed linear span of the set
of functions {et: t ∈ [0, 1]d} (or, equivalently, the infimum of ‖ψ‖L2(µ) over all functions ψ
giving the same function in the preceding display).

Proof By the spectral isometry (10.3), the first chaos L of X is isometric to the space of
functions L ′ ⊂ L2(µ) defined as the closure in L2(µ) of the linear span of the functions
{et: t ∈ [0, 1]d}. Since every element of H is of the form t 7→ EXtL for L ∈ L , using the
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spectral isometry again shows that every element of H is of the form t 7→ 〈et, ψ〉L2(µ), for
ψ ∈ L ′, and the RKHS-norm of such a function is given by the L2(µ)-norm of ψ.

Now let P :L2(µ) → L2(µ) be the orthogonal projection onto the closed subspace L ′.
Then for every ψ ∈ L2(µ), 〈et, ψ〉L2(µ) = 〈Pet, ψ〉L2(µ) = 〈et, Pψ〉L2(µ). Hence t 7→
〈et, ψ〉L2(µ) belongs to H and its RKHS norm is given by the L2(µ)-norm of the projection
Pψ.

11.6 COMPLEMENTS

A collection of functions F ⊂ C[0, 1]d is called uniformly bounded if supf∈F ‖f‖∞ <
∞. It is called uniformly equicontinuous is for all ε > 0, there exists a δ > 0 such that
‖s− t‖ < δ implies that |f(s)− f(t)| ≤ ε for all s, t ∈ [0, 1]d and f ∈ F .

Theorem 11.11 (Arzelà-Ascoli) The set F ⊂ C[0, 1]d is precompact if and only if it is
uniformly bounded and uniformly equicontinuous.

The following is a version of (or a consequence of) the Hahn-Banach theorem.

Theorem 11.12 (Hahn-Banach) Let W be a linear subspace of a normed linear space V .
If every bounded linear functional on V that vanishes on W , vanishes on the whole space
V , then W is dense in V .

In the following theorem, h denotes the Hellinger distance between densities (see (8.2)).

Theorem 11.13 (Kakutani) Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two se-
quences of independent random variables. Assume Xi has a positive density fi with respect
to a dominating measure µ, and Yi has a positive density gi with respect to µ. Then the laws
of the sequences X and Y are equivalent probability measures on R∞ if and only if

∞∑
i=1

h2(fi, gi) <∞.

If the laws are not equivalent, they are mutually singular.

Exercises
11.1 Prove that the first chaos of the Brownian motion W = (Wt: t ∈ [0, 1]) can be identified with

the collection of Wiener integrals {
∫ 1
0
f(u) dWu: f ∈ L2[0, 1]}.

11.2 Prove that a Gaussian process with continuous sample paths is mean-square continuous.
11.3 Prove that the RKHS is a separable Hilbert space.
11.4 Determine the support of the Brownian motion indexed by [0, 1].
11.5 Determine the RKHS of integrated Brownian motion.
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Contraction rates for Gaussian process priors

12.1 A general theorem for Gaussian processes

Let W = (Wt: t ∈ [0, 1]d) be a centered, continuous Gaussian process with RKHS (H, ‖ ·
‖H). The process W can be used to define prior distributions on functional parameters in
various types of nonparametric statistical models. In a regression context for instance the
law of the process W itself can serve as a prior on an regression function, cf. Section 10.4.
In other settings it is sensible to first transform the process. If a prior on a density is required
for instance, the law of the transformed Gaussian process

t 7→ eWt∫
[0,1]d

eWs ds
(12.1)

may be used. Such priors are sometimes called logistic Gaussian priors.
In the density estimation setting, we have a general rate of contraction theorem for pos-

terior distribution, Theorem 9.3. (Such results exists for other settings as well, including
regression.) The following general theorem will allow us to derive contraction rates for
priors based on Gaussian processes. If will turn out that the rate εn is determined by the
concentration function of the process W , as defined in Definition 11.7.

Theorem 12.1 Let w0 be contained in the support of W . For any sequence εn of positive
numbers satisfying

φw0
(εn) ≤ nε2n (12.2)

and any constant C > 1 such that e−Cnε
2
n < 1/2, there exists a sequence of Borel measur-

able sets Bn ⊂ C[0, 1]d such that

logN(3εn, Bn, ‖ · ‖∞) ≤ 6Cnε2n, (12.3)

Pr(W /∈ Bn) ≤ e−Cnε
2
n , (12.4)

Pr
(
‖W − w0‖∞ < 2εn

)
≥ e−nε

2
n . (12.5)

Proof Inequality (12.5) is an immediate consequence of (12.2) and Theorem 11.8. We need
to prove existence of the sets Bn such that the first and third inequalities hold.

For B1 and H1 the unit balls in the space C[0, 1]d and the RKHS H, respectively, and
Mn →∞ a sequence of constants to be determined later, set

Bn = εnB1 +MnH1.

78
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By the Borell-Sudakov inequality (see Theorem 11.5), it follows that

Pr(W /∈ Bn) ≤ 1− Φ(αn +Mn),

for Φ the distribution function of the standard normal distribution and αn determined by

Φ(αn) = Pr(W ∈ εnB1) = e−φ0(εn).

For C > 1, set

Mn = −2Φ−1
(
e−Cnε

2
n
)
.

Because φ0(εn) ≤ φw0
(εn) ≤ nε2n by assumption (12.2), and C > 1, we have that αn ≥

− 1
2
Mn so that αn +Mn ≥ 1

2
Mn and hence

Pr(W /∈ Bn) ≤ 1− Φ( 1
2
Mn) = e−Cnε

2
n .

We conclude that (12.4) is satisfied.
If h1, . . . , hN are contained in MnH1 and 2εn-separated for the norm ‖ · ‖∞, then the
‖ · ‖∞-balls hj + εnB1 of radius εn around these points are disjoint and hence

1 ≥
N∑
j=1

Pr(W ∈ hj + εnB1)

≥
N∑
j=1

e−
1
2
‖hj‖2H Pr(W ∈ εnB1)

≥ Ne−
1
2
M2
ne−φ0(εn),

where the second inequality follows from the Cameron-Martin theorem, Theorem 11.3. If
the 2εn-net h1, . . . , hN is maximal in the setMnH1, then the balls hj+2εnB1 coverMnH1.
It follows that

N
(
2εn,MnH1, ‖ · ‖∞

)
≤ N ≤ e

1
2
M2
neφ0(εn).

By its definition any point of the set Bn is within distance εn of some point of MnH1. This
implies that

logN
(
3εn, Bn, ‖ · ‖

)
≤ logN

(
2εn,MnH1, ‖ · ‖

)
≤ 1

2
M2

n + φ0(εn)

≤ 5Cnε2n + φ0(εn),

by the definition of Mn if e−
1
2
Cnε2n < 1, because Φ−1(y) ≥ −

√
5/2 log(1/y) and is

negative for every y ∈ (0, 1/2). Since φ0(εn) ≤ φw0
(εn) ≤ nε2n this completes the proof

of the theorem.

We note that since the concentration function (11.3) is the sum of two functions that are
decreasing near 0, condition (12.2) can be replaced by the two separate conditions

1
2

∫
h∈H:‖h−w0‖∞≤ε̃n

‖h‖2H ≤ nε̃2n,
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− log Pr(‖W‖∞ < ε̄n) ≤ nε̄2n.

Inequalities (12.3)–(12.5) will then be fulfilled for the maximum εn = ε̃n ∨ ε̄n. The second
condition only involves the process W , not the function w0. The first condition measures
how well the function w0 can be approximated by elements of the RKHS of W .

12.2 Density estimation with logistic Gaussian process priors

The inequalities (12.3)–(12.5) in the conclusion of Theorem 12.1 are obviously closely re-
lated to the conditions of the general rate of contraction result given by Theorem 9.3. To be
able to apply Theorem 12.1 in the context of i.i.d. density estimation with logistic Gaussian
process priors we have to relate the various statistical “distances” between densities of the
form (12.1) to the uniform distance between sample paths of the process W .

For w: [0, 1]d → R a continuous function, define the positive density pw on [0, 1]d by

pw(t) 7→ ew(t)∫
[0,1]d

ew(s) ds
, t ∈ [0, 1]d. (12.6)

Recall the definitions of the distance measures h,K and V in (8.2) and (9.1).

Lemma 12.2 For any measurable functions v, w: [0, 1]d → R,

• h(pv, pw) ≤ ‖v − w‖∞ e‖v−w‖∞/2.
• K(pv, pw) . ‖v − w‖2∞ e‖v−w‖∞(1 + ‖v − w‖∞).
• V (pv, pw) . ‖v − w‖2∞ e‖v−w‖∞(1 + ‖v − w‖∞)2.

Proof The triangle inequality and simple algebra give

h(pv, pw) =

∥∥∥∥ ev/2

‖ev/2‖2
− ew/2

‖ew/2‖2

∥∥∥∥
2

=

∥∥∥∥ew/2 − ev/2‖ew/2‖2
+ ev/2

( 1

‖ew/2‖2
− 1

‖ev/2‖2

)∥∥∥∥
2

≤ 2
‖ev/2 − ew/2‖2
‖ew/2‖2

.

Because |ev/2 − ew/2| = ew/2|ev/2−w/2 − 1| ≤ ew/2e|v−w|/2|v − w|/2 for any v, w ∈ R,
the square of the right side is bounded by∫

ewe|v−w||v − w|2 dt∫
ew dt

≤ e‖v−w‖∞‖v − w‖2∞.

This proves the first assertion of the lemma.
We derive the other assertions from the first one. Because w − ‖v − w‖∞ ≤ v ≤

w + ‖v − w‖∞, ∫
ew dt e−‖v−w‖∞ ≤

∫
ev dt ≤

∫
ew dt e‖v−w‖∞ .

Taking logarithms across we see that

−‖v − w‖∞ ≤ log

∫
ev dt∫
ew dt

≤ ‖v − w‖∞.
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Therefore ∥∥∥log
pv
pw

∥∥∥
∞

=
∥∥∥v − w − log

∫
ev dt∫
ew dt

∥∥∥
∞
≤ 2‖v − w‖∞.

The second and third inequalities now follow from the first by Lemma 9.9.

Now suppose that we observe a sampleX1, X2, . . . , Xn from a positive, continuous den-
sity p0 on [0, 1]d. The following theorem shows that for the logistic Gaussian process prior
defined as the law of the transformed process (12.1), the rate of posterior convergence is
determined by the condition (12.2) on the concentration function, with w0 = log p0 .

Theorem 12.3 Let W be a centered, continuous Gaussian process on C[0, 1]d on let the
prior Π be the law of of pW . Suppose that w0 = log p0 is contained in the support of W .
Then the posterior distribution satisfies

E0Πn

(
p:h(p, p0) > Mεn|X1, . . . , Xn)→ 0

for any sufficiently large constant M and εn given by (12.2).

Proof We choose the set Pn in Theorem 9.3 equal to the set Pn = {pw:w ∈ Bn} for
Bn ⊂ C[0, 1]d the measurable set as in Theorem 12.1, with C a large constant. In view
of the first inequality of Lemma 12.2 for sufficiently large n the 4εn-entropy of Pn relative
to the Hellinger distance is bounded above by the 3εn-entropy of the set Bn relative to
the uniform distance, which is bounded by 6Cnε2n by Theorem 12.1. The prior probability
Π(Pcn) outside the set Pn as in (9.4) is bounded by the probability of the event {W /∈ Bn},
which is bounded by e−Cnε

2
n by Theorem 12.1. Finally, by the second and third inequalities

of Lemma 12.2 the prior probability as in (9.3), but with εn replaced by a multiple of εn, is
bounded above by the probability of the event {‖W − w0‖∞ < 2εn}, which is bounded
above by e−nε

2
n by Theorem 12.1.

12.3 Example: density estimation with Riemann-Liouville priors

12.3.1 Brownian motion

Let W = (Wt: t ∈ [0, 1]) be a Brownian motion with standard normal initial distribu-
tion. That is, Wt = Z + Bt, where B is a standard Brownian motion and Z ∼ N(0, 1),
independent of B. Then we have

− log Pr(‖W‖∞ < 2ε) ≤ − log Pr(|Z| < ε)− log Pr(‖B‖∞ < ε) . ε−2

(see Section 11.5.1). It can be verified that the RKHS of W is given by H = {t 7→ a +∫ t
0
f(s) ds: a ∈ R, f ∈ L2[0, 1]} (see Exercise 12.1). In other words, it is the space of all

functions on [0, 1] with square-integrable derivatives, without a restriction at 0. Moreover,
the RKHS-norm of h ∈ H is given by ‖h‖2H = h2(0) + ‖h′‖22. Note that this implies that
the support of W is the whole space C[0, 1] (cf. Theorem 11.4).

To bound the infimum term in the concentration function we assume a certain degree of
regularity on w0. Specifically, suppose that w0 ∈ Cβ[0, 1] for β ∈ (0, 1]. Let φ be the
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standard normal probability density and put φσ(x) = σ−1φ(x/σ) for σ > 0. We are going
to approximate the function w0 by convolutions of the form φσ ∗ w0 which are defined by

(φσ ∗ w0)(t) =

∫
w0(s)φσ(t− s) ds,

where we extended w0 to the whole real line without increasing its Cβ-norm (this is always
possible). Note that since w0 is β-Hölder by assumption, we have

|(φσ ∗ w0)(t)− w0(t)| =
∣∣∣ ∫ (w0(t− s)− w(t))φσ(s) ds

∣∣∣
≤ ‖w0‖β

∫
|s|βφσ(s) ds

= ‖w0‖βσβ
∫
|s|βφ(s) ds,

hence ‖φσ ∗w0−w0‖∞ ≤ Cσβ for some C > 0. Since φσ is smooth the function φσ ∗w0

is differentiable and using the fact that
∫
φ′(t) dt = 0 we see that

|(φσ ∗ w0)′(t)| =
∣∣∣ ∫ (w0(t− s)− w0(t))φ′σ(s) ds

∣∣∣
≤ ‖w0‖β

∫
|s|β|φ′σ(s)| ds

= ‖w0‖βσβ−1

∫
|s|β|φ′(s)| ds.

Since we also have |(φσ ∗ w0)(0)| ≤ ‖w0‖∞ it follows that (the restriction to [0, 1] of)
φσ ∗ w0 belongs to the RKHS H, and ‖φσ ∗ w0‖2H ≤ C ′σ2β−2 for some C ′ > 0. Choosing
σ � ε1/β above we arrive at the bound

inf
h∈H:‖h−w0‖≤ε

‖h‖2H . ε
2β−2
β .

Now observe that the bound that we have for the concentration function depends on the
regularity β of w0. If β ≤ 1/2, then the bound on the infimum dominates and we have
φw0

(ε) . ε
2β−2
β . The inequality (12.2) is then fulfilled for εn � n−β/2. If β ≥ 1/2, then

the small ball term dominates. Then we have φw0
(ε) . ε−2, yielding εn = n−1/4.

So by Theorem 12.3, using the law of the transformed Brownian motion W as a prior in
the density estimation problem leads to posterior that contracts around the true density at
the rate n−(1/2∧β)/2, where β is the degree of Hölder regularity of the true log-density. It is
well known in statistics that the “best” rate at which a β-regular density can be estimated is
n−β/(1+2β). (Such statements are for instance made precise by so-called minimax theorems.)
We only achieve this rate with the Brownian motion prior if β = 1/2. Note that the level
1/2 is precisely the “degree of regularity” of the Brownian motion sample paths. So we see
that in this case we achieve an optimal convergence rate if the regularity of the prior matches
the regularity of the unknown density that we are estimating.
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12.3.2 General Riemann-Liouville processes

The observations at the end of the preceding subsection suggest that if we want to estimate
a function with some arbitrary degree of smoothness β at the optimal rate n−β/(1+2β), we
should perhaps use a prior based on a Gaussian process with the same regularity β.

A candidate is the Riemann-Liouville process Rβ considered in Section 10.3.2. Similar
to the Brownian motion case considered above we have to slightly modify the process to
enlarge its support. The RL process starts at 0, and so do its derivatives, if they exist. This
implies that the process can only accurately approximate functions with the same property.
To remove this restriction we “release” it at zero by adding an independent polynomial.
Specifically, let β > 0 and let Rβ be the RL process with parameter β. Let β be the largest
integer strictly smaller than β and defined the modified Riemann-Liouville process W β by

W β
t =

β+1∑
j=0

Zjt
j +Rβ

t , t ∈ [0, 1],

where the Zj are independent, standard normal random variable independent of Rβ . The
following theorem can be proved by analyzing the RKHS of the RL process.

Theorem 12.4 Let β > 0. The support of the process W β is the whole space C[0, 1]. For
w0 ∈ Cβ[0, 1], its concentration function φw0

satsfies φw0
(ε) . ε−1/β for ε small enough.

The theorem implies that for W β the modified RL process and w0 ∈ Cβ[0, 1], the in-
equality φw0

(εn) ≤ nε2n is solved for εn a multiple of n−β/(1+2β). Hence by Theorem 12.3,
using the transformed process W β as a prior in the density estimation setting yields the op-
timal rate n−β/(1+2β) if the true log-density belongs to Cβ[0, 1]. So again, we see that we
attain an optimal rate of contraction if the regularity of the prior matches the regularity of
the truth.

It should be noted that in a realistic situation we typically do not know the regularity of
the unknown density that we are trying to estimate. Hence, it is then unclear which prior to
use and using one that is too smooth or too rough will lead to sub-optimal rates. This raises
the question whether it is possible to construct a prior that achieves the rate n−β/(1+2β) if
the true log-density belongs to Cβ[0, 1], but that does not depend on this information about
the unknown smoothness. It turns out that this is indeed possible, but the treatment of these
so-called rate-adaptive procedures is outside the scope of this course.

Exercises
12.1 Determine the RKHS and the RKHS-norm of the Brownian motion with standard normal initial

distribution.
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Efficiency in smooth parametric models

In this lecture we consider estimation in smooth, parametric models and formulate a theo-
rem that characterizes efficiency, a notion of optimality in the class of all so-called regular
estimators. The aim of this lecture is to prepare for the Bernstein-von Mises theorem, which
asserts that posterior distributions in smooth parametric models tend to follow efficienct
estimators and lead to efficient inferential conclusions.

13.1 Confidence sets and credible sets

Statistical inference can be expressed in many different ways but perhaps the most intuitive
and straightforward is the representation in terms of confidence sets (in frequentism) or cred-
ible sets (in Bayesian jargon). Recall that, typically, confidence sets are defined as neighbour-
hoods of an estimator, of a size or radius that is derived from the quantiles of its sampling
distribution. The sampling distribution describes the distribution of the estimator relative to
the true value of the parameter. That means that sampling distributions provide coverage
probabilities: for any neighbourhood of the estimator, the sampling distribution tells you the
probability that it includes the true parameter. Reversing the reasoning, the analysis often
departs from the follwing definition, in which we assume a model P = {Pθ: θ ∈ Θ} for
data X .

Definition 13.1 Given a fixed confidence level 1− α (for small values of 0 < α < 1, e.g.
α = 0.05 or 0.01), a confidence set C(X) is a model subset, defined in terms of the data
X , such that Pθ(θ ∈ C(X)) ≥ 1− α, for all θ ∈ Θ.

The definition aims for sets that are statistics, (i.e. that can be calculated once the data has
been realised), with coverage probability greater than or equal to 1−α. Since there are many
sets that satisfy this requirement (note that the entire parameter space always has coverage
1) one strives to find a candidate of maximal informative content, for instance by insisting
on minimal Lebesgue measure. An example is a search for intervals of minimal length, in
the case where we are considering confidence sets for a one-dimensional parameter based
on an estimator that has a unimodal or symmetric distribution around the truth. (More to the
point, minimality of the Lebesgue measure of a confidence set is guaranteed if we consider
level sets of the Lebesgue density of the sampling distribution.)

Credible sets are motivated conceptually in a very similar way, albeit in Bayesian terms.
For the following definition, assume that the modelP (or Θ) is equipped with a prior Π with
associated posterior Π(·|X).

84
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Definition 13.2 Given a credible level 1 − α, a credible set D(X) is a model subset
defined in terms of the data, that receives posterior probability at or above the credible level:
Π(θ ∈ D(X)|X) ≥ 1− α.

It is noted here that at the conceptual level, the Bayesian posterior plays a role comparable
to that of the frequentist sampling distribution: it is a distribution on the model or on its pa-
rameter space, supposedly informative at the inferential level. In the following, we shall not
be too strict in Bayesian, subjectivist orthodoxy and interpret the posterior as a frequentist
device, in a role very close conceptually to that of the sampling distribution of an estimator
used above.

From that perspective, a natural question is: do credible sets and confidence sets have
something to do with each other? Since they are conceptually so close, could it be that they
are close also mathematically? (At least, when explained as frequentist devices)? In this
lecture, we discuss efficiency of (point-)estimation culminating in the so-called convolution
theorem, which provides a notion of asymptotic optimality at the inferential level (for the
class of all regular estimators). In the next lecture, we switch to the Bayesian leg of the
story and show that a correspondence between confidence sets and credible sets does exist
asymptotically in smooth, parametric models.

The so-called Bernstein-von Mises theorem (Le Cam (1990)) (see theorem 14.1 below)
not only demonstrates asymptotic equivalence of credible sets and confidence sets, it also
shows that the relevant sets are optimal in the sense that they are associated with so-called
efficient estimators. Essential to the development of the optimality theory are two concepts:
differentiability of the model and regularity of the estimator. Combined, these two properties
lead to a notion of optimality comparable to estimators that achieve optimality within the
family of unbiased estimators in the Cramér-Rao sense.

13.2 Optimality in smooth, parametric estimation problems

The concept of efficiency has its origin in Fisher’s 1920’s claim of asymptotic optimality
of the maximum-likelihood estimator in differentiable parametric models (Fisher (1959)).
Here, optimality of the ML estimate means that they are consistent, achieve optimal n−1/2

rate of convergence and possessed a asymptotic sampling distribution of minimal variance.
In 1930’s and –40’s, Fisher’s ideas on optimality in differentiable models were sharpened
and elaborated upon (see, e.g. Cramér (1946)). To illustrate, consider the following classical
result from M -estimation (which can be found as theorem 5.23 in in van der Vaart (1998)).

Theorem 13.3 Let Θ be open in Rk and assume that P is characterized by densities
pθ:X → R such that θ 7→ log pθ(x) is differentiable at θ0 for all x ∈ X, with derivative
˙̀
θ(x). Assume that there exists a function ˙̀:X→ R such that P0

˙̀2 <∞ and∣∣log pθ1(x)− log pθ2(x)
∣∣ ≤ ˙̀(x) ‖θ1 − θ2‖,

for all θ1, θ2 in an open neighbourhood of θ0. Furthermore, assume that θ 7→ Pθ log pθ has
a second-order Taylor expansion around θ0 of the form,

Pθ0 log pθ = Pθ0 log pθ0 + 1
2
(θ − θ0)T Iθ0(θ − θ0) + o(‖θ − θ0‖2),
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with non-singular Iθ0 . If (θ̂n) is a sequence satisfying,

Pn log pθ̂n ≥ sup
θ∈Θ

Pn log pθ̂n − oPθ0 (n−1),

such that θ̂n
θ0−→ θ0, then the estimator sequence is asymptotically linear,

n1/2(θ̂n − θ0) = n−1/2
n∑
i=1

I−1
θ0

˙̀
θ0(Xi) + oPθ0 (1)

In particular, n1/2(θ̂n − θ0)
θ0 N(0, I−1

θ0
).

The last assertion of theorem 13.3 says that the (near-)maximum-likelihood estimators
(θ̂n) are asymptotically consistent, converge at rate n−1/2 and have the inverse Fisher in-
formation I−1

θ0
as the covariance matrix for their (normal) limit distribution. At this stage of

the discussion, we do not have an argument to show that this asymptotic behaviour is in any
sense optimal. Nevertheless, let us take the opportunity to illustrate briefly how asymptotic
behaviour translates into inference on θ by considering associated asymptotic confidence
sets.

An asymptotic confidence set is an approximate confidence set that is derived not from
exact sampling distributions, but from approximations implied by limit distributions, e.g.
from n1/2(θ̂n − θ0)

θ0 N(0, I−1
θ0

) in the above example. To demonstrate, first suppose that
the model is one-dimensional and satisfies the conditions of theorem 13.3. Denoting quan-
tiles of the standard normal distribution by ξα, we see from the last assertion of the theorem
that:

P n
θ0

(
−ξαI1/2

θ0
< n1/2(θ̂n − θ0) ≤ ξαI1/2

θ0

)
→ 1− 2α,

If the Fisher information were known, this would give rise immediately to a confidence
interval: the above display implies that,[

θ̂n − n−1/2 ξα I
1/2
θ0

, θ̂n + n−1/2 ξα I
1/2
θ0

]
has coverage probability 1 − 2α. Since the Fisher information is not known exactly, we
substitute an estimator for it, for example the sample variance S2

n, to arrive at a studentized
version of the above, which has the same asymptotic coverage and can therefore be used as
an asymptotic confidence interval. But we could also have chosen to “plug in” the estimator
θ̂n for θ0 in the expression for the Fisher information to arrive at an estimate Iθ̂n . To general-
ize to higher-dimensional Θ ⊂ Rk, recall that if Z has a k-dimensional multivariate normal
distribution Nk(0,Σ), then ZTΣ−1Z possess a χ2-distribution with k degrees of freedom.
Denoting quantiles of the χ2-distribution with k degrees of freedom by χ2

k,α, we find that
ellipsoids of the form,

Cα(X1, . . . , Xn) =
{
θ ∈ Θ : n(θ − θ̂n)T Iθ̂n(θ − θ̂n) ≤ χ2

k,α

}
, (13.1)

have coverage probabilities converging to 1 − α and are therefore asymptotic confidence
sets.
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13.3 Regularity and efficiency

Theorem 13.3 requires a rather large number of smoothness properties of the model: log-
densities are required to be differentiable and Lipschitz and the Kullback-Leibler divergence
must display a second-order expansion with non-singular second derivative matrix. These
sufficient conditions are there to guarantee that the ML estimator displays a property known
as regularity and the conditions listed are usually referred to as “regularity condtions”. The
prominence of regularity in the context of optimality questions was not fully appreciated
until Hodges discoved an estimator that displayed a property now known as superefficiency.

Example 13.4 (Hodges (1951))
Suppose that we estimate a parameter θ ∈ Θ = R with an estimator sequence (Tn), satisfy-
ing limiting behaviour described by n1/2(Tn− θ)

θ
 Lθ for some laws Lθ, for all θ ∈ Θ. In

addition, we define a so-called shrinkage estimator Sn, by Sn = Tn as long as |Tn| ≥ n−1/4

and Sn = 0 otherwise. The name shrinkage estimator arises because any realization of Tn
that is close enough to 0 is shrunk to 0 fully. One shows quite easily that Sn has the same
asymptotic behaviour as Tn as long as θ 6= 0, i.e. n1/2(Sn− θ)

θ
 Lθ if θ 6= 0. By contrast,

if θ = 0, εn(Sn − 0)
0
 0 for any rate sequence εn. In other words, the asymptotic quality

of Sn is as good as that of Tn, or strictly better if θ = 0! (NB: Superefficiency does come
at a price, paid in terms of the behaviour of risk functions in neighbourhoods of the point of
shrinkage. Furthermore, superefficiency can be achieved on a subset of Lebesgue measure
no greater than zero. There is no such thing as a free lunch.)

So at certain points in the parameter space, Hodges’ shrinkage estimators and other super-
efficient estimators outperform the MLE and other estimators like it asymptotically, while
doing equally well for all other points. Superefficiency indicated that Fisher’s 1920’s claim
was false without further refinement and that a comprehensive understanding of optimality
in differentiable estimation problems remained elusive.

To resolve the issue and arrive at a sound theory of asymptotic optimality of estima-
tion in differentiable models, we have to introduce two concepts. The first is a concise no-
tion of smoothness that describes local behaviour of likelihood products directly in terms
of score functions. The “local” aspect of the definition stems from the n-dependent re-
coordinatization in terms of the local parameter h = n1/2(θ − θ0). (In the following we
assume that the sample is i.i.d., although usually the definition is extended to more general
models for the data.)

Definition 13.5 (Local asymptotic normality, Le Cam (1960))
Let Θ ⊂ Rk be open, parametrizing a model P = {Pθ: θ ∈ Θ} that is dominated by a
σ-finite measure with densities pθ. The model is said to be locally asymptotically normal
(LAN) at θ0 if, for any converging sequence hn → h:

log
n∏
i=1

pθ0+n1/2hn

pθ0
(Xi) = hTΓn,θ0 − 1

2
hT Iθ0h+ oPθ0 (1), (13.2)

for random vectors Γn,θ0 such that Γn,θ0
θ0 Nk(0, Iθ0).

Differentiability of the log-density θ 7→ log pθ(x) at θ0 for every x (with score ˙̀
θ(x) =
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(d/dθ) log pθ(x)) implies that the model is LAN at θ0 with,

Γn,θ0 = n−1/2
n∑
i=1

˙̀
θ0(Xi).

But local asymptotic normality can be achieved under weaker conditions; best known is the
following property, best described as Hadamard differentiability of square-roots of model
densities relative to the L2(P0) norm.

Definition 13.6 Let Θ ⊂ Rk be open. A model P = {Pθ: θ ∈ Θ} that is dominated by a
σ-finite measure µ with densities pθ is said to be differentiable in quadratic mean (DQM) at
θ0 ∈ Θ, if there exists a score function ˙̀

θ0 ∈ L2(Pθ0) such that:∫ (
p

1/2
θ0+h − p

1/2
θ0
− 1

2
hT ˙̀

θ0 p
1/2
θ0

)2

dµ = o
(
‖h‖2

)
,

as h→ 0.

Theorem 7.2 in van der Vaart (1998) shows that a model that is DQM at θ0 is LAN at θ0.
However, in many situations, it is quite straightforward to demonstrate the LAN property
directly.

The second concept is a property that characterizes the class of estimators over which
optimality is achieved, in particular excluding Hodges’ shrinkage estimators (and all other
examples of superefficiency, as becomes clear below). To prepare the definition heuristically,
note that, given Hodges’ counterexample, it is not enough to have estimators with point-
wise convergence to limit laws; we must restrict the behaviour of estimators over (n−1/2-
)neighbourhoods rather than allow the type of wild variations that make superefficiency
possible.

Definition 13.7 Let Θ ⊂ Rk be open. An estimator sequence (Tn) for the parameter θ is
said to be regular at θ if, for all h ∈ Rk,

n1/2
(
Tn −

(
θ + n−1/2h)

)
 Lθ, (under Pθ+n−1/2h),

i.e. with a limit law independent of h.

So regularity describes the property that convergence of the estimator to a limit law is
insensitive to perturbation of the parameter of n-dependent size n−1/2h. The two properties
covered above come together through the following theorem (see theorems 7.10, 8.3 and 8.4
in van der Vaart (1998)), which formulate the foundation for the convolution theorem that
follows.

Theorem 13.8 Let Θ ⊂ Rk be open; let P = {Pθ: θ ∈ Θ} be LAN at θ0 with non-
singular Fisher information Iθ0 . Let (Tn) be regular estimators in the “localized models”
{Pθ0+n−1/2h:h ∈ Rk}. Then there exists a (randomized) statistic T in the normal location
model {Nk(h, I

−1
θ0

):h ∈ Rk} such that T − h ∼ Lθ0 for all h ∈ Rk.

Theorem 13.8 provides every regular estimator sequence with a limit in the form of a
statistic in a very simple model in which the only parameter is the location of a normal dis-
tribution: the (weak) limit distribution that describes the local asymptotics of the sequence
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(Tn) under Pθ0+n−1/2h equals the distribution of T under h, for all h ∈ Rk. Moreover,
regularity of the sequence (Tn) implies that underNk(h, I

−1
θ0

), the distribution of T relative
to h is independent of h, an invariance usually known as equivariance-in-law. (This result
is the culmination of a much broader theory of asymptotic behaviour of estimators in se-
quences of models. This very general theory goes by the name “limits of experiments”, see
Le Cam (1972) and van der Vaart “Limits of Statistical Experiments” (unpublished).) The
class of equivariant-in-law estimators for location in the model {Nk(h, I

−1
θ0

):h ∈ Rk} is
fully known: for any equivariant-in-law estimator T for h, there exists a probability distri-
bution M such that T ∼ Nk(h, I

−1
θ0

) ? M . The most straightforward example is T = X ,
for which M = δ0. This argument gives rise to the following central result in the theory of
efficiency.

Theorem 13.9 (Convolution theorem (Hájek (1970)))
Let Θ ⊂ Rk be open and let {Pθ: θ ∈ Θ} be LAN at θ0 with non-singular Fisher infor-

mation Iθ0 . Let (Tn) be a regular estimator sequence with limit distribution Lθ0 . Then there
exists a probability distribution Mθ0 such that,

Lθ0 = Nk(0, I
−1
θ0

) ? Mθ0 ,

In particular, if Lθ0 has a covariance matrix Σθ0 , then Σθ0 ≥ I−1
θ0

.

The occurence of the inverse Fisher information is no coincidence: the estimators T are
unbiased so they satisfy the Cramér-Rao bound in the limiting model {Nk(h, I

−1
θ0

):h ∈
Rk}. Convolution of Nk(0, I

−1
θ0

) with any distribution M raises its variance unless M is
degenerate: the last assertion of the convolution theorem says that, within the class of regular
estimates, asymptotic variance is lower-bounded by the inverse Fisher information. A regular
estimator that is optimal in this sense, is called best-regular. Anderson’s lemma broadens
the notion of optimality, in the sense that best-regular estimators outperform other regular
estimators with respect to a large family of loss functions.

Definition 13.10 A loss-function is any `:Rk → [0,∞); a subconvex loss-function is a
loss function such that the level sets {x ∈ Rk: `(x) ≤ c} are closed, convex and symmetric
around the origin.

Examples of subconvex loss-functions are many and include, for example, the common
choices `(x) = ‖x‖p, p ≥ 1.

Lemma 13.11 (Anderson’s lemma)
For any k ≥ 1, any subconvex loss function `”Rk → [0,∞), any probability distribution
M on Rk and any k-dimensional covariance matrix Σ,∫

` dNk(0,Σ) ≤
∫
` d(Nk(0,Σ) ? M).

(A proof of Anderson’s lemma can be found, for instance, in Ibragimov and Has’minskii
(1981).) Finally, we mention the following equivalence, which characterizes efficiency con-
cisely in terms of a weakly converging sequence.
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Lemma 13.12 In a LAN model, estimators (Tn) for θ are best-regular if and only if the
(Tn) are asymptotically linear, i.e. for all θ in the model,

n1/2(Tn − θ) =
1√
n

n∑
i=1

I−1
θ

˙̀
θ(Xi) + oPθ(1). (13.3)

The random sequence of differences on the r.h.s. of (13.3) is denoted by ∆n,θ0 below.

Coming back to theorem 13.3, we see that under stated conditions, a consistent sequence
of MLE’s (θ̂n) is best-regular, finally giving substance to Fisher’s 1920’s claim. Referring to
the discussion on confidence sets with which we opened this lecture, we now know that in a
LAN model, confidence sets of the form (13.1) based on best-regular estimators (θ̂n) satisfy
a similar notion of optimality: according to the the convolution theorem, the asymptotic
sampling distributions of best-regular estimator sequences are all the same and sharpest
among asymptotic sampling distributions for regular estimators. The question remains if
we can somehow identify confidence sets and credible intervals; in the next chapter, that
identification is made asymptotically.

Exercises
13.1 Assume that n1/2(θ̂n − θ0) ∼ N(0, I−1

θ0
). Show that the ellipsoids (13.1) are of minimal

Lebesgue measure among all subsets of coverage 1− α.
13.2 Consider Hodges’ estimators Sn of example 13.4. Show that, for any rate sequence (εn), εn ↓ 0,

εn(Sn − 0)
0
 0.

13.3 Let Θ = R and let P = {Pθ: θ ∈ Θ} be the model of Poisson distributions Pθ with means θ.
Show that this model is LAN for all θ.

13.4 Let Θ = R and let P = {Pθ: θ ∈ Θ} be the model of normal distributions N(θ, 1) of unit
variance with means θ. Show that this model is LAN for all θ.

13.5 Let f be a Lebesgue density on R that is symmetric around the origin. Define the model P =

{Pµ,σ:µ ∈ R, σ ∈ (0,∞)} by densities fµ,σ(x) = σ−1f((x − µ)/σ). Show that the Fisher
information matrix is diagonal.



14

Le Cam’s Bernstein-von Mises theorem

To address the question of efficiency in smooth parametric models from a Bayesian perspec-
tive, we turn to the Bernstein-Von Mises theorem. In the literature many different versions
of the theorem exist, varying both in (stringency of) conditions and (strength or) form of the
assertion. Following Le Cam and Yang (1990) we state the theorem as follows. (For later
reference, define a parametric prior to be thick at θ0, if it has a Lebesgue density that is
continuous and strictly positive at θ0.)

Theorem 14.1 (Bernstein-Von Mises, parametric)
Assume that Θ ⊂ Rk is open and that the model P = {Pθ: θ ∈ Θ} is identifiable and

dominated. Suppose X1, X2, . . . forms an i.i.d. sample from Pθ0 for some θ0 ∈ Θ. Assume
that the model is locally asymptotically normal at θ0 with non-singular Fisher information
Iθ0 . Furthermore, suppose that, the prior ΠΘ is thick at θ0 and that for every ε > 0, there
exists a test sequence (φn) such that,

P n
θ0
φn → 0, sup

‖θ−θ0‖>ε
P n
θ (1− φn)→ 0.

Then the posterior distributions converge in total variation,

sup
B

∣∣∣Π( θ ∈ B ∣∣ X1, . . . , Xn

)
−Nθ̂n,(nIθ0 )−1(B)

∣∣∣→ 0,

in Pθ0-probability, where (θ̂n) denotes any best-regular estimator sequence.

For any two probability measures P and Q, the total variation norm of their difference is
equal to the L1-norm of the difference of their densities relative to any σ-finite measure that
dominates both:

sup
B

∣∣P −Q ∣∣ =

∫ ∣∣p− q| dµ, (14.1)

where P,Q � µ with p = dP/dµ and q = dQ/dµ. So if the Lebesgue measure on Θ
dominates the posterior, the Bernstein-Von Mises theorem says that the posterior density
converges to a normal density in L1. In figure 14, this type of convergence is demonstrated
with a numerical example. Also displayed in figure 14 are the so-called MAP estimator (the
localtion of maximal posterior density, a popular point-estimator derived from the posterior)
and the ML estimator. It is noted that, here, the MLE is efficient so it forms a possible
centring sequence for the limiting sequence of normal distributions in the assertion of the
Bernstein-Von Mises theorem. Furthermore, it is noted that the posterior concentrates more
and more sharply, reflecting the n−1-proportionality of the variance of its limiting sequence

91
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Figure 14.1 Convergence of the posterior density. The samples used for calculation
of the posterior distributions consist of n observations; the model consists of all
normal distributions with mean between −1 and 2 and variance 1 and has a
polynomial prior, shown in the first (n = 0) graph. For all sample sizes, the
maximum a posteriori and maximum likelihood estimators are indicated by a
vertical line and a dashed vertical line respectively. (From Kleijn (2003))

of normals. It is perhaps a bit surprising in figure 14 to see limiting normality obtain already
at such relatively low values of the sample size n. It cannot be excluded that, in this case,
that is a manifestation the normality of the underlying model, but onset of normality of the
posterior appears to happen at unexpectedly low values of n also in other smooth, parametric
models. It suggests that asymptotic conclusions based on the Bernstein-Von Mises limit
accrue validity fairly rapidly, for n in the order of several hundred to several thousand i.i.d.
replications of the observation.

The uniformity in the assertion of the Bernstein-Von Mises theorem over model subsets
B implies that it holds also for model subsets that are random. In particular, given some
0 < α < 1, it is noted that the smallest sets Cα(X1, . . . , Xn) such that,

Nθ̂n,(nIθ0 )−1

(
Cα(X1, . . . , Xn)

)
≥ 1− α,

are ellipsoids of the form (13.1). Since posterior coverage of Cα converges to the l.h.s.
in the above display, in accordance with the Bernstein-Von Mises limit, we see that the
Cα are asymptotic credible sets of posterior coverage 1 − α. Conversely, any sequence



14.1 Proof of the Bernstein-von Mises theorem 93

(Cn(X1, . . . , Xn)) of (data-dependent) credible sets of coverage 1−α, is also a sequence of
sets that have asymptotic confidence level 1−α (where we use that θ̂n is best-regular). This
gives rise to an identification in smooth, parametric models between inference based on fre-
quentist best-regular point-estimators and inference based on Bayesian posteriors. In a prac-
tical sense, it eliminates the need to estimate θ and the Fisher information Iθ at θ to arrive at
asymptotic confidence sets, if we have an approximation of the posterior distribution of high
enough quality (e.g. from MCMC simulation), if we know that the Bernstein-Von Mises
theorem holds. In high dimensional parametric models, maximization of the likelihood may
be much more costly computationally than generation of a suitable MCMC approximation.
As a consequence, the Bernstein-Von Mises theorem has an immediate practical implica-
tion of some significance. This point will also hold in semiparametric context, where the
comparative advantage is even greater.

Before we continue with the proof of the Bernstein-Von Mises theorem, let is briefly
reflect on its conditions: local asymptotic normality and non-singularity of the associated
Fisher information are minimal smoothness conditions. They also arise in theorem 13.3 and
form the backdrop for any discussion of efficiency. More significant is the required existence
of a “consistent” test sequence: what is required is that, asymptotically, we can distinguish
P0 from any complement of a θ-neighbourhood around θ0 uniformly. One should compare
this condition with that of consistency of near-maximizers of the likelihood in theorem 13.3.
Apparently, if such a global (rather than n−1/2-sized local) consistency guarantee can not
be given, likelihood-based methods like ML or Bayesian estimation cannot be trusted to
give rise to asymptotic normality (in their respective forms). In the next section, we shall
divide the Bernstein-Von Mises theorem in two parts, with a requirement of local n−1/2-
sized consistency for the posterior in between. In a separate lemma, we show that a score-test
can fill in the gap between local and global consistency.

14.1 Proof of the Bernstein-von Mises theorem

We prove the assertion of the Bernstein-Von Mises theorem using a smoothness property
that is slightly stronger than necessary, because we shall need a similar formulation in the
semiparametric case.

Definition 14.2 We say that a parametric model P is stochastically LAN at θ0, if the LAN
property of definition 13.5 is satisfied for every random sequence (hn) that is bounded in
probability, i.e. for all hn = OP0

(1):

log
n∏
i=1

pθ0+n1/2hn

pθ0
(Xi)− hTnΓn,θ0 − 1

2
hTnIθ0hn = oPθ0 (1), (14.2)

for random vectors Γn,θ0 such that Γn,θ0
θ0 Nk(0, Iθ0).

Theorem 14.3 Let the sample X1, X2, . . . be distributed i.i.d.-P0. Let Θ ⊂ Rk be open,
let P = {Pθ: θ ∈ Θ} be stochastically LAN at θ0 with non-singular Fisher information
Iθ0 and let the prior Π on Θ be thick. Furthermore, assume that for every sequence of balls
(Kn) ⊂ Rd with radii Mn →∞, we have:

Πn

(
h ∈ Kn

∣∣ X1, . . . , Xn

) P0−→ 1. (14.3)
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Then the sequence of posteriors converges to a sequence of normal distributions in total
variation:

sup
B

∣∣∣Πn

(
h ∈ B

∣∣ X1, . . . , Xn

)
−N∆n,θ0

,I−1
θ0

(B)
∣∣∣ P0−→ 0. (14.4)

Proof The proof is split into two parts: in the first part, we prove the assertion conditional
on an arbitrary compact set K ⊂ Θ and in the second part we use this to prove (14.4).
Throughout the proof we denote the posterior for h given X1, X2, . . . , Xn by Πn and the
normal distribution N∆n,θ0

,I−1
θ0

by Φn (recall the definition of ∆n,θ0 from lemma 13.12.

For K ⊂ Rk, conditional versions are denoted ΠK
n and ΦK

n respectively (assuming that
Πn(K) > 0 and Φn(K) > 0, of course).

Let K ⊂ Θ be a ball centered on 0. For every open neighbourhood U ⊂ Θ of θ0,
θ0 + n−1/2K ⊂ U for large enough n. Since θ0 is an internal point of Θ, we can define,
for large enough n, the random functions fn:K ×K → R by:

fn(g, h) =
(

1− φn(h)

φn(g)

sn(g)

sn(h)

πn(g)

πn(h)

)
+
,

where φn:K → R is the Lebesgue density of the (randomly located) distributionN∆n,θ0
,I−1
θ0

,
πn:K → R is the Lebesgue density of the prior for the centred and rescaled parameter h
and sn:K → R equals the likelihood product:

sn(h) =
n∏
i=1

pθ0+h/
√
n

pθ0
(Xi).

Since the model is stochastically LAN by assumption, we have for every random sequence
(hn) ⊂ K:

log sn(hn) = hnGn
˙̀
θ∗ − 1

2
hTnVθ∗hn + oP0

(1),

log φn(hn) = − 1
2
(hn −∆n,θ∗)

TVθ∗(hn −∆n,θ∗) + const

For any two sequences (hn), (gn) ⊂ K, πn(gn)/πn(hn)→ 1 as n→∞. Combining this
with the above display and (15.4), we see that:

log
φn(hn)

φn(gn)

sn(gn)

sn(hn)

πn(gn)

πn(hn)

= −hnGn
˙̀
θ∗ + 1

2
hTnVθ∗hn + gnGn

˙̀
θ∗ − 1

2
gTnVθ∗gn + oP0

(1)

− 1
2
(hn −∆n,θ∗)

TVθ∗(hn −∆n,θ∗) + 1
2
(gn −∆n,θ∗)

TVθ∗(gn −∆n,θ∗)

= oP0
(1)

as n → ∞. Since x 7→ (1 − ex)+ is continuous on R, we conclude that for every pair of
random sequences (gn, hn) ⊂ K ×K:

fn(gn, hn)
P0−→ 0, (n→∞).

For fixed, large enough n, P n
0 -almost-sure continuity of (g, h) 7→ log sn(g)/sn(h) on

K ×K is guaranteed by the stochastic LAN-condition. Each of the locations ∆n,θ0 for Φn
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is is tight, so (g, h) 7→ φn(g)/φn(h) is continuous on all of K × K P n
0 -almost-surely.

Continuity (in a neighbourhood of θ0) and positivity of the prior density guarantee that this
holds for (g, h) 7→ πn(g)/πn(h) as well. We conclude that for large enough n, the random
functions fn are continuous on K ×K, P n

0 -almost-surely. Application of lemma 14.5 then
leads to the conclusion that,

sup
g,h∈K

fn(g, h)
P0−→ 0, (n→∞). (14.5)

Since K contains a neighbourhood of 0, Φn(K) > 0) is guaranteed. Let Ξn denote the
event that Πn(K) > 0. Let η > 0 be given and based on that, define the events:

Ωn =
{
ω: sup

g,h∈K
fn(g, h) ≤ η

}
.

Consider the expression (recall that the total-variation norm is bounded by 2):

P n
0

∥∥ΠK
n − ΦK

n

∥∥1Ξn ≤ P n
0

∥∥ΠK
n − ΦK

n

∥∥1Ωn∩Ξn + 2P n
0 (Ξn − Ωn). (14.6)

As a result of (14.5) the latter term is o(1) as n→∞. The remaining term on the r.h.s. can
be calculated as follows:

1
2
P n

0

∥∥ΠK
n −ΦK

n

∥∥1Ωn∩Ξn = P n
0

∫ (
1− dΦK

n

dΠK
n

)
+
dΠK

n 1Ωn∩Ξn

= P n
0

∫
K

(
1− φKn (h)

∫
K
sn(g)πn(g)dg

sn(h)πn(h)

)
+
dΠK

n (h) 1Ωn∩Ξn

= P n
0

∫
K

(
1−

∫
K

sn(g)πn(g)φKn (h)

sn(h)πn(h)φKn (g)
dΦK

n (g)
)

+
dΠK

n (h) 1Ωn∩Ξn .

Note that for all g, h ∈ K we have φKn (h)/φKn (g) = φn(h)/φn(g) since, onK, φKn differs
from φn only by a normalisation factor. We use Jensen’s inequality (with respect to the
ΦK
n -expectation) for the (convex) function x 7→ (1− x)+ to derive:

1
2
P n

0

∥∥ΠK
n − ΦK

n

∥∥1Ωn∩Ξn ≤ P n
0

∫ (
1− sn(g)πn(g)φn(h)

sn(h)πn(h)φn(g)

)
+
dΦK

n (g) dΠK
n (h)1Ωn∩Ξn

≤ P n
0

∫
sup
g,h∈K

fn(g, h)1Ωn∩ΞndΦK
n (g) dΠK

n (h) ≤ η.

Combination with (14.6) shows that for all compact K ⊂ Rd containing a neighbourhood
of 0,

P n
0

∥∥ΠK
n − ΦK

n

∥∥1Ξn → 0.

Now let (Km) be a sequence of balls centred at 0 with radii Mm → ∞. For each m ≥
1, the above display holds, so if we choose a sequence of balls (Kn) that traverses the
sequence Km slowly enough, convergence to zero can still be guaranteed. Moreover, the
corresponding events Ξn = {ω: Πn(Kn) > 0} satisfy P n

0 (Ξn) → 1 as a result of (14.3).
We conclude that there exists a sequence of radii (Mn) such that Mn →∞ and

P n
0

∥∥ΠKn
n − ΦKn

n

∥∥→ 0, (14.7)
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(where it is understood that the conditional probabilities on the l.h.s. are well-defined on sets
of probability growing to one). Combining (14.3) and lemma 14.7, we then use lemma 14.6
to conclude that:

P n
0

∥∥Πn − Φn

∥∥→ 0,

which implies (14.4).

Aside from a slightly stronger smoothness property in the form of the stochastic LAN
condition, theorem 14.3 appears to require more than theorem 14.1, in the sense that it
requires posterior consistency at rate n−1/2 rather than the (fixed) tests for consistency.
The following lemma shows that, assuming smoothness, the latter condition is enough to
satisfy the former. Its proof is based on the construction of a score test that fills in the “gap”
left between the fixed-alternative tests and the growing alternative ‖θ − θ0‖ ≥ n−1/2Mn.
However, the proof is long and detailed and it does not have a semiparametric analog. For
that reason the proof is given only in the form of a reference.

Lemma 14.4 Assume that Θ ⊂ Rk is open and that the model P = {Pθ: θ ∈ Θ} is
identifiable and dominated. Assume that the model is locally asymptotically normal at θ0

with non-singular Fisher information Iθ0 and that the prior is thick at θ0. Furthermore,
suppose that there exists a test sequence (φn) such that,

P n
θ0
φn → 0, sup

‖θ−θ0‖>ε
P n
θ (1− φn)→ 0.

Then the posterior converges at rate n−1/2, i.e. for every sequence Mn →∞,

Π
(
‖θ − θ0‖ ≥ n−1/2Mn

∣∣ X1, . . . , Xn

) P0−→ 0.

Proof This lemma is a well-specified version of theorem 2.2 in Kleijn (2003), which in-
corporates theorem 2.3 therein, also found as lemma 10.3 in van der Vaart (1998).

14.2 Three subsidiary lemmas

The proof of theorem 14.3 also makes use of the following three lemmas which are of a
more general character then lemma 14.4.

Lemma 14.5 Let (fn) be a sequence of random functions K → R, where K is compact.
Assume that for large enough n ≥ 1, fn is continuous P n

0 -almost-surely. Then the following
are equivalent:

(i) Uniform convergence in probability:

sup
h∈K

∣∣fn(h)
∣∣ P0−→ 0, (n→∞),

(ii) For any random sequence (hn) ⊂ K:

fn(hn)
P0−→ 0, (n→∞),



14.2 Three subsidiary lemmas 97

Proof ((ii)⇒(i), by contradiction.) Assume that there exist δ, ε > 0 such that:

lim sup
n→∞

P0

(
sup
h∈K

∣∣fn(h)
∣∣ > δ

)
= ε.

Since the functions fn are continuous P0-almost-surely, there exists (with P0-probability
one) a sequence (h̃n) such that for every n ≥ 1, h̃n ∈ K and∣∣fn(h̃n)

∣∣ = sup
h∈K

∣∣fn(h)
∣∣.

Consequently, for this particular random sequence in K, we have:

lim sup
n→∞

P0

(∣∣fn(h̃n)
∣∣ > δ

)
= ε > 0.

which contradicts (ii). ((i)⇒(ii).) Given a random sequence (hn) ⊂ K, and for every
δ > 0,

P0

(
sup
h∈K

∣∣fn(h)
∣∣ > δ

)
≥ P0

(∣∣fn(hn)
∣∣ > δ

)
.

Given (i), the l.h.s. converges to zero and hence so does the r.h.s..

The next lemma shows that given two sequences of probability measures, a sequence of
balls that grows fast enough can be used conditionally to calculate the difference in total-
variational distance, even when the sequences consist of random measures.

Lemma 14.6 Let (Πn) and (Φn) be two sequences of random probability measures on
Rk. Let (Kn) be a sequence of subsets of Rk such that

Πn(Rk −Kn)
P0−→ 0, Φn(Rk −Kn)

P0−→ 0. (14.8)

Then ∥∥Πn − Φn

∥∥− ∥∥ΠKn
n − ΦKn

n

∥∥ P0−→ 0. (14.9)

Proof Let K, a measurable subset of Rk and n ≥ 1 be given and assume that Πn(K) > 0
and Φn(K) > 0. Then for any measurable B ⊂ Rk we have:∣∣Πn(B)−ΠK

n (B)
∣∣ =

∣∣∣Πn(B)− Πn(B ∩K)

Πn(K)

∣∣∣
=
∣∣Πn

(
B ∩ (Rk −K)

)
+
(
1−Πn(K)−1

)
Πn(B ∩K)

∣∣
≤ Πn

(
B ∩ (Rk −K)

)
+ Πn(Rk −K)ΠK

n (B) ≤ 2Πn(Rk −K).

and hence also:∣∣∣(Πn(B)−ΠK
n (B)

)
−
(
Φn(B)−ΦK

n (B)
)∣∣∣ ≤ 2

(
Πn(Rk−K)+Φn(Rk−K)

)
. (14.10)

As a result of the triangle inequality, we then find that the difference in total-variation dis-
tances between Πn and Φn on the one hand and ΠK

n and ΦK
n on the other is bounded above

by the expression on the right in the above display (which is independent of B).
Define An, Bn to be the events that Πn(Kn) > 0, Φn(Kn) > 0 respectively. On

Ξn = An ∩ Bn, ΠKn
n and ΦKn

n are well-defined probability measures. Assumption (14.8)
guarantees that P n

0 (Ξn) converges to 1. Restricting attention to the event Ξn in the above
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upon substitution of the sequence (Kn) and using (14.8) for the limit of (14.10) we find
(14.9), where it is understood that the conditional probabilities on the l.h.s. are well-defined
with probability growing to 1.

To apply the above lemma in the concluding steps of the proof of theorem 14.3, rate
conditions for both posterior and limiting normal sequences are needed. The rate condition
(14.3) for the posterior is assumed and the following lemma demonstrates that its analog for
the sequence of normals is satisfied when the sequence of centre points ∆n,θ0 is uniformly
tight.

Lemma 14.7 Let Kn be a sequence of balls centred on the origin with radii Mn → ∞.
Let (Φn) be a sequence of normal distributions (with fixed covariance matrix V ) located
respectively at the (random) points (∆n) ⊂ Rk. If the sequence ∆n is uniformly tight, then:

Φn(Rk −Kn) = N∆n,V (Rk −Kn)
P0−→ 0.

Proof Let δ > 0 be given. Uniform tightness of the sequence (∆n) implies the existence
of a constant L > 0 such that:

sup
n≥1

P n
0 (‖∆n‖ ≥ L) ≤ δ.

For all n ≥ 1, call An = {‖∆n‖ ≥ L}. Let µ ∈ Rk be given. Since N(µ, V ) is tight,
for every given ε > 0, there exists a constant L′ such that Nµ,V (B(µ,L′)) ≥ 1 − ε
(where B(µ,L′) defines a ball of radius L′ around the point µ. Assuming that µ ≤ L,
B(µ,L′) ⊂ B(0, L + L′) so that with M = L + L′, Nµ,V (B(0,M)) ≥ 1 − ε for all µ
such that ‖µ‖ ≤ L. Choose N ≥ 1 such that Mn ≥ M for all n ≥ N . Let n ≥ N be
given. Then:

P n
0

(
Φn(Rk −B(0,Mn) > ε

)
≤ P n

0

(
An
)

+ P n
0

({
Φn(Rk −B(0,Mn) > ε

}
∩Acn

)
≤ δ + P n

0

({
N∆n,V (B(0,Mn)c) > ε

}
∩Acn

)
(14.11)

Note that on the complement of An, ‖∆n‖ < L, so:

N∆n,V (B(0,Mn)c) ≤ 1−N∆n,V (B(0,M)) ≤ 1− inf
‖µ‖≤L

Nµ,V (B(0,M)) ≤ ε,

and we conclude that the last term on the r.h.s. of (14.11) equals zero.

Exercises
14.1 Show that for any probability measure P,Q, there exists a σ-finite measure µ such that P,Q�

µ. Then prove (14.1).
14.2 Let Θ = (0,∞) and P = {N(0, θ2): θ ∈ Θ}. Let Π be a thick prior on Θ. Show that this model

satisfies the conditions of the Bernstein-von Mises theorem 14.1. Find the problematic range
of parameter values in this model. (Hint: calculate the Fisher information, find a problematic
limit for it and describe the effect on the limiting sequence of normal distributions for certain
parameter values.)
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14.3 Approximation in measure from within by compact subsets has a deep background in analysis.
Central is the notion of a Radon measure. Given a Hausdorff topological space Θ, a Radon
measure Π is a Borel measure that is locally finite (meaning that any θ ∈ Θ has a neighbourhood
U such that Π(U) < ∞) and inner regular (meaning that for any subset S ⊂ Θ and any ε > 0,
there exists a compact K ⊂ S such that µ(S −K) < ε). Show that any probability measure on
a Polish space is Radon. (NB: This statement can be generalized to continuous images of Polish
spaces, known as Suslin spaces.)
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The semiparametric Bernstein-von Mises theorem

Neither the frequentist theory of asymptotic optimality for regular estimation in smooth
models, nor Theorem 14.1 generalize fully to nonparametric estimation problems. Exam-
ples of the failure of the Bernstein-Von Mises limit in infinite-dimensional problems (with
regard to the full parameter) can be found in Freedman (1999). Freedman initiated a dis-
cussion concerning the merits of Bayesian methods in nonparametric problems as early as
1963, showing that even with a natural and seemingly innocuous choice of the nonpara-
metric prior, posterior inconsistency may result (Freedman (1963)). This warning against
instances of inconsistency due to ill-advised nonparametric priors was reiterated in the lit-
erature many times over, for example in Cox (1993) and in Diaconis and Freedman (1986,
1998). However, general conditions for Bayesian consistency were formulated by Schwartz
as early as 1965 (Schwartz (1965)) and positive results on posterior rates of convergence in
the same spirit were obtained in Ghosal, Ghosh and van der Vaart (2000) (see also, Shen and
Wasserman (2001)). The combined message of negative and positive results appears to be
that the choice of a nonparametric prior is a sensitive one that leaves room for unintended
consequences unless due care is taken.

As we shall see in the following, this lesson must also be taken seriously when one asks
the question whether the posterior for the parameter of interest in a semiparametric esti-
mation problem displays limiting behaviour of the type (14.4). But before we formulate
and prove a semiparametric version of the Bernstein-Von Mises theorem in this chapter and
next, let us have a brief look at the semiparametric theory of efficient point-estimation in
differentiable models.

15.1 Efficiency in semiparametric estimation problems

As argued in lecture 1, there are serious limitations to the usefulness of parametric models
in statistics: the frequentist assumption that the true distribution of the data belongs to the
model, when that model is such a narrowly defined family of distributions, is a very strin-
gent one. Under those conditions, the possibility that the true distribution of the data is not
in the model is by far the more likely one (in which case we say the the model is misspec-
ified). Moreover, verification of this assumption is difficult at best and, more often, wholly
impossible. Although subjectivist Bayesians avoid this awkward assumption and therefore
use parametric models more liberally, one can question the generalized, universal value of
conclusions based on a subjectivist view that is equally narrowly defined.

For that reason, modern statistics studies nonparametric models. To illustrate, given a
sample space X we can choose to take for our model the collection M(X) of all probability

100
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distributions. Then, in the (frequentist) perspective that the data has some distribution, the
model can never be misspecified. In cases where the data is i.i.d., the empirical measure
appears to be a suitable estimator. But more often, the nature of the estimation problem
allows one to be more specific concerning the model, or at least, hope to approximate the
truth closely enough to guarantee validity of inferential conclusions.

The desire to answer specific statistical questions without concessions that imply gross
model misspecification, is what motivates semiparametric statistics: suppose that we are in-
terested in estimation of one (or a finite number of) real-valued aspect(s) of the distribution
of the data, like its expectation, variance, or more complicated functionals, like itsα-quantile
or the L2-norm of the associated density. One could devise a parametric model for the pur-
pose, but given the above objection of misspecification, one prefers to model the distribution
of the data in maximal appropriate generality and estimate aspects of interest based thereon.

15.1.1 Examples of semiparametric problems

Although the more general formulation would concern a nonparametric model P with a
finite-dimensional vector of functionals θ:P → Rk, representing the aspects of interest,
we choose to parametrize model distributions in terms of a finite-dimensional parameter
of interst θ ∈ Θ, for an open Θ ⊂ Rk, and an infinite-dimensional nuisance parameter
η ∈ H ; the non-parametric model is then represented as P = {Pθ,η: θ ∈ Θ, η ∈ H}. Of
course, we impose differentiability (or, more specifically, the LAN property) on the model
in a suitable way and we intend to estimate θ efficiently. We mention three popular examples
of such estimation problems but note that there are many more.

Example 15.1 (Errors-in-variables regression)
Consider a random vector (X,Y ) assumed to follow a regression relation of the form : Y =
α+β X+ e, for (α, β) ∈ R2 and an error e that is independent ofX and satisfiesEe = 0.
These widely used models for linear random-design regression suffer from a phenomenon
known as regression dilution (or attenuation bias): although noise in the regressed variable
Y is accounted for by the error e, noise in the design points X biases the estimated slope
α̂ towards zero! (To see why, imagine an exaggerated amount of noise in X which would
blur any linear relationship between X and Y beyond recognition and lead to estimates of
α close to zero.) For that reason, generalizations of the model have been proposed; most
prominent is the semiparametric errors-in-variables model, which accounts for noise in the
design points explicitly: the model formulates observed (X,Y ) and an unobserved random
variable Z, related through the regression equations,

X = Z + e, and Y = gθ(Z) + f,

where the errors (e, f) are assumed independent of Z and such that Ee = Ef = 0. Al-
though variations are possible, the most popular formulation of the model involves a family
of regression functions that is linear: gα,β(z) = α + β z and a completely unknown dis-
tribution F for the unobserved Z ∼ F . Interest then goes to (efficient) estimation of the
parameter θ = (α, β), while treating η = F as the nuisance parameter. (For an overview,
see Anderson (1985).)

Example 15.2 (Cox’ proportional hazards model)
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In medical studies (but also many in other disciplines) one is often interested in the rela-
tionship between the time of “survival” (which can mean anything from time until actual
death, to onset of a symptom, or detection of a certain protein in a patients blood, etc.) and
covariates believed to be of influence. Observations consist of pairs (T,Z) associated with
individual patients, where T is the survival time and Z is a vector of covariates. The proba-
bility of non-survival between t and t + dt, given survival up to time t is called the hazard
function λ(t),

λ(t) dt = P
(
t ≤ T ≤ t+ dt

∣∣ T ≥ t ).
The Cox proportional hazards model prescribes that the conditional hazard function given
Z is of the form,

λ(t|Z) dt = eθ
T Z λ0(t),

where λ0 is the so-called baseline hazard function. The interpretation of the parameter of in-
terest θ is easily established: if, for example, the component Zi ∈ {0, 1} describes presence
(or not) of certain characteristics in the patient (e.g. Z = 0 for a non-smoker and Z = 1
for a smoker), then eθi is the ratio of hazard rates between two patients that differ only in
that one characteristic Zi. The parameter of interest is the vector of θ, while the baseline
hazard rate is treated as an unknown nuisance parameter. (For a discussion of the semipara-
metric Bernstein-Von Mises theorem in the proportional hazards model, see Kim (2006) and
Castillo (2008)).

Example 15.3 (Partial linear regression)
Consider a situation in which one observes a vector (Y ;U, V ) of random variables, assumed
related through the regression equation,

Y = θ U + η(V ) + e,

with e independent of the pair (U, V ) and such that Ee = 0, usually assumed normally
distributed. The rationale behind this model would arise from situations where one is ob-
serving a linear relationship between two random variables Y and U , contaminated by an
additive influence from V of largely unknown form. The parameter θ ∈ R is of interest
while the nuisance η is from some infinite-dimensional function space H . (NB: The dis-
tribution P of (U, V ) is subject only to certain qualitative restrictions and, as such, forms
another nonparametric nuisance component in the model. However, (U, V ) is ancillary: the
P -dependent factor in the likelihood does not vary with (θ, η) and threrefore cancels in the
likelihood ratios that control (maximum-likelihood estimates and) posterior distributions.)
Estimation in the partial linear regression model is discussed in lecture 16.

15.1.2 Semiparametric efficiency

Before we consider the problem of semiparametric estimation from a Bayesian perspective,
we give a brief account of the central argument regarding strategies for point-estimation of
θ. It is assumed that the model P is dominated by a σ-finite measure with densities pθ,η.
Furthermore, we assume that the parametrization in terms of θ and η is identifiable and that
the true distribution of the data P0 is contained in the model, implying that there exist unique
θ0 ∈ Θ, η0 ∈ H such that P0 = Pθ0,η0 .
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The strategy for finding efficient estimators for θ0 is based on the following: suppose that
P0 is a submodel of P and that P0 contains P0. Then estimation of θ0 in the model P0 is
no harder than it is in P . For instance, if one applies this self-evident truth to LAN models
(c.f. theorem 13.9), one reaches the conclusion that the Fisher information in the larger
model is smaller than or equal to that in the smaller model. So, using the same amount
of data, estimation of the parameter θ can be done more accurately in the smaller model
than in the larger one (in the large sample limit). Such is the price one pays for use of a
more general model. Semiparametric information bounds are obtained as infima over the
information bounds one obtains from a collection of smooth, finite-dimensional submodels.
That collection has to be somehow “rich enough” to capture the true, sharp information
bound for (regular) semiparametric estimators. The following is a simplified reflection of
the argument put forth in van der Vaart (1998), chapter 25.

Assume that the parameter of interest is one-dimensional and define smooth submodels
as follows: for open neighbourhoods U of θ0, consider maps γ:U → P: θ 7→ Pθ, such that
Pθ=θ0 = P0 and, for all θ ∈ U , Pθ = Pθ,η for some η ∈ H . Assume that there exists a
P0-square-integrable score function ˙̀ such that P0

˙̀ = 0 and the LAN property is satisfied:

log
n∏
i=1

pθ0+n−1/2hn

p0

(Xi) =
1√
n

n∑
i=1

h ˙̀(Xi)− 1
2
h2P0

˙̀2 + oP0
(1),

for hn → h. Let S denote a collection of such smooth submodels. The corresponding
collection of score functions { ˙̀ ∈ L2(P0): γ ∈ S } may not be closed, but there exists an
˜̀
S in its L2(P0)-closure such that:

ĨS : = P0
˜̀2
S = inf

{ ˙̀:γ∈S }
P0

˙̀2. (15.1)

With a slight abuse of nomenclature, we refer to ˜̀
S and ĨS as the efficient score function

and efficient Fisher information for θ0 at Pθ0,η0 , relative to S . The efficient Fisher informa-
tion ĨS captures the notion of an “infimal Fisher information” (over S ) alluded to above.
Clearly, ĨS decreases if we enlarge the collection S .

To arrive at a formulation of efficiency in semiparametric context, let S denote a collec-
tion of LAN submodels and call any estimator sequence (Tn) for θ0 regular with respect to
S , if (Tn) is regular as an estimator for θ0 in all γ ∈ S (c.f. definition 13.7). Theorem 13.9
applies in any γ ∈ S so we obtain a collection of Fisher information bounds, one for each
γ ∈ S . This implies that for any (Tn) regular with respect to S , a convolution theorem can
be formulated in which the inverse efficient Fisher information ĨS represents a lower bound
to estimation accuracy. For the following theorem, which can be found as theorem 25.20 in
van der Vaart (1998), define the tangent set to be {a ˙̀: a ∈ [0,∞), γ ∈ S } ⊂ L2(P0).

Theorem 15.4 (Semiparametric convolution theorem)
Let Θ ⊂ Rk be open; let H be an infinite-dimensional nuisance space and let P be the
corresponding semiparametric model. Let a collection of smooth submodels S be given.
Assume that the true distribution of the i.i.d. data is Pθ0,η0 . For any estimator sequence (Tn)

that is regular with respect to S , the asymptotic covariance matrix is lower bounded by ĨS .
Furthermore, if the tangent set is a convex cone, the limit distribution of (Tn) is of the form
N(0, Ĩ−1

S ) ? M for some probability distribution M .
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As noted from the start of this section, if the collection S of smooth submodels is some-
how not “rich enough”, the resultant “efficient” Fisher information may not be truely infimal
and hence, may not give rise to a sharp bound on the asymptotic variance of regular estima-
tors. As a result optimal regular sequences (Tn) in theorem 15.4 (in the sense that M = δ0)
may not exist. Of course, there is the option of maximizing S to contain all LAN submodels
containing P0.

Definition 15.5 The efficient score function and efficient Fisher information relative to the
maximal S containing all LAN submodels are referred to as the efficient score function and
the efficient Fisher information, denoted by ˜̀

θ0,η0 and Ĩθ0,η0 respectively.

But the maximal collection of LAN submodels is hard to handle in any practical sense
because its definition is implicit. Usually the way one proceeds in any given model is by
proving the LAN property for some S and defining a clever proposal for a regular point-
estimator, with the goal of demonstrating that its limit distribution attains the lower bound
implied by the semiparametric convolution theorem. (Compare this with the manner in
which we concluded that, under the conditions of theorem 13.3, the parametric ML esti-
mator is efficient.)

Theorem 15.6 Let S be a collection of smooth submodels of P with corresponding effi-
cient Fisher information ĨS . Let (Tn) be a regular estimator sequence for the parameter of
interest. If (Tn) is asymptotically normal with asymptotic covariance Ĩ−1

S , then Ĩθ0,η0 = ĨS

and (Tn) is best-regular.

Compare semiparametric and parametric estimations problems as follows: suppose we
would know the true value η0 of the nuisance parameter: in that case, we could estimate
θ0 within the parametric model γ0 = {Pθ,η0 : θ ∈ Θ}, with corresponding score ˙̀

θ0,η0 and
Fisher information Iθ0,η0 . This Iθ0,η0 provides an information bound that is greater than, or
equal to Ĩθ0,η0 since γ0 is an element of the maximal S . The deterioration in asymptotic
estimation accuracy implied by the transition from Iθ0,η0 to Ĩθ0,η0 reflects the use of a (far)
more general model for the data through inclusion of a non-parametric nuisance.

Like in the parametric theory of efficient estimation, the convolution theorem gives rise
to the notion of a optimal regular semiparametric estimator sequence: if (Tn) is regular and
attains efficiency, i.e. if,

n1/2(Tn − θ0)
θ0,η0 N(0, Ĩ−1

θ0,η0
),

then (Tn) is said to be best-regular. Semiparametric estimators (Tn) for θ0 are best-regular
if and only if the (Tn) are asymptotically linear, that is,

n1/2(Tn − θ0) =
1√
n

n∑
i=1

Ĩ−1
θ0,η0

˜̀
θ0,η0(Xi) + oPθ(1), (15.2)

(For a proof, see lemma 25.23 in van der Vaart (1998)).
So, one reasons, in order to prove semiparametric efficiency, it would be enough to find

a single smooth submodel γ̃ for which the Fisher information equals the efficient Fisher
information. Any estimator sequence that is regular is then best-regular for θ0 in P . If it
exists, such a submodel is called a least-favourable submodel. Somewhat disappointingly,
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in many semiparametric problems, least-favourable submodels do not exist. That eventuality
does not impede the definition of the efficient score, because that is an element of the closure
of the tangent set. But it does limit the applicability of constructions that depend on the
existence of least-favourable submodels, such as the Bernstein-Von Mises theorem presented
later in this lecture.

15.2 Bayesian semiparametric statistics

Building on the analogy drawn between efficiency in smooth, parametric models and the
present, semiparametric efficiency question, we look for general sufficient conditions on
model and prior such that the marginal posterior for the parameter of interest satisfies,

sup
B

∣∣∣Π(√n(θ − θ0) ∈ B
∣∣ X1, . . . , Xn

)
−N∆̃n,Ĩ

−1
θ0,η0

(B)
∣∣∣→ 0, (15.3)

in Pθ0-probability, where,

∆̃n =
1√
n

n∑
i=1

Ĩ−1
θ0,η0

˜̀
θ0,η0(Xi). (15.4)

Here ˜̀
θ,η denotes the efficient score function and Ĩθ,η the efficient Fisher information (as-

sumed to be non-singular at (θ0, η0)). Assertion (15.3) often implies efficiency of point-
estimators like the posterior median, mode or mean and always leads to asymptotic identi-
fication of credible regions with efficient confidence regions. Like before, if C is a credible
set in Θ, (15.3) guarantees that posterior coverage and coverage under the limiting nor-
mal for C are (close to) equal. Because the limiting normals correspond to the asymptotic
sampling distributions for efficient point-estimators, (15.3) enables interpretation of credi-
ble sets as asymptotically efficient confidence regions. From a practical point of view, the
latter conclusion has an important implication: whereas it can be hard to compute optimal
semiparametric confidence regions directly (not least of all because one has to estimate the
efficient Fisher information), simulation of a large sample from the marginal posterior (e.g.
by MCMC techniques, see Robert (2001)) is sometimes comparatively straightforward.

Instances of the Bernstein-Von Mises limit have been studied in various semiparametric
models: several papers have provided studies of asymptotic normality of posterior distri-
butions for models from survival analysis. Particularly, Kim and Lee (2004) show that the
infinite-dimensional posterior for the cumulative hazard function under right-censoring con-
verges at rate n−1/2 to a Gaussian centred at the Aalen-Nelson estimator for a class of
neutral-to-the-right process priors. In Kim (2006), the posterior for the baseline cumulative
hazard function and regression coefficients in Cox’ proportional hazard model are consid-
ered with similar priors. Castillo (2008) considers marginal posteriors in Cox’ proportional
hazards model and Stein’s symmetric location problem from a unified point of view. A gen-
eral approach has been given in Shen (2002) but his conditions may prove somewhat hard to
verify in examples. Cheng and Kosorok (2008) give a general perspective too, proving weak
convergence of the posterior under sufficient conditions. Rivoirard and Rousseau (2009)
prove a version for linear functionals over the model, using a class of nonparametric priors
based on infinite-dimensional exponential families. Boucheron and Gassiat (2009) consider



106 The semiparametric Bernstein-von Mises theorem

the Bernstein-Von Mises theorem for families of discrete distributions. Johnstone (2010)
studies various marginal posteriors in the Gaussian sequence model.

15.3 The semiparametric Bernstein-Von Mises theorem

Consider estimation of a functional θ:P → Rk on a dominated nonparametric model P
with metric g, based on a sample X1, X2, . . ., distributed i.i.d. according to P0 ∈ P . We
introduce a prior Π on P and consider the subsequent sequence of posteriors,

Π
(
A
∣∣ X1, . . . , Xn

)
=

∫
A

n∏
i=1

p(Xi) dΠ(P )

/ ∫
P

n∏
i=1

p(Xi) dΠ(P ), (15.5)

where A is any measurable model subset. Typically, optimal (e.g. minimax) nonparametric
posterior rates of convergence (see Ghosal et al. (2000)) are powers of n (possibly modi-
fied by a slowly varying function) that converge to zero more slowly than the parametric
n−1/2-rate. Estimators for θ may be derived by ‘plugging in’ a nonparametric estimate, c.f.
θ̂ = θ(P̂ ), but optimality in rate or asymptotic variance cannot be expected to obtain gener-
ically in this way. This does not preclude efficient estimation of real-valued aspects of P0:
parametrize the model in terms of a finite-dimensional parameter of interest θ ∈ Θ and a
nuisance parameter η ∈ H where Θ is open in Rk and (H, dH) an infinite-dimensional
metric space: P = {Pθ,η : θ ∈ Θ, η ∈ H }. Assuming identifiability, there exist unique
θ0 ∈ Θ, η0 ∈ H such that P0 = Pθ0,η0 . Assuming measurability of the map (θ, η) 7→ Pθ,η,
we place a product prior ΠΘ × ΠH on Θ ×H to define a prior on P . Parametric rates for
the marginal posterior of θ are achievable because it is possible for contraction of the full
posterior to occur anisotropically, that is, at rate n−1/2 along the θ-direction, but at a slower,
nonparametric rate (ρn) along the η-directions.

15.3.1 Steps in the proof

The proof of (15.3) will consist of three steps: in section 17.1, we show that the poste-
rior concentrates its mass around so-called least-favourable submodels. In the second step
(see section 17.2), we show that this implies local asymptotic normality for integrals of the
likelihood over H , with the efficient score determining the expansion. In section 17.3, it
is shown that these LAN integrals induce asymptotic normality of the marginal posterior,
analogous to the way local asymptotic normality of parametric likelihoods induces the para-
metric Bernstein-Von Mises theorem.

To see why asymptotic accumulation of posterior mass occurs around so-called least-
favourable submodels, a crude argument departs from the observation that, according to
(15.5), posterior concentration occurs in regions of the model with relatively high likelihood
(barring inhomogeneities of the prior). Asymptotically, such regions are characterized by
close-to-minimal Kullback-Leibler divergence with respect to P0. To exploit this, let us as-
sume that for each θ in a neighbourhood U0 of θ0, there exists a unique minimizer η∗(θ) of
the Kullback-Leibler divergence,

−P0 log
pθ,η∗(θ)
pθ0,η0

= inf
η∈H

(
−P0 log

pθ,η
pθ0,η0

)
, (15.6)
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giving rise to a submodel P∗ = {P ∗θ = Pθ,η∗(θ): θ ∈ U0}. As is well-known (Severini
(1992)), if P∗ is smooth it constitutes a least-favourable submodel and scores along P∗ are
efficient. (In subsequent sections it is not required that P∗ is defined by (15.6), only that
P∗ is least-favourable.) Neighbourhoods of P∗ are described with Hellinger balls in H of
radius ρ > 0 around η∗(θ), for all θ ∈ U0:

D(θ, ρ) = { η ∈ H : dH(η, η∗(θ)) < ρ }. (15.7)

To give a more precise argument for posterior concentration around η∗(θ), consider the
posterior for η, given θ ∈ U0; unless θ happens to be equal to θ0, the submodel Pθ =
{Pθ,η: η ∈ H} is misspecified. Kleijn and van der Vaart (2006) show that the misspecified

θ

D(θ,ρ)

(θ0,η0)

H

Θ

η*(θ)

U0

Figure 15.1 A neighbourhood of (θ0, η0). Shown are the least-favourable curve
{(θ, η∗(θ)): θ ∈ U0} and (for fixed θ and ρ > 0) the neighbourhood D(θ, ρ) of
η∗(θ). The sets D(θ, ρ) are expected to capture (θ-conditional) posterior mass one
asymptotically, for all ρ > 0 and θ ∈ U0.

posterior concentrates asymptotically in any (Hellinger) neighbourhood of the point of min-
imal Kullback-Leibler divergence with respect to the true distribution of the data. Applied
to Pθ, we see that D(θ, ρ) receives asymptotic posterior probability one for any ρ > 0. For
posterior concentration to occur sufficient prior mass must be present in certain Kullback-
Leibler-type neighbourhoods. In the present contex, these neighbourhoods can be defined
as:

Kn(ρ,M) =

{
η ∈ H:P0

(
sup
‖h‖≤M

− log
pθn(h),η

pθ0,η0

)
≤ ρ2,

P0

(
sup
‖h‖≤M

− log
pθn(h),η

pθ0,η0

)2

≤ ρ2

}
,

(15.8)

for ρ > 0 and M > 0. If this type of posterior convergence occurs with an appropri-
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ate form of uniformity over the relevant values of θ (see ‘consistency under perturbation’,
section 17.1), one expects that the nonparametric posterior contracts into Hellinger neigh-
bourhoods of the curve θ 7→ (θ, η∗(θ)) (theorem 17.1 and corollary 17.3).

To introduce the second step, consider (15.5) with A = B × H for some measurable
B ⊂ Θ. Since the prior is of product form, Π = ΠΘ × ΠH , the marginal posterior for
the parameter θ ∈ Θ depends on the nuisance factor only through the integrated likelihood
ratio,

Sn: Θ→ R: θ 7→
∫
H

n∏
i=1

pθ,η
pθ0,η0

(Xi) dΠH(η), (15.9)

where we have introduced factors pθ0,η0(Xi) in the denominator for later convenience, see
(17.28). (The localized version of (15.9) is denoted h 7→ sn(h), see (17.15).) The map Sn is
to be viewed in a role similar to that of the profile likelihood in semiparametric maximum-
likelihood methods (see, e.g., Severini and Wong (1992) and Murphy and van der Vaart
(2000)), in the sense that Sn embodies the intermediate stage between nonparametric and
semiparametric steps of the estimation procedure.

We impose smoothness through stochastic local asymptotic normality, c.f. definition 14.2,
on least-favourable submodels. Although formally only a convenience, the presentation ben-
efits from an adaptive reparametrization (see section 2.4 of Bickel, Klaassen, Ritov, Wellner
(1998)): based on the least-favourable submodel η∗, we define for all θ ∈ U0, η ∈ H :

(θ, η(θ, ζ)) = (θ, η∗(θ) + ζ), (θ, ζ(θ, η)) = (θ, η − η∗(θ)), (15.10)

and we introduce the notation Qθ,ζ = Pθ,η(θ,ζ). With ζ = 0, θ 7→ Qθ,0 describes the
least-favourable submodel P∗ and with a non-zero value of ζ , θ 7→ Qθ,ζ describes a version
thereof, translated over a nuisance direction (see figure 15.2). Expressed in terms of the
metric rH(ζ1, ζ2) = H(Qθ0,ζ1 , Qθ0,ζ2), the sets D(θ, ρ) are mapped to open balls B(ρ) =
{ζ ∈ H: rH(ζ, 0) < ρ} centred at the origin ζ = 0,

{Pθ,η: θ ∈ U0, η ∈ D(θ, ρ)} = {Qθ,ζ : θ ∈ U0, ζ ∈ B(ρ)}.

In the formulation of theorem 15.7 there is a domination condition based on the quantities,

Un(ρ, h) = sup
ζ∈B(ρ)

Qn
θ0,ζ

(
n∏
i=1

qθn(h),ζ

qθ0,ζ
(Xi)

)
,

for all ρ > 0 and h ∈ Rk. Below, it is required that there exists a sequence (ρn) with ρn ↓ 0,
nρ2

n → ∞, such that, for every bounded, stochastic sequence (hn), U(ρn, hn) = O(1)
(where the expectation concerns the stochastic dependence of hn as well, see Complements
at the end of this lecture). For a single, fixed ζ , the requirement says that the likelihood
ratio remains integrable when we replace θn(hn) by the maximum-likelihood estimator
θ̂n(X1, . . . , Xn). Lemma 17.7 demonstrates that ordinary differentiability of the likelihood-
ratio with respect to h, combined with a uniform upper bound on certain Fisher information
coefficients suffices to satisfy U(ρn, hn) = O(1) for all bounded, stochastic (hn) and every
ρn ↓ 0.

The second step of the proof can now be summarized as follows: assuming stochastic
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Figure 15.2 A neighbourhood of (θ0, η0). Curved lines represent sets
{(θ, ζ): θ ∈ U0} for fixed ζ. The curve through ζ = 0 parametrizes the
least-favourable submodel. Vertical dashed lines delimit regions such that
‖θ − θ0‖ ≤ n−1/2. Also indicated are directions along which the likelihood is
expanded, with score functions gζ .

LAN of the model, contraction of the nuisance posterior as in figure 15.1 and said domina-
tion condition are enough to turn LAN expansions for the integrand in (15.9) into a single
LAN expansion for Sn. The latter is determined by the efficient score, because the locus of
posterior concentration, P∗, is a least-favourable submodel (see theorem 17.6).

The third step is based on two obervations: firstly, in a semiparametric problem the in-
tegrals Sn appear in the expression for the marginal posterior in exactly the same way as
parametric likelihood ratios appear in the posterior for parametric problems. Secondly, the
parametric Bernstein-Von Mises proof depends on likelihood ratios only through the LAN
property. As a consequence, local asymptotic normality for Sn offers the possibility to apply
Le Cam’s proof of posterior asymptotic normality in semiparametric context. If, in addition
we impose contraction at parametric rate for the marginal posterior, the LAN expansion
of Sn leads to the conclusion that the marginal posterior satisfies the Bernstein-Von Mises
assertion (15.3) (see theorem 17.8).

15.3.2 Formulation of the theorem

Before we state the main result of this lecture, general conditions imposed on models and
priors are formulated.

(i) Model assumptions
Throughout the remainder, P is assumed to be well-specified and dominated by a σ-finite
measure on the samplespace and parametrized identifiably on Θ × H , with Θ ⊂ Rk
open and H a subset of a metric vector-space with metric dH . Smoothness of the model
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is required but mentioned explicitly throughout. We also assume that there exists an open
neighbourhood U0 ⊂ Θ of θ0 on which a least-favourable submodel η∗:U0 → H is
defined.

(ii) Prior assumptions
With regard to the prior Π we follow the product structure of the parametrization of P , by
endowing the parameterspace Θ×H with a product-prior ΠΘ×ΠH defined on a σ-field
that includes the Borel σ-field generated by the product-topology. Also, it is assumed that
the prior ΠΘ is thick at θ0.

With the above general considerations for model and prior in mind, we formulate the main
theorem.

Theorem 15.7 (Semiparametric Bernstein-Von Mises)
Let X1, X2, . . . be distributed i.i.d.-P0, with P0 ∈ P and let ΠΘ be thick at θ0. Suppose
that for large enough n, the map h 7→ sn(h) is continuous P n

0 -almost-surely. Also assume
that θ 7→ Qθ,ζ is stochastically LAN in the θ-direction, for all ζ in an rH-neighbourhood of
ζ = 0 and that the efficient Fisher information Ĩθ0.η0 is non-singular. Furthermore, assume
that there exists a sequence (ρn) with ρn ↓ 0, nρ2

n →∞ such that:

(i) For all M > 0, there exists a K > 0 such that, for large enough n,

ΠH

(
Kn(ρn,M)

)
≥ e−Knρ

2
n .

(ii) For all n large enough, the Hellinger metric entropy satisfies,

N
(
ρn, H, dH

)
≤ enρ

2
n ,

and, for every bounded, stochastic (hn),

(iii) The model satisfies the domination condition,

Un(ρn, hn) = O(1). (15.11)

(iv) For all L > 0, Hellinger distances satisfy the uniform bound,

sup
{η∈H:dH(η,η0)≥Lρn}

H(Pθn(hn),η, Pθ0,η)

H(Pθ0,η, P0)
= o(1).

Finally, suppose that,

(v) For every (Mn), Mn →∞, the posterior satisfies,

Πn

(
‖h‖ ≤Mn

∣∣ X1, . . . , Xn

) P0−→ 1.

Then the sequence of marginal posteriors for θ converges in total variation to a normal
distribution,

sup
A

∣∣∣Πn

(
h ∈ A

∣∣ X1, . . . , Xn

)
−N∆̃n,Ĩ

−1
θ0,η0

(A)
∣∣∣ P0−→ 0, (15.12)

centred on ∆̃n with covariance matrix Ĩ−1
θ0,η0

.

Proof The assertion follows from combination of theorem 17.1, corollary 17.3, theorem 17.6
and theorem 17.8.
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Let us briefly discuss some aspects of the conditions of theorem 15.7. First, consider the
required existence of a least-favourable submodel in P . As said, for many semiparametric
problems the efficient score function is not a proper score in the sense that it corresponds
to a smooth submodel. However, there exist sequences of so-called approximately least-
favourable submodels whose scores converge to the efficient score in L2. Using such ap-
proximations of P∗, our proof will entail extra conditions, but there is no reason to expect
problems of an overly restrictive nature. It may therefore be hoped that the result remains
largely unchanged, if we turn (15.10) into a sequence of reparametrizations based on suitably
chosen approximately least-favourable submodels.

Second consider the rate (ρn), which must be slow enough to satisfy condition (iv) and
is fixed at (or above) the minimax Hellinger rate for estimation of the nuisance with known
θ0 by condition (ii), while satisfying (i) and (iii) as well. Conditions (i) and (ii) also arise
when considering Hellinger rates for nonparametric posterior convergence and the meth-
ods of Ghosal et al. (2000) can be applied in the present context with minor modifica-
tions. In addition, lemma 17.7 shows that in a wide class of semiparametric models, condi-
tion (iii) is satisfied for any rate sequence (ρn). Typically, the numerator in condition (iv)
is of order O(n−1/2), so that condition (iv) holds true for any ρn such that nρ2

n → ∞.
The above enables a rate-free version of the semiparametric Bernstein-Von Mises theorem
(corollary 16.1), in which conditions (i) and (ii) above are weakened to become compara-
ble to those of Schwartz (1965) for nonparametric posterior consistency. Applicability of
corollary 16.1 is demonstrated in lecture 16, where the linear coefficient in the partial linear
regression model is estimated.

Third, consider condition (v) of theorem 15.7: though it is necessary (as it follows from
(15.12)), it is hard to formulate straightforward sufficient conditions to satisfy (v) in gen-
erality. Moreover, condition (v) involves the nuisance prior and, as such, imposes another
condition on ΠH besides (i). To lessen its influence on ΠH , constructions in section 15.4
either work for all nuisance priors (see lemma 15.8), or require only consistency of the nui-
sance posterior (see theorem 15.9). The latter is based on the limiting behaviour of posteriors
in misspecified parametric models Kleijn (2003), Kleijn and van der Vaart (2007) and allows
for the tentative but general observation that a bias (c.f. (15.18)) may ruin n−1/2-consistency
of the marginal posterior, especially if the rate (ρn) is sub-optimal. In the example of lec-
ture 16, the ‘hard work’ stems from condition (v) of theorem 15.7: α > 1/2 Hölder smooth-
ness and boundedness of the family of regression functions in corollary 16.3 are imposed
in order to satisfy this condition. Since conditions (i) and (ii) appear quite reasonable and
conditions (iii) and (iv) are satisfied relatively easily, condition (v) should be viewed as the
most complicated in an essential way. For that reason, it forms the next subject in this lecture
and we postpone discussion of the proof until after.

15.4 Marginal posterior convergence at parametric rate

Condition (17.29) in theorem 17.8 requires that the posterior measures of a sequence of
model subsets of the form,

Θn ×H =
{

(θ, η) ∈ Θ×H :
√
n‖θ − θ0‖ ≤Mn

}
, (15.13)
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converge to one in P0-probability, for every sequence (Mn) such that Mn → ∞. Essen-
tially, this condition enables us to restrict the proof of theorem 17.8 to the shrinking do-
main in which (17.16) applies. In this section, we consider two distinct approaches: the first
(lemma 15.8) is based on bounded likelihood ratios (see also condition (B3) of theorem 8.2
in Lehmann and Casella (1998)). The second is based on the behaviour of misspecified
parametric posteriors (theorem 15.9). The latter construction illustrates the intricacy of this
section’s subject most clearly and provides some general insight. Methods proposed here
are neither compelling nor exhaustive, we simply put forth several possible approaches and
demonstrate the usefulness of one of them in lecture 16.

Lemma 15.8 (Marginal parametric rate (I))
Let the sequence of maps θ 7→ Sn(θ) be P0-almost-surely continuous and such that (17.16)
is satisfied. Furthermore, assume that there exists a constantC > 0 such that for any (Mn),
Mn →∞,

P n
0

(
sup
η∈H

sup
θ∈Θcn

Pn log
pθ,η
pθ0,η

≤ −CM
2
n

n

)
→ 1. (15.14)

Then, for any nuisance prior ΠH and parametric prior ΠΘ, thick at θ0,

Π
(
n1/2‖θ − θ0‖ > Mn

∣∣ X1, . . . , Xn

) P0−→ 0, (15.15)

for any (Mn), Mn →∞.

Proof Let (Mn), Mn → ∞ be given. Define (An) to be the events in (15.14) so that
P n

0 (Acn) = o(1) by assumption. In addition, let,

Bn =

{∫
Θ

Sn(θ) dΠΘ(θ) ≥ e−
1
2
CM2

n Sn(θ0)

}
.

By (17.16) and lemma 15.10, P n
0 (Bc

n) = o(1) as well. Then,

P n
0 Π(θ ∈ Θc

n|X1, . . . , Xn) ≤ P n
0 Π(θ ∈ Θc

n|X1, . . . , Xn) 1An∩Bn + o(1)

≤ e
1
2
CM2

n P n
0

(
Sn(θ0)−1

×
∫
H

∫
Θcn

n∏
i=1

pθ,η
pθ0,η

(Xi)
n∏
i=1

pθ0,η
pθ0,η0

(Xi) dΠΘ dΠH 1An

)
+ o(1) = o(1),

which proves (15.15).

Although applicable directly in the model of lecture 16, most other examples would re-
quire variations. Particularly, if the full, non-parametric posterior is known to concentrate on
a sequence of model subsets (Vn), then lemma 15.8 can be preceded by a decomposition of
Θ×H over Vn and V c

n , reducing condition (15.14) to a supremum over V c
n (see section 2.4

in Kleijn (2003) and the discussion following the following theorem).
Our second approach assumes such concentration of the posterior on model subsets, e.g.

deriving from non-parametric consistency in a suitable form. Though the proof of theo-
rem 15.9 is rather straightforward, combination with results in misspecified parametric mod-
els (Kleijn and van der Vaart (2007)) leads to the observation that marginal parametric rates
of convergence can be ruined by a bias.



15.4 Marginal posterior convergence at parametric rate 113

Theorem 15.9 (Marginal parametric rate (II))
Let ΠΘ and ΠH be given. Assume that there exists a sequence (Hn) of subsets of H , such
that the following two conditions hold:

(i) The nuisance posterior concentrates on Hn asymptotically,

Π
(
η ∈ H −Hn

∣∣ X1, . . . , Xn

) P0−→ 0. (15.16)

(ii) For every (Mn), Mn →∞,

P n
0 sup
η∈Hn

Π
(
n1/2‖θ − θ0‖ > Mn

∣∣ η,X1, . . . , Xn

)
→ 0. (15.17)

Then the marginal posterior for θ concentrates at parametric rate, i.e.,

Π
(
n1/2‖θ − θ0‖ > Mn

∣∣ η,X1, . . . , Xn

) P0−→ 0,

for every sequence (Mn), Mn →∞,

Proof Let (Mn), Mn → ∞ be given and consider the posterior for the complement of
(15.13). By assumption (i) of the theorem and Fubini’s theorem,

P n
0 Π
(
θ ∈ Θc

n

∣∣ X1, . . . , Xn

)
≤ P n

0

∫
Hn

Π
(
θ ∈ Θc

n

∣∣ η,X1, . . . , Xn

)
dΠ
(
η
∣∣ X1, . . . , Xn

)
+ o(1)

≤ P n
0 sup
η∈Hn

Π
(
n1/2‖θ − θ0‖ > Mn

∣∣ η,X1, . . . , Xn

)
+ o(1),

the first term of which is o(1) by assumption (ii) of the theorem.

Condition (ii) of theorem 15.9 has an interpretation in terms of misspecified paramet-
ric models (Kleijn and van der Vaart (2007) and Kleijn (2003)). For fixed η ∈ H , the
η-conditioned posterior on the parametric model Pη = {Pθ,η: θ ∈ Θ} is required to con-
centrate in n−1/2-neighbourhoods of θ0 under P0. However, this misspecified posterior con-
centrates around Θ∗(η) ⊂ Θ, the set of points in Θ where the Kullback-Leibler divergence
of Pθ,η with respect to P0 is minimal. Assuming that Θ∗(η) consists of a unique minimizer
θ∗(η), the dependence of the Kullback-Leibler divergence on η must be such that,

sup
η∈Hn

‖θ∗(η)− θ0‖ = o
(
n−1/2

)
. (15.18)

in order for posterior concentration to occur on the strips (15.13). In other words, minimal
Kullback-Leibler divergence may bias the (points of convergence of) η-conditioned para-
metric posteriors to such an extent that consistency of the marginal posterior for θ is ruined.

The occurrence of this bias is a property of the semiparametric model rather than a percu-
liarity of the Bayesian approach: when (point-)estimating with solutions to score equations
for example, the same bias occurs (see e.g. theorem 25.59 in van der Vaart (1998) and sub-
sequent discussion). Frequentist literature also offers some guidance towards mitigation of
this circumstance. First of all, it is noted that the bias indicates the existence of a better
(i.e. bias-less) choice of parametrization to ask the relevant semiparametric question. If the
parametrization is fixed, alternative point-estimation methods may resolve bias, for example
through replacement of score equations by general estimating equations (see, for example,
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section 25.9 in van der Vaart (1998)), loosely equivalent to introducing a suitable penalty in
a likelihood maximization procedure.

For a so-called curve-alignment model with Gaussian prior, the no-bias problem has been
addressed and resolved in a fully Bayesian manner by Castillo (2011): like a penalty in an
ML procedure, Castillo’s (rather subtle choice of) prior guides the procedure away from the
biased directions and produces Bernstein-Von Mises efficiency of the marginal posterior. A
most interesting question concerns generalization of Castillo’s intricate construction to more
general Bayesian context.

Referring to definitions (15.9) and (17.15), we conclude this section with a lemma used
in the proof of lemma 15.8 to lower-bound the denominator of the marginal posterior.

Lemma 15.10 Let the sequence of maps θ 7→ Sn(θ) be P0-almost-surely continuous and
such that (17.16) is satisfied. Assume that ΠΘ is thick at θ0 and denoted by Πn in the local
parametrization in terms of h. Then,

P n
0

(∫
sn(h) dΠn(h) < an sn(0)

)
→ 0, (15.19)

for every sequence (an), an ↓ 0.

Proof Let M > 0 be given and define C = {h: ‖h‖ ≤ M}. Denote the rest-term in
(17.16) by h 7→ Rn(h). By continuity of θ 7→ Sn(θ), suph∈C |Rn(h)| converges to zero
in P0-probability. If we choose a sequence (κn) that converges to zero slowly enough, the
corresponding events Bn =

{
supC

∣∣Rn(h)
∣∣ ≤ κn}, satisfy P n

0 (Bn)→ 1. Next, let (Kn),
Kn → ∞ be given. There exists a π > 0 such that infh∈C dΠn/dµ(h) ≥ π, for large
enough n. Combining, we find,

P n
0

(∫ sn(h)

sn(0)
dΠn(h) ≤ e−K

2
n

)
≤ P n

0

({∫
C

sn(h)

sn(0)
dµ(h) ≤ π−1 e−K

2
n

}
∩Bn

)
+ o(1).

(15.20)

On Bn, the integral LAN expansion is lower bounded so that, for large enough n,

P n
0

({∫
C

sn(h)

sn(0)
dµ(h) ≤ π−1 e−K

2
n

}
∩Bn

)
≤ P n

0

(∫
C

eh
TGn ˜̀

θ0,η0dµ(h) ≤ π−1e−
1
4
K2
n

)
,

(15.21)

since κn ≤ 1
2
K2
n and suph∈C |hT Ĩθ0,η0h| ≤ M2‖Ĩθ0,η0‖ ≤ 1

4
K2
n, for large enough n.

Conditioning µ on C, we apply Jensen’s inequality to note that, for large enough n,

P n
0

(∫
C

eh
TGn ˜̀

θ0,η0 dµ(h) ≤ π−1e−
1
4
K2
n

)
≤ P n

0

(∫
hTGn

˜̀
θ0,η0dµ(h|C) ≤ − 1

8
K2
n

)
,

since − log πµ(C) ≤ 1
8
K2
n, for large enough n. The probability on the right is bounded

further by Chebyshev’s and Jensen’s inequalities and can be shown to be of order O(K−4
n ).

Combination with (15.20) and (15.21) then proves (15.19).
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COMPLEMENTS

If hn is a stochastic sequence, P n
θn(hn),ηf denotes the integral,∫

f(ω) (dP n
θn(hn(ω)),η/dP

n
0 )(ω) dP n

0 (ω).

Similar considerations apply to Hellinger distances and other integrals involving stochastic
(hn).

Exercises
15.1 In Cox’ proportional hazard model (see example 15.2), assume that the survival time T has

distribution function F and is absolutely continuous with density f :R→ [0,∞). Show that the
hazard function λ is given by,

λ(t) =
f(t)

1− F (t)
.

(Hint: apply the Radon-Nikodym theorem.)
15.2 Complete the last steps in the proof of lemma 15.10.
15.3 Argue that marginal consistency can be viewed as consistency in a non-Hausdorff space. More

particularly, given a semiparametric model of distributions Pθ,η , formulate a pseudo-metric to
capture marginal consistency.



16

Bayesian efficiency in partial linear regression

Before we prove the semiparametric Bernstein-Von Mises theorem, we consider its applica-
tion in a regression model. In fact, we apply a simplified version of theorem 15.7 presented
in the first section of this lecture.

16.1 A rate-free semiparametric Bernstein-Von Mises theorem

There is room for relaxation of the requirements on model entropy and minimal prior mass,
if the limit (15.11) holds in a fixed neighbourhood of η0. The following corollary applies
whenever (15.11) holds for any rate (ρn). The simplifications are such that the entropy
and prior mass conditions become comparable to those for Schwartz’ posterior consistency
theorem rather than those for posterior rates of convergence.

Corollary 16.1 (Semiparametric Bernstein-Von Mises, rate-free)
Let X1, X2, . . . be distributed i.i.d.-P0, with P0 ∈ P and let ΠΘ be thick at θ0. Suppose
that for large enough n, the map h 7→ sn(h) is continuous P n

0 -almost-surely. Also assume
that θ 7→ Qθ,ζ is stochastically LAN in the θ-direction, for all ζ in an rH-neighbourhood of
ζ = 0 and that the efficient Fisher information Ĩθ0.η0 is non-singular. Furthermore, assume
that,

(i) For all ρ > 0, N
(
ρ,H, dH

)
<∞ and ΠH

(
K(ρ)

)
> 0.

(ii) For every M > 0, there is an L > 0 such that for all ρ > 0 and large enough n,
K(ρ) ⊂ Kn(Lρ,M).

and that for every bounded, stochastic (hn):

(iii) There exists an r > 0 such that, Un(r, hn) = O(1).
(iv) Hellinger distances satisfy, supη∈H H(Pθn(hn),η, Pθ0,η) = O(n−1/2),

and that,

(v) For every (Mn), Mn →∞, the posterior satisfies,

Πn

(
‖h‖ ≤Mn

∣∣ X1, . . . , Xn

) P0−→ 1.

Then the sequence of marginal posteriors for θ converges in total variation to a normal
distribution,

sup
A

∣∣∣Πn

(
h ∈ A

∣∣ X1, . . . , Xn

)
−N∆̃n,Ĩ

−1
θ0,η0

(A)
∣∣∣ P0−→ 0,

116
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centred on ∆̃n with covariance matrix Ĩ−1
θ0,η0

.

Proof Under conditions (i), (ii), (iv) and the stochastic LAN assumption, the assertion of
corollary 17.3 holds. Due to condition (iii), condition (15.11) is satisfied for large enough n.
Condition (v) then suffices for the assertion of theorem 17.8.

A critical note can be made regarding the qualification ‘rate-free’ of corollary 16.1: al-
though the nuisance rate does not make an explicit appearance, rate restrictions may arise
upon further analysis of condition (v). Indeed this is the case in the example of lecture 16,
where smoothness requirements on the regression family are interpretable as restrictions on
the nuisance rate. However, semiparametric models exist, in which no restrictions on nui-
sance rates arise in this way: ifH is a convex subspace of a linear space and the dependence
η 7→ Pθ,η is linear (a so-called convex-linear model, e.g. mixture models, errors-in-variables
regression and other information-loss models), the construction of suitable tests, c.f. Le Cam
(1986) and Birgé (1983, 1984), does not involve Hellinger metric entropy numbers or restric-
tions on nuisance rates of convergence. Consequently there exists a class of semiparametric
examples for which corollary 16.1 stays rate-free even after further analysis of its condi-
tion (v).

The particular form of the limiting posterior in theorem 17.8 is a consequence of local
asymptotic normality, in this case imposed through (17.16). Other expansions (for instance,
in LAN models for non-i.i.d. data or under the condition of local asymptotic exponentiality
(Ibragimov and Has’minskii (1981))) can be dealt with in the same manner if we adapt the
limiting form of the posterior accordingly, giving rise to other (e.g. one-sided exponential)
limit distributions (see Kleijn and Knapik (2012)).

16.2 Partial linear regression

The partial linear regression model describes the observation of an i.i.d. sampleX1, X2, . . .
of triplets Xi = (Ui, Vi, Yi) ∈ R3, each assumed to be related through the regression
equation,

Y = θ0U + η0(V ) + e, (16.1)

where e ∼ N(0, 1) is independent of (U, V ). Interpreting η0 as a nuisance parameter,
we wish to estimate θ0. It is assumed that (U, V ) has an unknown distribution P , Lebesgue
absolutely continuous with density p:R2 → R. The distributionP is assumed to be such that
PU = 0, PU2 = 1 and PU4 <∞. At a later stage, we also impose P (U−E[U |V ])2 > 0
and a smoothness condition on the conditional expectation v 7→ E[U |V = v].

As is well-known Chen (1991), Bickel et al. (1998), Mammen and van der Geer (1997),
van der Vaart (1998), penalized ML estimation in a smoothness class of regression functions
leads to a consistent estimate of the nuisance and efficient point-estimation of the parameter
of interest. The necessity of a penalty signals that the choice of a prior for the nuisance is
a critical one. Kimeldorf and Wahba (1970) assume that the regression function lies in the
Sobolev space Hk[0, 1] and define the nuisance prior through the Gaussian process,

η(t) =
k∑
i=0

Zi
ti

i!
+ (Ik0+W )(t), (16.2)
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where W = {Wt: t ∈ [0, 1]} is Brownian motion on [0, 1], (Z0, . . . , Zk) form a W -
independent, N(0, 1)-i.i.d. sample and Ik0+ denotes (I1

0+f)(t) =
∫ t

0
f(s) ds, or I i+1

0+ f =
I1

0+ I
i
0+f for all i ≥ 1. The prior process η is zero-mean Gaussian of (Hölder-)smoothness

k+1/2 and the resulting posterior mean for η concentrates asymptotically on the smoothing
spline that solves the penalized ML problem Wahba (1978), Shen (2002). MCMC simula-
tions based on Gaussian priors have been carried out by Shively, Kohn and Wood (1999).

Here, we reiterate the question how frequentist sufficient conditions are expressed in a
Bayesian analysis based on corollary 16.1. We show that with a nuisance of known (Hölder-
)smoothness greater than 1/2, the process (16.2) provides a prior such that the marginal
posterior for θ satisfies the Bernstein-Von Mises limit. To facilitate the analysis, we think of
the regression function and the process (16.2) as elements of the Banach space (C[0, 1], ‖ ·
‖∞). At a later stage, we relate to Banach subspaces with stronger norms to complete the
argument.

Theorem 16.2 LetX1, X2, . . . be an i.i.d. sample from the partial linear model (16.1) with
P0 = Pθ0,η0 for some θ0 ∈ Θ, η0 ∈ H . Assume that H is a subset of C[0, 1] of finite metric
entropy with respect to the uniform norm and that H forms a P0-Donsker class. Regarding
the distribution of (U, V ), suppose that PU = 0, PU2 = 1 and PU4 < ∞, as well as
P (U − E[U |V ])2 > 0, P (U − E[U |V ])4 < ∞ and v 7→ E[U |V = v] ∈ H . Endow Θ
with a prior that is thick at θ0 and C[0, 1] with a prior ΠH such thatH ⊂ supp(ΠH). Then
the marginal posterior for θ satisfies the Bernstein-Von Mises limit,

sup
B∈B

∣∣∣Π(√n(θ − θ0) ∈ B
∣∣ X1, . . . , Xn

)
−N∆̃n,Ĩ

−1
θ0,f0

(B)
∣∣∣ P0−→ 0, (16.3)

where ˜̀
θ0,η0(X) = e(U − E[U |V ]) and Ĩθ0,η0 = P (U − E[U |V ])2.

Proof For any θ and η,−Pθ0,η0 log(pθ,η/pθ0,η0) = 1
2
Pθ0,η0((θ− θ0)U + (η− η0)(V ))2,

so that for fixed θ, minimal KL-divergence overH obtains at η∗(θ) = η0−(θ−θ0) E[U |V ],
P -almost-surely. For fixed ζ , the submodel θ 7→ Qθ,ζ satisfies,

log
n∏
i=1

pθ0+n−1/2hn,η∗(θ0+n−1/2hn)+ζ

pθ0,η0+ζ

(Xi)

=
hn√
n

n∑
i=1

gζ(Xi)− 1
2
hn

2Pθ0,η0+ζ gζ
2 + 1

2
hn

2(Pn − P )(U − E[U |V ])2,

(16.4)

for all stochastic (hn), with gζ(X) = e(U − E[U |V ]), e = Y − θ0U − (η0 + ζ)(V ) ∼
N(0, 1) under Pθ0,η0+ζ . Since PU2 < ∞, the last term on the right is oPθ0,η0+ζ

(1) if (hn)
is bounded in probability. We conclude that θ 7→ Qθ,ζ is stochastically LAN. In addition,
(16.4) shows that h 7→ sn(h) is continuous for every n ≥ 1. By assumption, Ĩθ0,η0 =
P0g0

2 = P (U − E[U |V ])2 is strictly positive. We also observe at this stage that H is
totally bounded in C[0, 1], so that there exists a constant D > 0 such that ‖H‖∞ ≤ D.

For any x ∈ R3 and all ζ , the map θ 7→ log qθ,ζ/qθ0,ζ(x) is continuously differentiable
on all of Θ, with score gθ,ζ(X) = e(U − E[U |V ]) + (θ − θ0)(U − E[U |V ])2. Since
Qθ,ζg

2
θ,ζ = P (U − E[U |V ])2 + (θ − θ0)2P (U − E[U |V ])4 does not depend on ζ and is

bounded over θ ∈ [θ0 − ρ, θ0 + ρ], lemma 17.7 says that U(ρn, hn) = O(1) for all ρn ↓ 0
and all bounded, stochastic (hn). So for this model, we can apply the rate-free version of
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the semiparametric Bernstein-Von Mises theorem, corollary 16.1 and its condition (iii) is
satisfied.

Regarding condition (ii) of corollary 16.1, we first note that, for M > 0, n ≥ 1, η ∈ H ,

sup
‖h‖≤M

− log
pθn(h),η

pθ0,η0
=
M2

2n
U2 +

M√
n

∣∣U(e− (η − η0)(V ))
∣∣

− e(η − η0)(V ) + 1
2
(η − η0)2(V ),

where e ∼ N(0, 1) under Pθ0,η0 . With the help of the boundedness of H , the independence
of e and (U, V ) and the assumptions on the distribution of (U, V ), it is then verified that
condition (ii) of corollary 16.1 holds. Turning to condition (i), it is noted that for all η1, η2 ∈
H , dH(η1, η2) ≤ −Pθ0,η2 log(pθ0,η1/pθ0,η2) = 1

2
‖η1 − η2‖22,P ≤ 1

2
‖η1 − η2‖2∞. Hence,

for any ρ > 0, N
(
ρ,Pθ0 , dH) ≤ N

(
(2ρ)1/2, H, ‖ · ‖∞

)
< ∞. Similarly, one shows

that for all η both −P0 log(pθ0,η/pθ0,η0) and P0(log(pθ0,η/pθ0,η0))
2 are bounded by ( 1

2
+

D2)‖η−η0‖2∞. Hence, for any ρ > 0,K(ρ) contains a ‖ · ‖∞-ball. Since η0 ∈ supp(ΠH),
we see that condition (i) of corollary 16.1 holds. Noting that (pθn(h),η/pθ0,η(X))1/2 =
exp ((h/2

√
n)eU − (h2/4n)U2), one derives the η-independent upper bound,

H2
(
Pθn(hn),η, Pθ0,η

)
≤ M2

2n
PU2 +

M3

6n2
PU4 = O(n−1),

for all bounded, stochastic (hn), so that condition (iv) of corollary 16.1 holds.
Concerning condition (v), let (Mn),Mn →∞ be given and define Θn as in section 15.4.

Rewrite supη∈H supθ∈Θcn
Pn log(pθ,η/pθ0,η) = supθ∈Θcn

((θ− θ0)(supζ PnZW )− 1
2
(θ−

θ0)2 PnW 2), whereZ = e0−ζ(V ),W = U−E[U |V ]. The maximum-likelihood estimate
θ̂n for θ is therefore of the form θ̂n = θ0+Rn, whereRn = supζ PnZW /PnW 2. Note that
P0ZW = 0 and thatH is assumed to beP0-Donsker, so that supζ GnZW is asymptotically
tight. Since in addition, PnW 2 → P0W

2 almost surely and the limit is strictly positive by
assumption, P n

0 (
√
n |Rn| > 1

4
Mn) = o(1). Hence,

P n
0

(
sup
η∈H

sup
θ∈Θcn

Pn log
pθ,η
pθ0,η

> −CM
2
n

n

)
≤ P n

0

(
sup
θ∈Θcn

(
1
4
|θ − θ0|

Mn

n1/2
− 1

2
(θ − θ0)2

)
PnW 2 > −CM

2
n

n

)
+ o(1)

≤ P n
0

(
PnW 2 < 4C

)
+ o(1).

Since P0W
2 > 0, there exists a C > 0 small enough such that the first term on the r.h.s. is

of order o(1) as well, which shows that condition (15.14) is satisfied. Lemma 15.8 asserts
that condition (v) of corollary 16.1 is met as well. Assertion 16.3 now holds.

In the following corollary we choose a prior by picking a suitable k in (16.2) and condi-
tioning on ‖η‖α < M . The resulting prior is shown to be well-defined below and is denoted
Πk
α,M .

Corollary 16.3 Let α > 1/2 and M > 0 be given; choose H = {η ∈ Cα[0, 1]: ‖η‖α <
M} and assume that η0 ∈ Cα[0, 1]. Suppose the distribution of the covariates (U, V ) is
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as in theorem 16.2. Then, for any integer k > α − 1/2, the conditioned prior Πk
α,M is

well-defined and gives rise to a marginal posterior for θ satisfying (16.3).

Proof Choose k as indicated; the Gaussian distribution of η over C[0, 1] is based on the
RKHSHk+1[0, 1] and denoted Πk. Since η in (16.2) has smoothness k+1/2 > α, Πk(η ∈
Cα[0, 1]) = 1. Hence, one may also view η as a Gaussian element in the Hölder class
Cα[0, 1], which forms a separable Banach space even with strengthened norm ‖ · ‖ =
‖η‖∞+ ‖ · ‖α, without changing the RKHS. The trivial embedding of Cα[0, 1] into C[0, 1]
is one-to-one and continuous, enabling identification of the prior induced by η on Cα[0, 1]
with the prior Πk on C[0, 1]. Given η0 ∈ Cα[0, 1] and a sufficiently smooth kernel φσ with
bandwidth σ > 0, consider φσ ? η0 ∈ Hk+1[0, 1]. Since ‖η0 − φσ ? η0‖∞ is of order
σα and a similar bound exists for the α-norm of the difference, η0 lies in the closure of the
RKHS both with respect to ‖ · ‖∞ and to ‖ · ‖. Particularly, η0 lies in the support of Πk,
in Cα[0, 1] with norm ‖ · ‖. Hence, ‖ · ‖-balls centred on η0 receive non-zero prior mass,
i.e. Πk(‖η − η0‖ < ρ) > 0 for all ρ > 0. Therefore, Πk(‖η − η0‖∞ < ρ, ‖η‖α <
‖η0‖α + ρ) > 0, which guarantees that Πk(‖η − η0‖∞ < ρ, ‖η‖α < M) > 0, for small
enough ρ > 0. This implies that Πk(‖η‖α < M) > 0 and,

Πk
α,M(B) = Πk

(
B
∣∣ ‖η‖α < M

)
,

is well-defined for all Borel-measurableB ⊂ C[0, 1]. Moreover, it follows that Πk
α,M(‖η−

η0‖∞ < ρ) > 0 for all ρ > 0. We conclude that k times integrated Brownian motion
started at random, conditioned to be bounded by M in α-norm, gives rise to a prior that
satisfies supp(Πk

α,M) = H . As is well-known van der Vaart and Wellner (1996), the entropy
numbers ofH with respect to the uniform norm satisfy, for every ρ > 0,N(ρ,H, ‖ ·‖∞) ≤
Kρ−1/α, for some constant K > 0 that depends only on α and M . The associated bound
on the bracketing entropy gives rise to finite bracketing integrals, so that H universally
Donsker. Then, if the distribution of the covariates (U, V ) is as assumed in theorem 16.2,
the Bernstein-Von Mises limit (16.3) holds.

Exercises
16.1 Show that the efficient score function for the partial linear model is given by ˜̀

θ0,η0(X) =

e(U − E[U |V ]).
16.2 Speculate concerning the question whether the condition ‖η‖α ≤M is a necessary condition.
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The proof of the semiparametric
Bernstein-von Mises theorem

In this lecture, we consider the proof of the semiparametric Bernstein-Von Mises theorem,
broken up in three major parts. The first step concerns a proof of consistency for the nuisance
parameter under perturbation of the parameter of interest of size proportional to n−1/2.
Building on that, the second step shows under which conditions integrals of likelihoods
with respect to the nuisance prior display the LAN property. The last step uses that LAN
expansion of integrated likelihoods to demonstrate asymptotic normality of the marginal
posterior distribution for the parameter of interest, with a proof that closely resembles that
of theorem 14.3.

17.1 Posterior convergence under perturbation

We consider contraction of the posterior around least-favourable submodels. We express this
form of posterior convergence by showing that (under suitable conditions) the conditional
posterior for the nuisance parameter contracts around the least-favourable submodel, con-
ditioned on a sequence θn(hn) for the parameter of interest with hn = OPo(1). We view
the sequence of models Pθn(hn) as a random perturbation of the model Pθ0 and generalize
Ghosal et al. (2000) to describe posterior contraction. Ultimately, random perturbation of θ
represents the ‘appropriate form of uniformity’ referred to just after definition (15.8). Given
a rate sequence (ρn), ρn ↓ 0, we say that the conditioned nuisance posterior is consistent
under n−1/2-perturbation at rate ρn, if,

Πn

(
Dc(θ, ρn)

∣∣ θ = θ0 + n−1/2hn ; X1, . . . , Xn

) P0−→ 0, (17.1)

for all bounded, stochastic sequences (hn).

Theorem 17.1 (Posterior rate of convergence under perturbation)
Assume that there exists a sequence (ρn) with ρn ↓ 0, nρ2

n → ∞ such that for all M > 0
and every bounded, stochastic (hn):

(i) There exists a constant K > 0 such that for large enough n,

ΠH

(
Kn(ρn,M)

)
≥ e−Knρ

2
n . (17.2)

(ii) For L > 0 large enough, there exist (φn) such that for large enough n,

P n
0 φn → 0, sup

η∈Dc(θ0,Lρn)

P n
θn(hn),η(1− φn) ≤ e− 1

4L
2nρ2n . (17.3)

(iii) The least-favourable submodel satisfies dH(η∗(θn(hn)), η0) = o(ρn).

121
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Then, for every bounded, stochastic (hn) there exists an L > 0 such that the conditional
nuisance posterior converges as,

Π
(
Dc(θ, Lρn)

∣∣ θ = θ0 + n−1/2hn; X1, . . . , Xn

)
= oP0

(1), (17.4)

under n−1/2-perturbation.

Proof Let (hn) be a stochastic sequence bounded by M and let 0 < C < 1 be given. Let
K and (ρn) be as in conditions (i) and (ii). Choose L > 4

√
1 +K + C and large enough

to satisfy condition (ii) for some (φn). By lemma 17.4, the events,

An =

{∫
H

n∏
i=1

pθn(hn),η

pθ0,η0
(Xi) dΠH(η) ≥ e−(1+C)nρ2n ΠH(Kn(ρn,M))

}
,

satisfy P n
0 (Acn)→ 0. Using also the first limit in (17.3), we then derive,

P n
0 Π
(
Dc(θ, Lρn)

∣∣ θ = θn(hn); X1, . . . , Xn

)
≤ P n

0 Π
(
Dc(θ, Lρn)

∣∣ θ = θn(hn); X1, . . . , Xn

)
1An (1− φn) + o(1),

(even with random (hn), the posterior Π( · |θ = θn(hn); X1, . . . , Xn

)
≤ 1, by definition

(15.5)). The first term on the r.h.s. can be bounded further by the definition of the eventsAn,

P n
0 Π
(
Dc(θ, Lρn)

∣∣ θ = θn; X1, . . . , Xn

)
1An (1− φn)

≤ e(1+C)nρ2n

ΠH(Kn(ρn,M))
P n

0

(∫
Dc(θn(hn),Lρn)

n∏
i=1

pθn(hn),η

pθ0,η0
(Xi) (1− φn) dΠH

)
.

Due to condition (iii) it follows that,

D(θ0,
1
2
Lρn) ⊂

⋂
n≥1

D(θn(hn), Lρn), (17.5)

for large enough n. Therefore,

P n
0

∫
Dc(θn(hn),Lρn)

n∏
i=1

pθn(hn),η

pθ0,η0
(Xi) (1− φn) dΠH(η)

≤
∫
Dc(θ0,

1
2Lρn)

P n
θn(hn),η(1− φn) dΠH(η).

(17.6)

Upon substitution of (17.6) and with the use of the second bound in (17.3) and (17.2), the
choice we made earlier for L proves the assertion.

We conclude from the above that besides sufficiency of prior mass, the crucial condition
for consistency under perturbation is the existence of a test sequence (φn) satisfying (17.3).
To find sufficient conditions, we follow a construction of tests based on the Hellinger geom-
etry of the model, generalizing the approach of Birgé (1983, 1984) and Le Cam (1986) to
n−1/2-perturbed context. It is easiest to illustrate their approach by considering the problem
of testing/estimating η when θ0 is known: we cover the nuisance model {Pθ0,η: η ∈ H} by
a minimal collection of Hellinger balls B of radii (ρn), each of which is convex and hence
testable against P0 with power bounded by exp(− 1

4
nH2(P0, B)), based on the minimax

theorem. The tests for the covering Hellinger balls are combined into a single test for the
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non-convex alternative {P :H(P, P0) ≥ ρn} against P0. The order of the cover controls the
power of the combined test. Therefore the construction requires an upper bound to Hellinger
metric entropy numbers,

N
(
ρn,Pθ0 , H

)
≤ enρ

2
n , (17.7)

which is interpreted as indicative of the nuisance model’s complexity in the sense that the
lower bound to the collection of rates (ρn) solving (17.7), is the Hellinger minimax rate
for estimation of η0. In the n−1/2-perturbed problem, the alternative does not just consist
of the complement of a Hellinger-ball in the nuisance factor H , but also has an extent in
the θ-direction shrinking at rate n−1/2. Condition (17.8) below guarantees that Hellinger
covers of H like the above are large enough to accommodate the θ-extent of the alternative,
the implication being that the test sequence one constructs for the nuisance in case θ0 is
known, can also be used when θ0 is known only up to n−1/2-perturbation. Therefore, the
entropy bound in lemma 17.2 is (17.7). Geometrically, (17.8) requires that n−1/2-perturbed
versions of the nuisance model are contained in a narrowing sequence of metric cones based
at P0. In differentiable models, the Hellinger distance H(Pθn(hn),η, Pθ0,η) is typically of
orderO(n−1/2) for all η ∈ H . So if, in addition, nρ2

n →∞, limit (17.8) is expected to hold
pointwise in η. Then only the uniform character of (17.8) truly forms a condition.

Lemma 17.2 (Testing under perturbation)
If (ρn) satisfies ρn ↓ 0, nρ2

n →∞ and the following requirements are met:

(i) For all n large enough, N
(
ρn, H, dH

)
≤ enρ2n .

(ii) For all L > 0 and all bounded, stochastic (hn),

sup
{η∈H:dH(η,η0)≥Lρn}

H(Pθn(hn),η, Pθ0,η)

H(Pθ0,η, P0)
= o(1). (17.8)

Then for all L ≥ 4, there exists a test sequence (φn) such that for all bounded, stochastic
(hn),

P n
0 φn → 0, sup

η∈Dc(θ0,Lρn)

P n
θn(hn),η(1− φn) ≤ e− 1

4L
2nρ2n , (17.9)

for large enough n.

Proof Let (ρn) be such that (i)–(ii) are satisfied. Let (hn) and L ≥ 4 be given. For all
j ≥ 1, defineHj,n = {η ∈ H: jLρn ≤ dH(η0, η) ≤ (j+1)Lρn} and Pj,n = {Pθ0,η: η ∈
Hj,n}. Cover Pj,n with Hellinger balls Bi,j,n( 1

4
jLρn), where,

Bi,j,n(r) =
{
P :H(Pi,j,n, P ) ≤ r

}
,

and Pi.j.n ∈ Pj,n, i.e. there exists an ηi,j,n ∈ Hj,n such that Pi,j,n = Pθ0,ηi,j,n . Denote
Hi,j,n = {η ∈ Hj,n:Pθ0,η ∈ Bi,j,n( 1

4
jLρn)}. By assumption, the minimal number of such

balls needed to cover Pi,j is finite; we denote the corresponding covering number by Nj,n,
i.e. 1 ≤ i ≤ Nj,n.

Let η ∈ Hj,n be given. There exists an i (1 ≤ i ≤ Nj,n) such that dH(η, ηi,j,n) ≤
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1
4
jLρn. Then, by the triangle inequality, the definition of Hj,n and assumption (17.8),

H
(
Pθn(hn),η, Pθ0,ηi,j,n

)
≤ H

(
Pθn(hn),η, Pθ0,η

)
+H

(
Pθ0,η, Pθ0,ηi,j,n

)
≤
H(Pθn(hn),η, Pθ0,η)

H(Pθ0,η, P0)
H
(
Pθ0,η, P0

)
+ 1

4
jLρn

≤
(

sup
{η∈H:dH(η,η0)≥Lρn}

H(Pθn(hn),η, Pθ0,η)

H(Pθ0,η, P0)

)
(j + 1)Lρn + 1

4
jLρn

≤ 1
2
jLρn,

(17.10)

for large enough n. We conclude that there exists an N ≥ 1 such that for all n ≥ N ,
j ≥ 1, 1 ≤ i ≤ Nj,n, η ∈ Hi,j,n, Pθn(hn),η ∈ Bi,j,n( 1

2
jLρn). Moreover, Hellinger balls

are convex and for all P ∈ Bi,j,n( 1
2
jLρn), H(P, P0) ≥ 1

2
jLρn. As a consequence of the

minimax theorem, there exists a test sequence (φi,j,n)n≥1 such that,

P n
0 φi,j,n ∨ sup

P
P n(1− φi,j,n) ≤ e−nH

2(Bi,j,n( 1
2 jLρn),P0) ≤ e− 1

4nj
2L2ρ2n ,

where the supremum runs over all P ∈ Bi,j,n( 1
2
jLρn). Defining, for all n ≥ 1, φn =

supj≥1 max1≤i≤Nj,n φi,j,n, we find (for details, see the proof of theorem 3.10 in Kleijn
(2003)) that,

P n
0 φn ≤

∑
j≥1

Nj,ne
− 1

4L
2j2nρ2n , P n(1− φn) ≤ e− 1

4L
2nρ2n , (17.11)

for all P = Pθn(hn),η and η ∈ Dc(θ0, Lρn). Since L ≥ 4, we have for all j ≥ 1,

Nj,n = N
(

1
4
Ljρn,Pj,n, H

)
≤ N

(
1
4
Ljρn,P, H

)
≤ N(ρn,P, H) ≤ enρ

2
n , (17.12)

by assumption (17.7). Upon substitution of (17.12) into (17.11), we obtain the following
bounds,

P n
0 φn ≤

e(1− 1
4L

2)nρ2n

1− e− 1
4L

2nρ2n
, sup

η∈Dc(θ0,Lρn)

P n
θn(hn),η(1− φn) ≤ e− 1

4L
2nρ2n ,

for large enough n, which implies assertion (17.9).

In preparation of corollary 16.1, we also provide a version of theorem 17.1 that only
asserts consistency under n−1/2-perturbation at some rate while relaxing bounds for prior
mass and entropy. In the statement of the corollary, we make use of the family of Kullback-
Leibler neighbourhoods that would play a role for the posterior of the nuisance if θ0 were
known:

K(ρ) =
{
η ∈ H : −P0 log

pθ0,η
pθ0,η0

≤ ρ2, P0

(
log

pθ0,η
pθ0,η0

)2

≤ ρ2
}
, (17.13)

for all ρ > 0. The proof below follows steps similar to those in the proof of corollary 2.1 in
Kleijn and van der Vaart (2006).

Corollary 17.3 (Posterior consistency under perturbation)
Assume that for all ρ > 0, N

(
ρ,H, dH

)
<∞, ΠH(K(ρ)) > 0 and,
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(i) For all M > 0 there is an L > 0 such that for all ρ > 0 and large enough n, K(ρ) ⊂
Kn(Lρ,M).

(ii) For every bounded random sequence (hn), the quantity supη∈H H(Pθn(hn),η, Pθ0,η) and
H(Pθ0,η∗(θn(hn)), Pθ0,η0) are of order O(n−1/2).

Then there exists a sequence (ρn), ρn ↓ 0, nρ2
n → ∞, such that the conditional nuisance

posterior converges under n−1/2-perturbation at rate (ρn).

Proof We follow the proof of corollary 2.1 in Kleijn and van der Vaart (2006) and add that,
under condition (ii), (17.8) and condition (iii) of theorem 17.1 are satisfied. We conclude that
there exists a test sequence satisfying (17.3). Then, the assertion of theorem 17.1 holds.

The following lemma generalizes lemma 8.1 in Ghosal et al. (2000) to the n−1/2-perturbed
setting.

Lemma 17.4 Let (hn) be stochastic and bounded by some M > 0. Then,

P n
0

(∫
H

n∏
i=1

pθn(hn),η

pθ0,η0
(Xi) dΠH(η) < e−(1+C)nρ2 ΠH(Kn(ρ,M))

)
≤ 1

C2nρ2
,

(17.14)
for all C > 0, ρ > 0 and n ≥ 1.

Proof See the proof of lemma 8.1 in Ghosal et al. (2000) (dominating the hn-dependent
log-likelihood ratio immediately after the first application of Jensen’s inequality).

17.2 Integrating local asymptotic normality

The smoothness condition in the Le Cam’s parametric Bernstein-Von Mises theorem is a
LAN expansion of the likelihood, which is replaced in semiparametric context by a stochas-
tic LAN expansion of the integrated likelihood (15.9). In this section, we consider sufficient
conditions under which the localized integrated likelihood,

sn(h) =

∫
H

n∏
i=1

pθ0+n−1/2h,η

pθ0,η0
(Xi) dΠH(η), (17.15)

has the integral LAN property, i.e. sn allows an expansion of the form,

log
sn(hn)

sn(0)
=

1√
n

∞∑
i=1

hTn
˜̀
θ0,η0 − 1

2
hTn Ĩθ0,η0hn + oP0

(1), (17.16)

for every random sequence (hn) ⊂ Rk of order OP0
(1), as required in theorem 17.8. The-

orem 17.6 assumes that the model is stochastically LAN and requires consistency under
n−1/2-perturbation for the nuisance posterior. Consistency not only allows us to restrict
sufficient conditions to neighbourhoods of η0 in H , but also enables lifting of the LAN ex-
pansion of the integrand in (17.15) to an expansion of the integral sn itself, c.f. (17.16). The
posterior concentrates on the least-favourable submodel so that only the least-favourable
expansion at η0 contributes to (17.16) asymptotically. For this reason, the intergral LAN
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expansion is determined by the efficient score function (and not some other influence func-
tion). Ultimately, occurrence of the efficient score lends the marginal posterior (and statistics
based upon it) properties of frequentist semiparametric optimality.

To derive theorem 17.6, we reparametrize the model c.f. (15.10). While yielding adaptiv-
ity, this reparametrization also leads to θ-dependence in the prior for ζ , a technical issue that
we tackle before addressing the main point of this section. We show that the prior mass of the
relevant neighbourhoods displays the appropriate type of stability, under a condition on local
behaviour of Hellinger distances in the least-favourable model. For smooth least-favourable
submodels, typically dH(η∗(θn(hn)), η0) = O(n−1/2) for all bounded, stochastic (hn),
which suffices.

Lemma 17.5 (Prior stability)
Let (hn) be a bounded, stochastic sequence of perturbations and let ΠH be any prior on
H . Let (ρn) be such that dH

(
η∗(θn(hn)), η0

)
= o(ρn). Then the prior mass of radius-ρn

neighbourhoods of η∗ is stable, i.e.,

ΠH

(
D(θn(hn), ρn)

)
= ΠH

(
D(θ0, ρn)

)
+ o(1). (17.17)

Proof Let (hn) and (ρn) be such that dH
(
η∗(θn(hn)), η0

)
= o(ρn). DenoteD(θn(hn), ρn)

by Dn and D(θ0, ρn) by Cn for all n ≥ 1. Since,∣∣∣ΠH(Dn)−ΠH(Cn)
∣∣∣ ≤ ΠH

(
(Dn ∪ Cn)− (Dn ∩ Cn)

)
,

we consider the sequence of symmetric differences. Fix some 0 < α < 1. Then for all
η ∈ Dn and all n large enough, dH(η, η0) ≤ dH(η, η∗(θn(hn))) +dH(η∗(θn(hn)), η0) ≤
(1 + α)ρn, so that Dn ∪ Cn ⊂ D(θ0, (1 + α)ρn). Furthermore, for large enough n and
any η ∈ D(θ0, (1 − α)ρn), dH(η, η∗(θn(hn))) ≤ dH(η, η0) + dH(η0, η

∗(θn(hn))) ≤
ρn + dH(η0, η

∗(θn(hn)))− αρn < ρn, so that D(θ0, (1− α)ρn) ⊂ Dn ∩Cn. Therefore,

(Dn ∪ Cn)− (Dn ∩ Cn) ⊂ D(θ0, (1 + α)ρn)
)
−D(θ0, (1− α)ρn)→ ∅,

which implies (17.17).

Once stability of the nuisance prior is established, theorem 17.6 hinges on stochastic local
asymptotic normality of the submodels t 7→ Qθ0+t,ζ , for all ζ in an rH-neighbourhood of
ζ = 0. We assume there exists a gζ ∈ L2(Qθ0,ζ) such that for every random (hn) bounded
in Qθ0,ζ-probability,

log
n∏
i=1

qθ+n−1/2hn,ζ

qθ0,0
(Xi) =

1√
n

n∑
i=1

hTngζ(Xi)− 1
2
hTnIζhn +Rn(hn, ζ), (17.18)

where Iζ = Qθ0,ζgζg
T
ζ and Rn(hn, ζ) = oQθ0,ζ(1). Equation (17.18) specifies the tangent

set with respect to which differentiability of the model is required. Note that g0 = ˜̀
θ0,η0 .

Theorem 17.6 (Integral local asymptotic normality)
Suppose that θ 7→ Qθ,ζ is stochastically LAN for all ζ in an rH-neighbourhood of ζ = 0.
Furthermore, assume that posterior consistency under n−1/2-perturbation obtains with a
rate (ρn) also valid in (15.11). Then the integral LAN-expansion (17.16) holds.
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Proof Throughout this proof Gn(h, ζ) =
√
nhTPngζ − 1

2
hT Iζh, for all h and all ζ .

Furthermore, we abbreviate θn(hn) to θn and omit explicit notation for (X1, . . . , Xn)-
dependence in several places.

Let δ, ε > 0 be given and let θn = θ0 + n−1/2hn with (hn) bounded in P0-probability.
Then there exists a constant M > 0 such that P n

0 (‖hn‖ > M) < 1
2
δ for all n ≥ 1. With

(hn) bounded, the assumption of consistency under n−1/2-perturbation says that,

P n
0

(
log Π

(
D(θ, ρn)

∣∣ θ = θn ; X1, . . . , Xn

)
≥ −ε

)
> 1− 1

2
δ.

for large enough n. This implies that the posterior’s numerator and denominator are related
through,

P n
0

(∫
H

n∏
i=1

pθn,η
pθ0,η0

(Xi) dΠH(η)

≤ eε 1{‖hn‖≤M}

∫
D(θn,ρn)

n∏
i=1

pθn,η
pθ0,η0

(Xi) dΠH(η)

)
> 1− δ.

(17.19)

We continue with the integral overD(θn, ρn) under the restriction ‖hn‖ ≤M and parametrize
the model locally in terms of (θ, ζ) (see (15.10)):∫

D(θn,ρn)

n∏
i=1

pθn,η
pθ0,η0

(Xi) dΠH(η) =

∫
B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi) dΠ
(
ζ
∣∣ θ = θn

)
, (17.20)

where Π( · | θ ) denotes the prior for ζ given θ, i.e. ΠH translated over η∗(θ). Next we note
that by Fubini’s theorem and the domination condition (15.11), there exists a constantL > 0
such that, ∣∣∣∣P n

0

∫
B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi)
(
dΠ
(
ζ
∣∣ θ = θn

)
− dΠ

(
ζ
∣∣ θ = θ0

)) ∣∣∣∣
≤ L

∣∣∣Π(B(ρn)
∣∣ θ = θn

)
−Π

(
B(ρn)

∣∣ θ = θ0

) ∣∣∣,
for large enough n. Since the least-favourable submodel is stochastically LAN, lemma 17.5
asserts that the difference on the r.h.s. of the above display is o(1), so that,∫

B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi) dΠ
(
ζ
∣∣ θ = θn

)
=

∫
B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi) dΠ(ζ) + oP0
(1), (17.21)

where we use the notation Π(A) = Π( ζ ∈ A | θ = θ0 ) for brevity. We define for all ζ ,
ε > 0, n ≥ 1 the events Fn(ζ, ε) =

{
suph |Gn(h, ζ)−Gn(h, 0)| ≤ ε

}
. With (15.11) as a

domination condition, Fatou’s lemma and the fact that F c
n(0, ε) = ∅ lead to,

lim sup
n→∞

∫
B(ρn)

Qn
θn,ζ

(
F c
n(ζ, ε)

)
dΠ(ζ)

≤
∫

lim sup
n→∞

1B(ρn)−{0}(ζ)Qn
θn,ζ

(
F c
n(ζ, ε)

)
dΠ(ζ) = 0,

(17.22)
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(again using (15.11) in the last step). Combined with Fubini’s theorem, this suffices to con-
clude that,∫

B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi) dΠ(ζ) =

∫
B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi)1Fn(ζ,ε) dΠ(ζ) + oP0
(1), (17.23)

and we continue with the first term on the r.h.s.. By stochastic local asymptotic normality
for every ζ , expansion (17.18) of the log-likelihood implies that,

n∏
i=1

qθn,ζ
qθ0,0

(Xi) =
n∏
i=1

qθ0,ζ
qθ0,0

(Xi) e
Gn(hn,ζ)+Rn(hn,ζ), (17.24)

where the rest term is of order oQθ0,ζ(1). Accordingly, we define, for every ζ , the events
An(ζ, ε) = {|Rn(hn, ζ)| ≤ 1

2
ε}, so that Qn

θ0,ζ
(Acn(ζ, ε)) → 0. Contiguity then implies

that Qn
θn,ζ

(Acn(ζ, ε))→ 0 as well. Reasoning as in (17.23) we see that,∫
B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi) 1Fn(ζ,ε) dΠ(ζ)

=

∫
B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi) 1An(ζ,ε)∩Fn(ζ,ε) dΠ(ζ) + oP0
(1).

(17.25)

For fixed n and ζ and for all (X1, . . . , Xn) ∈ An(ζ, ε) ∩ Fn(ζ, ε):∣∣∣∣ log
n∏
i=1

qθn,ζ
qθ0,0

(Xi)−Gn(hn, 0)

∣∣∣∣ ≤ 2ε,

so that the first term on the r.h.s. of (17.25) satisfies the bounds,

eGn(hn,0)−2ε

∫
B(ρn)

n∏
i=1

qθ0,ζ
qθ0,0

(Xi) 1An(ζ,ε)∩Fn(ζ,ε) dΠ(ζ)

≤
∫
B(ρn)

n∏
i=1

qθn,ζ
qθ0,0

(Xi) 1An(ζ,ε)∩Fn(ζ,ε) dΠ(ζ)

≤ eGn(hn,0)+2ε

∫
B(ρn)

n∏
i=1

qθ0,ζ
qθ0,0

(Xi) 1An(ζ,ε)∩Fn(ζ,ε) dΠ(ζ).

(17.26)

The integral factored into lower and upper bounds can be relieved of the indicator for An ∩
Fn by reversing the argument that led to (17.23) and (17.25) (with θ0 replacing θn), at
the expense of an eoP0

(1)-factor. Substituting in (17.26) and using, consecutively, (17.25),
(17.23), (17.21) and (17.19) for the bounded integral, we find,

eGn(hn,0)−3ε+oP0
(1) sn(0) ≤ sn(hn) ≤ eGn(hn,0)+3ε+oP0

(1)sn(0).

Since this holds with arbitrarily small 0 < ε′ < ε for large enough n, it proves (17.16).

With regard to the nuisance rate (ρn), we first note that our proof of theorem 15.7 fails if
the slowest rate required to satisfy (15.11) vanishes faster then the optimal rate for conver-
gence under n−1/2-perturbation (as determined in (17.7) and (17.2)).
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However, the rate (ρn) does not appear in assertion (17.16), so if said contradiction be-
tween conditions (15.11) and (17.7)/(17.2) does not occur, the sequence (ρn) can remain
entirely internal to the proof of theorem 17.6. More particularly, if condition (15.11) holds
for any (ρn) such that nρ2

n → ∞, integral LAN only requires consistency under n−1/2-
perturbation at some such (ρn). In that case, we may appeal to corollary 17.3 instead of
theorem 17.1, thus relaxing conditions on model entropy and nuisance prior. The follow-
ing lemma shows that a first-order Taylor expansion of likelihood ratios combined with a
boundedness condition on certain Fisher information coefficients is enough to enable use of
corollary 17.3 instead of theorem 17.1.

Lemma 17.7 Let Θ be one-dimensional. Assume that there exists a ρ > 0 such that
for every ζ ∈ B(ρ) and all x in the samplespace, the map θ 7→ log(qθ,ζ/qθ0,ζ)(x) is
continuously differentiable on [θ0 − ρ, θ0 + ρ] with Lebesgue-integrable derivative gθ,ζ(x)
such that,

sup
ζ∈B(ρ)

sup
{θ:|θ−θ0|<ρ}

Qθ,ζg
2
θ,ζ <∞. (17.27)

Then, for every ρn ↓ 0 and all bounded, stochastic (hn), Un(ρn, hn) = O(1).

Proof Let (hn) be stochastic and upper-bounded by M > 0. For every ζ and all n ≥ 1,

Qn
θ0,ζ

∣∣∣∣∣
n∏
i=1

qθn(hn),ζ

qθ0,ζ
(Xi)− 1

∣∣∣∣∣ = Qn
θ0,ζ

∣∣∣∣∣
∫ θn(hn)

θ0

n∑
i=1

gθ′,ζ(Xi)
n∏
j=1

qθ′,ζ
qθ0,ζ

(Xj) dθ
′

∣∣∣∣∣
≤
∫ θ0+ M√

n

θ0− M√
n

Qn
θ′,ζ

∣∣∣ n∑
i=1

gθ′,ζ(Xi)
∣∣∣ dθ′ ≤ √n ∫ θ0+ M√

n

θ0− M√
n

√
Qθ′,ζg2

θ′,ζ dθ
′,

where the last step follows from the Cauchy-Schwartz inequality. For large enough n, ρn <
ρ and the square-root of (17.27) dominates the difference between U(ρ, hn) and 1.

17.3 Posterior asymptotic normality

Under the assumptions formulated before theorem 15.7, the marginal posterior density πn(·|X1, . . . , Xn): Θ→
R for the parameter of interest with respect to the prior ΠΘ equals,

πn(θ|X1, . . . , Xn) = Sn(θ)
/ ∫

Θ
Sn(θ′) dΠΘ(θ′), (17.28)

P n
0 -almost-surely. One notes that this form is equal to that of a parametric posterior density,

but with the parametric likelihood replaced by the integrated likelihood Sn. By implication,
the proof of the parametric Bernstein-Von Mises theorem can be applied to its semipara-
metric generalization, if we impose sufficient conditions for the parametric likelihood on
Sn instead. Concretely, we replace the smoothness requirement for the likelihood in theo-
rem 14.3 by (17.16). Together with a condition expressing marginal posterior convergence
at parametric rate, (17.16) is sufficient to derive asymptotic normality of the posterior c.f.
(15.3).

Theorem 17.8 (Posterior asymptotic normality)
Let Θ be open in Rk with a prior ΠΘ that is thick at θ0. Suppose that for large enough n,
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the map h 7→ sn(h) is continuous P n
0 -almost-surely. Assume that there exists an L2(P0)-

function ˜̀
θ0,η0 such that for every (hn) that is bounded in probability, (17.16) holds,P0

˜̀
θ0,η0 =

0 and Ĩθ0,η0 is non-singular. Furthermore suppose that for every (Mn),Mn →∞, we have:

Πn

(
‖h‖ ≤Mn

∣∣ X1, . . . , Xn

) P0−→ 1. (17.29)

Then the sequence of marginal posteriors for θ converges to a normal distribution in total
variation,

sup
A

∣∣∣Πn

(
h ∈ A

∣∣ X1, . . . , Xn

)
−N∆̃n,Ĩ

−1
θ0,η0

(A)
∣∣∣ P0−→ 0,

centred on ∆̃n with covariance matrix Ĩ−1
θ0,η0

.

Proof Throughout we denote the normal distribution centred on ∆̃n with covariance Ĩ−1
θ0,η0

by Φn. The prior and marginal posterior for the local parameter h are denoted Πn and
Πn( · |X1, . . . , Xn). Conditioned on some C measurable in Rk, we denote these measures
by ΦC

n , ΠC
n and ΠC

n ( · |X1, . . . , Xn) respectively.
LetC be compact in Rk and assume thatC contains an open neighbourhood of the origin.

Define, for every g, h ∈ C and large enough n,

fn(g, h) =

(
1− φn(h)

φn(g)

sn(g)

sn(h)

πn(g)

πn(h)

)
+

,

where φn:C → R is the Lebesgue density of the distribution Φn and πn:C → R is the
Lebesgue density of the prior Πn for the parameter h. By assumption (17.16) we have, for
every stochastic (hn) in C:

log sn(hn) = log sn(0) + hTnGn
˜̀
θ0,η0 − 1

2
hTn Ĩθ0,η0hn + oP0

(1),

log φn(hn) = − 1
2
(hn − ∆̃n)T Ĩθ0,η0(hn − ∆̃n) +Dn,

(with normalization constants Dn that cancel in the fraction that defines fn). For any two
stochastic sequences (hn), (gn) in C, πn(gn)/πn(hn) converges to 1 as n→∞. Combin-
ing with the above display and with (15.4), we see that:

log
φn(hn)

φn(gn)

sn(gn)

sn(hn)

πn(gn)

πn(hn)
= −hTnGn

˜̀
θ0,η0 + 1

2
hTn Ĩθ0,η0hn + gTnGn

˜̀
θ0,η0 − 1

2
gTn Ĩθ0,η0gn + oP0

(1)

− 1
2
(hn − ∆̃n)T Ĩθ0,η0(hn − ∆̃n) + 1

2
(gn − ∆̃n)T Ĩθ0,η0(gn − ∆̃n)

= oP0
(1),

(17.30)

as n→∞. For any stochastic sequence (hn, gn) inC×C, fn(gn, hn)
P0−→ 0, by continuous

mapping. By (17.16), sn(h)/sn(0) is of the form exp(Kn(h)+Rn(h)) for all h and n ≥ 1,
where Rn = oP0

(1). Tightness of Kn and Rn implies that sn(h)/sn(0) ∈ (0,∞), P n
0 -

almost-surely. Almost-sure continuity of h 7→ sn(h) then implies almost-sure continuity of
(g, h) 7→ sn(g)/sn(h) for large enough n. Since ˜̀

θ0,η0 ∈ L2(P0) and Ĩθ0,η0 is invertible,
the location of the normal distributionN∆̃n,Ĩ0

is P n
0 -tight, so that (g, h) 7→ φn(g)/φn(h) is

continuous on C ×C. The thickness of the prior density π guarantee that this also holds for
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(g, h) 7→ πn(g)/πn(h). Since, for large enough n, fn is continuous on C×C, P n
0 -almost-

surely, we conclude that the convergence of fn holds uniformly over C × C, i.e.,

sup
g,h∈C

fn(g, h)
P0−→ 0. (17.31)

For given δ > 0, define the events Ωn = {supg,h∈C fn(g, h) ≤ δ}, so that, Because C
contains a neighbourhood of the origin and ∆̃n is tight for all n ≥ 1, Φn(C) > 0, P n

0 -
almost-surely. Moreover, the prior mass of C satisfies Πn(C) > 0 and for all h ∈ C,
sn(h) > 0, so that the posterior mass of C satisfies Πn(C|X1, . . . , Xn) > 0. Therefore,
conditioning on C is well-defined P n

0 -almost-surely for both Φn and Πn( · |X1, . . . , Xn).
We consider the difference in total variation between ΠC

n ( · |X1, . . . , Xn) and ΦC
n . We de-

compose its P n
0 -expectation and use (17.31) to conclude that,

P n
0 sup

A

∣∣ΠC
n (A|X1, . . . , Xn)− ΦC

n (A)
∣∣

≤ P n
0 sup

A

∣∣ΠC
n (A|X1, . . . , Xn)− ΦC

n (A)
∣∣1Ωn + oP0

(1).
(17.32)

Note that both ΦC
n and ΠC

n ( · |X1, . . . , Xn) have strictly positive densities on C for large
enough n. Therefore, ΦC

n is dominated by ΠC
n ( · |X1, . . . , Xn) if n is large enough. The

former term on the r.h.s. in (17.32) can now be calculated as follows:
1
2
P n

0 sup
A

∣∣ΠC
n (A|X1, . . . , Xn)− ΦC

n (A)
∣∣1Ωn

= P n
0

∫
C

(
1−

∫
C

sn(g)πn(g)φn(h)

sn(h)πn(h)φn(g)
dΦC

n (g)
)

+
dΠC

n (h|X1, . . . , Xn) 1Ωn ,

for large enough n. Jensen’s inequality and substitution of (17.31) then gives,
1
2
P n

0 sup
A∈B

∣∣ΠC
n (A|X1, . . . , Xn)− ΦC

n (A)
∣∣1Ωn

≤ P n
0

∫
sup
g,h∈C

fn(g, h) 1Ωn dΦC
n (g) dΠC

n (h|X1, . . . , Xn) ≤ δ,

for large enough n. Since the argument holds for all δ > 0, substitution of (17.32) shows
that for all compact C ⊂ Rk containing a neighbourhood of 0,

P n
0

∥∥ΠC
n − ΦC

n

∥∥→ 0.

Let (Bm) be a sequence of closed balls centred at the origin with radii Mm → ∞. For
each fixed m ≥ 1, the above display holds with C = Bm, so if we choose a sequence of
balls (Bn) that traverses the sequence (Bm) slowly enough, convergence to zero can still
be guaranteed. We conclude that there exists a sequence of radii (Mn) such that Mn →∞
and,

P n
0

∥∥ΠBn
n − ΦBn

n

∥∥→ 0. (17.33)

Combining (17.29) and lemma 5.2 in Kleijn and van der Vaart (2007) (the sequence (∆̃n)
converges weakly, so that it is uniformly tight by Prohorov’s theorem), we then use lemma 5.1
in Kleijn and van der Vaart (2007) to conclude that

P n
0

∥∥Πn − Φn

∥∥→ 0,
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the assertion holds.


